
1

Penn ESE5320 Fall 2024 -- DeHon 1

ESE5320:
System-on-a-Chip Architecture

Day 16: October 23, 2024
Deduplication and Compression Project

1

Penn ESE5320 Fall 2024 -- DeHon 2

Today
• Motivation (part 1)
• Project (part 2)
• Content-Defined Chunking (part 3)
• Hashing / Deduplication (part 4)
• LZW Compression Setup (part 5)

2

Message
• Can reduce data size by identifying and

reducing redundancy
• Can

– spend computation and data storage
– to reduce communication traffic

Penn ESE5320 Fall 2024 -- DeHon 3

3

Problem
• Always want more

– Bandwidth
– Storage space

• Carry data with me (phone, laptop)
• Backup laptop, phone data

– Maybe over limited bandwidth links
• Never delete data
• Download movies, books, datasets
• Make most use of space, bw given

Penn ESE5320 Fall 2024 -- DeHon 4

4

Opportunity

• Significant redundant content in our raw
data streams (data storage)

• More formally:
– Information content < raw data

• Reduce the data we need to send or
store by identifying redundancies

Penn ESE5320 Fall 2024 -- DeHon 5

5

Example

• Two identical files
– Different parts of my file systems

• Don’t store separate copies
– Store one
– And the other says “same as the first file”

• e.g. keep a pointer

Penn ESE5320 Fall 2024 -- DeHon 6

6

2

Why Identical?

• Eniac file system (common file server)
– Multiple students have copies of

assignment(s)
– Snapshots (.snapshot)

• Has copies of your directory an hour ago, days
ago, weeks ago

– …but most of that data hasn’t changed

Penn ESE5320 Fall 2024 -- DeHon 7

7

Broadening

• History file systems
– snapshot, Apple Time Machine

• Version Control (git, svn)
• Manually keep copies
• Download different software release

versions
– With many common files

Penn ESE5320 Fall 2024 -- DeHon 8

8

Cloud Data Storage
• E.g. Drop Box, Google Drive, Apple Cloud
• Saves data for large class of people

– Want to only store one copy of each
• Synchronize with local copy on phone/laptop

– Only want to send one copy on update
– Only want to send changes

• Data not already known on other side
• (or, send that data compactly by just naming it)

Penn ESE5320 Fall 2024 -- DeHon 9

9

Functional Placement
• At file server or USB drive

– Deduplicate/compress data as stored
• In client (laptop, phone)

– Dedup/compress to send to server
• In data center network

– Dedup/compress data to send between server
• Network infrastructure

– Dedup/compress from central to regional server

Penn ESE5320 Fall 2024 -- DeHon 10

10

Optimizing the Bottleneck

• Saving data (transmitted, stored)
• By spending compute cycles

– And storage database

• When communication (storage) is the
bottleneck
– We’re willing to spend computation to

better utilize the bottleneck resource
Penn ESE5320 Fall 2024 -- DeHon 11

11

Project

Part 2

Penn ESE5320 Fall 2024 -- DeHon 12

12

3

Project

• Perform deduplication/compression at
network speeds (400Mb/s)

• Use “chunks” instead of files
• Turn a raw/uncompressed data stream

into one that exploits
– Duplicate chunks
– Redundancies within chunks

Penn ESE5320 Fall 2024 -- DeHon 13

13

Project Context

• File server input link from network
– Compress data before sending to disk
– (or USB link from computer, compress

before store to flash)

• Network link in data center or
infrastructure
– Compress data that goes over network

Penn ESE5320 Fall 2024 -- DeHon 14

14

Project Task

Penn ESE5320 Fall 2024 -- DeHon 15

15

Motivation

• Can we afford to simply compare every
incoming file with all the files we’ve
already sent?

Penn ESE5320 Fall 2024 -- DeHon 16

16

Preclass 1
• How many comparisons per input byte

in file?
– Hint: how many total comparisons?

Penn ESE5320 Fall 2024 -- DeHon 17

17

Requirements?

• Can we afford to simply compare every
incoming file with all the files we’ve
already sent?

• Data coming in at 400 Mb/s
• Processor (or datapath) running at 1GHz
• How many comparisons needed per

cycle with preclass 1 solution?
– Hint: how many ns per input byte? Cycles?

Penn ESE5320 Fall 2024 -- DeHon 18

18

4

Alternate Strategy

• Is there something we can compute on
the input file that will let us
– Know if a file is definitely not equivalent

• So not worth checking every byte
– Find the duplicate directly?

Penn ESE5320 Fall 2024 -- DeHon 19

19

Alternatives

• How about
– Look at size of file?
– Look at 10 characters at fixed spots in the

files?
• E.g. bytes 11, 23, 113, 947, 1168, ….

• Could do better?
– Could do something where changing any

single character might be detected?

Penn ESE5320 Fall 2024 -- DeHon 20

20

Exploring Alternatives

• What if we xor’ed together every byte in
the file?

• What if we took sum of every word
(group of 4 bytes) in the file?

Penn ESE5320 Fall 2024 -- DeHon 21

21

Fingerprint, checksum, digest
• Compute a function on all the bytes in

the file ! digest
• Bins files into separate classes by the

digest
– Only need to check those

• As increase bits in digest
– Make likelihood of two files having same

digest smaller
• If can arrange for digests to essentially

be unique – like a fingerprint
Penn ESE5320 Fall 2024 -- DeHon 22

22

Hash

• A finite digest (fixed number of bits)
computed on a potentially large
collection of data (like a file)

• Ideally uniformly random digests
– each hash value equally likely

• Use as building block for grouping and
matching

Penn ESE5320 Fall 2024 -- DeHon 23

23

Refined Strategy

• Keep a map of hash digests to files on
the system

• On new file,
– Compute hash digest on file
– Only compare file contents against files

with the same hash
• If hash is uniformly random with 20b,

how does this reduce the number of
files need to compare?Penn ESE5320 Fall 2024 -- DeHon 24

24

5

Hashing Impact

• With (perfectly distributed) k-bit hash

• 𝐴𝑣𝑔𝑆𝑒𝑎𝑟𝑐ℎ = !"#$%&'%()
*!

Penn ESE5320 Fall 2024 -- DeHon 25

25

Part 3:
Content-Defined Chunking

Penn ESE5320 Fall 2024 -- DeHon 26

26

Files or chunks?

• Why might files be the wrong granularity
for identifying duplicates?

Penn ESE5320 Fall 2024 -- DeHon 27

27

Blocks

• We regularly cut files into fixed-sized
blocks
– Disk sectors or blocks
– inodes in File systems

• We could look for duplicates in blocks
• Why might fixed-sized blocks not be

right division for deduplication?

Penn ESE5320 Fall 2024 -- DeHon 28

28

Preclass 2 Unique Blocks?

Penn ESE5320 Fall 2024 -- DeHon 29

29

Preclass 3 Unique Chunks?

Penn ESE5320 Fall 2024 -- DeHon 30

30

6

Preclass 2 and 3

• Why are chunks able to capture more
duplicates?

Penn ESE5320 Fall 2024 -- DeHon 31

31

Common File Modifications

• Add a line of text
• Remove a line of text
• Fix a typo
• Rewrite a paragraph
• Trim or compose a video sequence
• ! shift data ! break alignment in block

Penn ESE5320 Fall 2024 -- DeHon 32

32

Content-Define Chunking

• Would like to re-align pieces around
unchanged/common sequences
– Around the content

• Break up larger thing (file) into pieces
based on features of content
– Hence``content-defined”

Penn ESE5320 Fall 2024 -- DeHon 33

33

Chunks

• Pieces of some larger file (data stream)
• Variable size

– Over a limited range
• Discretion in how formed / divided

Penn ESE5320 Fall 2024 -- DeHon 34

34

Chunk Creation

• How do we identify chunks?

Penn ESE5320 Fall 2024 -- DeHon 35

35

Hashes and Chunk Creation
• Compute a hash on a window of values

– Window: sequence of W-bytes
– Like window filter

Penn ESE5320 Fall 2024 -- DeHon 36

l i k e g r e e n e g g s a n d

0x20 0x67 0x72 0x65 0x65

0xC3

36

7

Hashes and Chunk Creation
• Compute a hash on a window of values

– Window: sequence of W-bytes
– Like window filter

• Scan window over the input

Penn ESE5320 Fall 2024 -- DeHon 37

l i k e g r e e n e g g s a n d

0x20 0x67 0x72 0x65 0x65

0xC3

0x63

0x11

l i k e g r e e n e g g s a n d

0x20 0x67 0x72 0x65 0x65

0xC3

37

Hashes and Chunk Creation
• Compute a hash on a window of values

– Window: sequence of W-bytes
– Like window filter

• Scan window over the input
• When hash has some special value

(like 0 or 0x11)
– Declare a chunk boundary

Penn ESE5320 Fall 2024 -- DeHon 38

l i k e g r e e n e g g s a n d

0x20 0x67 0x72 0x65 0x65

0xC3

0x63

0x11

38

Hashes as Chunk Cut Points
• What does this do?
• Guarantees that each chunk begins (or

ends) at some fixed hash
• For a particular substring that matches

the target hash
– Always occurs at beginning (or end) of

chunk
• If have a large body of repeated text

– Will synchronize cuts at the same points
based on the content

Penn ESE5320 Fall 2024 -- DeHon 39

39

Chunk Size
• Assume hash is uniformly random
• The likelihood of each window having a

particular value is the same
• So, if hash has a range of N,

the probability of a particular window
having the magic “cut” value is 1/N

• …making the average chunk size N
• So, we engineer chunk size by selecting

the range of the hash we use
– E.g. 12b hash for 212 = 4KB chunksPenn ESE5320 Fall 2024 -- DeHon 40

40

Chunking Design
• Raises questions

– How big should chunks be?
• Apply maximum and minimum size beyond

content definition?
– How big should hash window be?

• Discuss
– What forces drive larger chunks, smaller?

• How do large chunks help compression? Hurt?

Penn ESE5320 Fall 2024 -- DeHon 41

41

Example Text

• Consider beginning of repeated block of text.
• This stuff has already been seen.
• But, we are only matching on something that

has a hash of zero.
• Maybe this line has a hash of zero.
• But, our repeated text is before and after the

magic window with the matched hash value.

Penn ESE5320 Fall 2024 -- DeHon 42

42

8

Example Data Stream

Penn ESE5320 Fall 2024 -- DeHon 43

Blue: Hash=0.
Green: Identical

Maybe edited file,
 added some content.

43

Example Data Stream

Penn ESE5320 Fall 2024 -- DeHon 44

Blue: Hash=0.
Green: Identical

Maybe edited file,
 added some content.

1A

1B 1C 1D 1E 1F

1G

1H 1I

2A 2B 2C 2D 2E 2F 2G 2H 2I 2J 2K

44

Example Data Stream

Penn ESE5320 Fall 2024 -- DeHon 45

Blue: Hash=0.
Green: Identical

Maybe edited file,
 added some content.

1A

1B 1C 1D 1E 1F

1G

1H 1I

2A 2B 2C 2D 2E 2F 2G 2H 2I 2J 2K

Which chunks are
exploitable duplicates?
 1B – 2B ?
 1D -- 2F ?
 1E – 2G ?
 1F – 2H ?
 1G – 2I ?
 1H – 2J ?

45

Chunk Size

• Large chunks
– Increase potential compression

• ChunkSize/ChunkAddressBits
– Decrease

• Probability of finding whole chunk
• Fraction of repeated content included

completely inside chunks

Penn ESE5320 Fall 2024 -- DeHon 46

46

Rolling Hash
• A Windowed hash that can be computed

incrementally
• Hash(a[x+0],a[x+1],…a[x+W-1])=
 G(Hash(a[x-1],a[x+0],…a[x+W-2]))

- F(a[x-1])+F(A[x+W-1])
• i.e., hash computation is associative
• (+,- used abstractly here, could be in some

other domain than modulo arithmetic)

Penn ESE5320 Fall 2024 -- DeHon 47

47

Rolling Hash

• hash (gree) = 0x20+0x67+0x72+0x65+0x65
• hash (green) = 0x67+0x72+0x65+0x65+0x6e
• hash(green) = hash(gree)-0x20+0x6e

Penn ESE5320 Fall 2024 -- DeHon 48

l i k e g r e e n e g g s a n d

0x20 0x67 0x72 0x65 0x65

0xC3

l i k e g r e e n e g g s a n d

0x20 0x67 0x72 0x65 0x65

0xC3

0x63

0x11

48

9

Rabin Fingerprinting

• Particular scheme for rolling hash due
to Michael Rabin based on polynomial
over a finite field

• Commonly used for this chunking
application

Penn ESE5320 Fall 2024 -- DeHon 49

49

Content-Defined Chunking

• Compute rolling hash (Rabin
Fingerprint) on input stream

• At points where hash value goes to 0,
create a new chunk

Penn ESE5320 Fall 2024 -- DeHon 50

50

Part 4:
Hashing Deduplication

Penn ESE5320 Fall 2024 -- DeHon 51

51

Hashes for Equality

• We can also (separately) take the hash
signature of an entire chunk

• The longer we make the hash,
the lower the likelihood two different
chunks will have the same hash

• If hash is perfectly uniform,
– N-bit hash, two chunks have a 2-N chance

of having the same hash.
Penn ESE5320 Fall 2024 -- DeHon 52

52

Deduplicate
• Compute chunk hash
• Use chunk hash to lookup known

chunks
– Data already have on disk
– Data already sent to destination, so

destination will know
• If lookup yields a chunk with same hash

– Check if actually equal (maybe)
• If chunks equal

– Send (or save) pointer to existing chunk
Penn ESE5320 Fall 2024 -- DeHon 53

53

Engineering Hash

• 2GB DRAM on Ultra96.

• How many 1KB chunks on a 1TB disk?

• Potential hash values for 256b hash?

Penn ESE5320 Fall 2024 -- DeHon 54

54

10

Engineering Hash

• 2GB DRAM on Ultra96.

• 1G = 230 1KB chunks on a 1TB disk.

• 256b hash has 2256 potential hashes
– Probably of same hash: 2-226

Penn ESE5320 Fall 2024 -- DeHon 55

55

Deduplicate
• Compute chunk hash
• Use chunk hash to lookup known

chunks
– Data already have on disk
– Data already sent to destination, so

destination will know
• If lookup yields a chunk with same hash

– Check if actually equal (maybe)
• How large of a memory do you need to

hold the table of all 256b hash results?
• How relate to Ultra96 DRAM capacity?Penn ESE5320 Fall 2024 -- DeHon 56

56

Deduplication Architecture

Penn ESE5320 Fall 2024 -- DeHon 57

57

Associative Memory

• Maps from a key to a value
• Key not necessarily dense

– Contrast simple RAM

• Talk about options to implement next
week

Penn ESE5320 Fall 2024 -- DeHon 58

58

Secure Hash

• We regularly use digest signatures to
identify if a file has been tampered with

• Again, hashes are same, mean data
might be the same

• For security, we would like additional
property
– not easy to make the anti-tamper signature

match
Penn ESE5320 Fall 2024 -- DeHon 59

59

Cryptographic Hash

• One-way functions
• Easy to compute the hash
• Hard to invert

– Ideally, only way to get back to input data
is by brute force – try all possible inputs

• Key: someone cannot change the
content (add a backdoor to code) and
then change some further to get hash
signature to match original

Penn ESE5320 Fall 2024 -- DeHon 60

60

11

SHA-256

• Standard secure hash with a 256b hash
digest signature

• Heavily analyzed
• Heavily used

– TLS, SSL, PGP, Bitcoin, …

Penn ESE5320 Fall 2024 -- DeHon 61

61

Part 5:
LZW Compression

Penn ESE5320 Fall 2024 -- DeHon 62

62

Preclass 4

• I AM S<2,3><5,4><0,4>

• Message?

Penn ESE5320 Fall 2024 -- DeHon 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
I A M S

63

Preclass 5, 6

• Bits in unencoded (decoded) message?
– Assume 8b char

• Bits for encoded message?
– Assume 9b for character

• 1 bit to say is a character, then 8b char
– And 9b for <x,y> pair

• 1 bit char, 4b for each of x and y

Penn ESE5320 Fall 2024 -- DeHon 64

64

Idea

• Use data already sent as the dictionary
– Give short names to things in dictionary
– Don’t need to pre-arrange dictionary
– Adapt to common phrases/idioms in a

particular document

Penn ESE5320 Fall 2024 -- DeHon 65

65

Encoding

• Greedy simplification
– Encode by successively selecting the

longest match between the head of the
remaining string to send and the current
window

Penn ESE5320 Fall 2024 -- DeHon 66

66

12

Algorithm Concept

• While data to send
– Find largest match in window of data sent
– If length too small (length=1)

• Send character
– Else

• Send <x,y> = <match-pos,length>
– Add data encoded into sent window

Penn ESE5320 Fall 2024 -- DeHon 67

67

Preclass 7
• How many comparisons per invocation?

Penn ESE5320 Fall 2024 -- DeHon 68

ESE5320 Day 16 Preclass Exercise Fall 2022

4. Decode I AM S<2,3><5,4><0,4>
where <x,y> says copy y characters from position x in the decoded sequence.

The first position (I) is 0.

Here’s a table to help you decode (for the table, the top line gives the position to use

for x). We’ve added the first 6 characters to get you started.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I A M S

5. Using 8b character, how many bits are required to encode the 16 character decoded

message above?

6. Assuming 9b to represent a literal character (e.g, ’S’) and 9b to represent <x,y>, how

many bits are required to encode: I AM S<2,3><5,4><0,4> ?

7. How many comparisons on a single invocation of longest match?

#define DICT_SIZE 4096
#define LENGTH 256
// clen<=LENGTH
int longest_match(char dict[DICT_SIZE], char candidate[LENGTH], int clen) {

int best_len=0;
int best_loc=-1;
for (int i=0;i<DICT_SIZE-clen;i++) {

j=0;
while((candidate[j]==dict[i+j]) && (j<clen)) {

j++;
}

if (j>best_len) {
best_len=j;
best_loc=i;
}

}
return((best_loc<<8)|best_len);

}

2

68

Next Time

• See a clever way to reduce
comparisons to constant work per input
character (linear in data being
compressed)

Penn ESE5320 Fall 2024 -- DeHon 69

69

Project Task

Penn ESE5320 Fall 2024 -- DeHon 70

70

Big Ideas
• Can reduce data size by identifying and

reducing redundancy
• Can spend computation and data

storage to reduce communication traffic

Penn ESE5320 Fall 2024 -- DeHon 71

71

Penn ESE5320 Fall 2024 -- DeHon 72

Admin
• Feedback
• HW7 due Friday
• Project assignment out
• Reading for Monday online
• First project milestone due next Friday

– Including teaming
– Teams of 3

72

