
1

Penn ESE5320 Fall 2024 -- DeHon 1

ESE5320:
System-on-a-Chip Architecture

Day 16:  October 23, 2024
Deduplication and Compression Project

1

Penn ESE5320 Fall 2024 -- DeHon 2

Today
• Motivation (part 1)
• Project (part 2)
• Content-Defined Chunking (part 3)
• Hashing / Deduplication (part 4)
• LZW Compression Setup (part 5)
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Message
• Can reduce data size by identifying and 

reducing redundancy
• Can 

– spend computation and data storage 
– to reduce communication traffic
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Problem
• Always want more

– Bandwidth
– Storage space

• Carry data with me (phone, laptop)
• Backup laptop, phone data

– Maybe over limited bandwidth links
• Never delete data
• Download movies, books, datasets
• Make most use of space, bw given
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Opportunity

• Significant redundant content in our raw 
data streams (data storage)

• More formally: 
– Information content < raw data

• Reduce the data we need to send or 
store by identifying redundancies
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Example

• Two identical files
– Different parts of my file systems

• Don’t store separate copies
– Store one
– And the other says “same as the first file”

• e.g. keep a pointer
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Why Identical?

• Eniac file system (common file server)
– Multiple students have copies of 

assignment(s)
– Snapshots (.snapshot)

• Has copies of your directory an hour ago, days 
ago, weeks ago

– …but most of that data hasn’t changed
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Broadening 

• History file systems 
– snapshot, Apple Time Machine

• Version Control (git, svn)
• Manually keep copies
• Download different software release 

versions
– With many common files
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Cloud Data Storage
• E.g. Drop Box, Google Drive, Apple Cloud
• Saves data for large class of people

– Want to only store one copy of each
• Synchronize with local copy on phone/laptop

– Only want to send one copy on update
– Only want to send changes

• Data not already known on other side
• (or, send that data compactly by just naming it)
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Functional Placement
• At file server or USB drive

– Deduplicate/compress data as stored
• In client (laptop, phone)

– Dedup/compress to send to server
• In data center network

– Dedup/compress data to send between server
• Network infrastructure

– Dedup/compress from central to regional server
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Optimizing the Bottleneck

• Saving data (transmitted, stored)
• By spending compute cycles

– And storage database

• When communication (storage) is the 
bottleneck
– We’re willing to spend computation to 

better utilize the bottleneck resource
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Project

Part 2
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Project

• Perform deduplication/compression at 
network speeds (400Mb/s)

• Use “chunks” instead of files
• Turn a raw/uncompressed data stream 

into one that exploits
– Duplicate chunks
– Redundancies within chunks
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Project Context

• File server input link from network
– Compress data before sending to disk
– (or USB link from computer, compress 

before store to flash)

• Network link in data center or 
infrastructure
– Compress data that goes over network
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Project Task
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Motivation

• Can we afford to simply compare every 
incoming file with all the files we’ve 
already sent?
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Preclass 1
• How many comparisons per input byte 

in file?
– Hint: how many total comparisons?
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Requirements?

• Can we afford to simply compare every 
incoming file with all the files we’ve 
already sent?

• Data coming in at 400 Mb/s
• Processor (or datapath) running at 1GHz
• How many comparisons needed per 

cycle with preclass 1 solution?
– Hint: how many ns per input byte?  Cycles?
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Alternate Strategy

• Is there something we can compute on 
the input file that will let us 
– Know if a file is definitely not equivalent

• So not worth checking every byte
– Find the duplicate directly?
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Alternatives

• How about
– Look at size of file?
– Look at 10 characters at fixed spots in the 

files?
• E.g. bytes 11, 23, 113, 947, 1168, ….

• Could do better?
– Could do something where changing any 

single character might be detected?
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Exploring Alternatives

• What if we xor’ed together every byte in 
the file?

• What if we took sum of every word 
(group of 4 bytes) in the file?
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Fingerprint, checksum, digest
• Compute a function on all the bytes in 

the file ! digest
• Bins files into separate classes by the 

digest
– Only need to check those

• As increase bits in digest
– Make likelihood of two files having same 

digest smaller
• If can arrange for digests to essentially 

be unique – like a fingerprint
Penn ESE5320 Fall 2024 -- DeHon 22

22

Hash

• A finite digest (fixed number of bits) 
computed on a potentially large 
collection of data (like a file)

• Ideally uniformly random digests 
–  each hash value equally likely

• Use as building block for grouping and 
matching
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Refined Strategy

• Keep a map of hash digests to files on 
the system

• On new file, 
– Compute hash digest on file
– Only compare file contents against files 

with the same hash
• If hash is uniformly random with 20b, 

how does this reduce the number of 
files need to compare?Penn ESE5320 Fall 2024 -- DeHon 24
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Hashing Impact

• With (perfectly distributed) k-bit hash

• 𝐴𝑣𝑔𝑆𝑒𝑎𝑟𝑐ℎ = !"#$%&'%()
*!
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Part 3:
Content-Defined Chunking
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Files or chunks?

• Why might files be the wrong granularity 
for identifying duplicates?
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Blocks

• We regularly cut files into fixed-sized 
blocks
– Disk sectors or blocks
– inodes in File systems

• We could look for duplicates in blocks
• Why might fixed-sized blocks not be 

right division for deduplication?
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Preclass 2 Unique Blocks?
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Preclass 3 Unique Chunks?
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Preclass 2 and 3

• Why are chunks able to capture more 
duplicates?
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Common File Modifications

• Add a line of text
• Remove a line of text
• Fix a typo
• Rewrite a paragraph
• Trim or compose a video sequence
• ! shift data ! break alignment in block
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Content-Define Chunking

• Would like to re-align pieces around 
unchanged/common sequences
– Around the content

• Break up larger thing (file) into pieces 
based on features of content
– Hence``content-defined”
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Chunks

• Pieces of some larger file (data stream)
• Variable size 

– Over a limited range
• Discretion in how formed / divided
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Chunk Creation

• How do we identify chunks?
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Hashes and Chunk Creation
• Compute a hash on a window of values

– Window: sequence of W-bytes
– Like window filter
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l i k e g r e e n e g g s a n d

0x20 0x67 0x72 0x65 0x65 

0xC3
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Hashes and Chunk Creation
• Compute a hash on a window of values

– Window: sequence of W-bytes
– Like window filter

• Scan window over the input
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0x20 0x67 0x72 0x65 0x65 

0xC3

0x63

0x11

l i k e g r e e n e g g s a n d

0x20 0x67 0x72 0x65 0x65 

0xC3
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Hashes and Chunk Creation
• Compute a hash on a window of values

– Window: sequence of W-bytes
– Like window filter

• Scan window over the input
• When hash has some special value 

(like 0 or 0x11)
– Declare a chunk boundary
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0x20 0x67 0x72 0x65 0x65 

0xC3

0x63

0x11
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Hashes as Chunk Cut Points
• What does this do?
• Guarantees that each chunk begins (or 

ends) at some fixed hash
• For a particular substring that matches 

the target hash
– Always occurs at beginning (or end) of 

chunk
• If have a large body of repeated text

– Will synchronize cuts at the same points 
based on the content
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Chunk Size
• Assume hash is uniformly random
• The likelihood of each window having a 

particular value is the same
• So, if hash has a range of N,

the probability of a particular window 
having the magic “cut” value is 1/N

• …making the average chunk size N
• So, we engineer chunk size by selecting 

the range of the hash we use
– E.g. 12b hash for 212 = 4KB chunksPenn ESE5320 Fall 2024 -- DeHon 40
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Chunking Design
• Raises questions

– How big should chunks be?
• Apply maximum and minimum size beyond 

content definition?
– How big should hash window be?

• Discuss
– What forces drive larger chunks, smaller?

• How do large chunks help compression? Hurt?
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Example Text

• Consider beginning of repeated block of text.
• This stuff has already been seen.
• But, we are only matching on something that 

has a hash of zero.
• Maybe this line has a hash of zero.
• But, our repeated text is before and after the 

magic window with the matched hash value.
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Example Data Stream
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Blue: Hash=0.
Green: Identical

Maybe edited file,
  added some content.
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Example Data Stream
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Blue: Hash=0.
Green: Identical

Maybe edited file,
  added some content.

1A

1B 1C 1D 1E 1F

1G

1H 1I

2A 2B 2C 2D 2E 2F 2G 2H 2I 2J 2K
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Example Data Stream
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Blue: Hash=0.
Green: Identical

Maybe edited file,
  added some content.

1A

1B 1C 1D 1E 1F

1G

1H 1I

2A 2B 2C 2D 2E 2F 2G 2H 2I 2J 2K

Which chunks are
exploitable duplicates?
 1B – 2B ?
           1D -- 2F ?
           1E – 2G ?
           1F – 2H ?
           1G – 2I ?
           1H – 2J ?
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Chunk Size

• Large chunks
– Increase potential compression

• ChunkSize/ChunkAddressBits
– Decrease

• Probability of finding whole chunk
• Fraction of repeated content included 

completely inside chunks
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Rolling Hash
• A Windowed hash that can be computed 

incrementally
• Hash(a[x+0],a[x+1],…a[x+W-1])=
   G(Hash(a[x-1],a[x+0],…a[x+W-2]))

- F(a[x-1])+F(A[x+W-1])
• i.e., hash computation is associative
• (+,- used abstractly here, could be in some 

other domain than modulo arithmetic)
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Rolling Hash

• hash ( gree) = 0x20+0x67+0x72+0x65+0x65
• hash (green) =          0x67+0x72+0x65+0x65+0x6e
• hash(green) = hash( gree)-0x20+0x6e
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0x20 0x67 0x72 0x65 0x65 

0xC3

l i k e g r e e n e g g s a n d

0x20 0x67 0x72 0x65 0x65 

0xC3

0x63

0x11
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Rabin Fingerprinting

• Particular scheme for rolling hash due 
to Michael Rabin based on polynomial 
over a finite field

• Commonly used for this chunking 
application
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Content-Defined Chunking

• Compute rolling hash (Rabin 
Fingerprint) on input stream

• At points where hash value goes to 0,
create a new chunk
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Part 4:
Hashing Deduplication
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Hashes for Equality

• We can also (separately) take the hash 
signature of an entire chunk

• The longer we make the hash, 
the lower the likelihood two different 
chunks will have the same hash

• If hash is perfectly uniform,
– N-bit hash, two chunks have a 2-N chance 

of having the same hash.
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Deduplicate
• Compute chunk hash
• Use chunk hash to lookup known 

chunks
– Data already have on disk
– Data already sent to destination, so 

destination will know
• If lookup yields a chunk with same hash

– Check if actually equal (maybe)
• If chunks equal

– Send (or save) pointer to existing chunk
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Engineering Hash

• 2GB DRAM on Ultra96.

• How many 1KB chunks on a 1TB disk?

• Potential hash values for 256b hash?
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Engineering Hash

• 2GB DRAM on Ultra96.

• 1G = 230 1KB chunks on a 1TB disk.

• 256b hash has 2256 potential hashes
– Probably of same hash: 2-226
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Deduplicate
• Compute chunk hash
• Use chunk hash to lookup known 

chunks
– Data already have on disk
– Data already sent to destination, so 

destination will know
• If lookup yields a chunk with same hash

– Check if actually equal (maybe)
• How large of a memory do you need to 

hold the table of all 256b hash results?
• How relate to Ultra96 DRAM capacity?Penn ESE5320 Fall 2024 -- DeHon 56
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Deduplication Architecture
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Associative Memory

• Maps from a key to a value
• Key not necessarily dense

– Contrast simple RAM

• Talk about options to implement next 
week

Penn ESE5320 Fall 2024 -- DeHon 58

58

Secure Hash

• We regularly use digest signatures to 
identify if a file has been tampered with

• Again, hashes are same, mean data 
might be the same

• For security, we would like additional 
property
– not easy to make the anti-tamper signature 

match
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Cryptographic Hash

• One-way functions
• Easy to compute the hash
• Hard to invert

– Ideally, only way to get back to input data 
is by brute force – try all possible inputs

• Key: someone cannot change the 
content (add a backdoor to code) and 
then change some further to get hash 
signature to match original
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SHA-256

• Standard secure hash with a 256b hash 
digest signature

• Heavily analyzed
• Heavily used

– TLS, SSL, PGP, Bitcoin, …
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Part 5: 
LZW Compression
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Preclass 4

• I AM S<2,3><5,4><0,4>

• Message?
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
I A M S
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Preclass 5, 6

• Bits in unencoded (decoded) message?
– Assume 8b char

• Bits for encoded message?
– Assume 9b for character 

• 1 bit to say is a character, then 8b char
– And 9b for <x,y> pair

• 1 bit char, 4b for each of x and y
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Idea

• Use data already sent as the dictionary
– Give short names to things in dictionary
– Don’t need to pre-arrange dictionary
– Adapt to common phrases/idioms in a 

particular document
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Encoding

• Greedy simplification
– Encode by successively selecting the 

longest match between the head of the 
remaining string to send and the current 
window
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Algorithm Concept

• While data to send
– Find largest match in window of data sent
– If length too small (length=1)

• Send character 
– Else

• Send <x,y> = <match-pos,length>
– Add data encoded into sent window
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Preclass 7
• How many comparisons per invocation?
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ESE5320 Day 16 Preclass Exercise Fall 2022

4. Decode I AM S<2,3><5,4><0,4>
where <x,y> says copy y characters from position x in the decoded sequence.

The first position (I) is 0.

Here’s a table to help you decode (for the table, the top line gives the position to use

for x). We’ve added the first 6 characters to get you started.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I A M S

5. Using 8b character, how many bits are required to encode the 16 character decoded

message above?

6. Assuming 9b to represent a literal character (e.g, ’S’) and 9b to represent <x,y>, how

many bits are required to encode: I AM S<2,3><5,4><0,4> ?

7. How many comparisons on a single invocation of longest match?

#define DICT_SIZE 4096
#define LENGTH 256
// clen<=LENGTH
int longest_match(char dict[DICT_SIZE], char candidate[LENGTH], int clen) {

int best_len=0;
int best_loc=-1;
for (int i=0;i<DICT_SIZE-clen;i++) {

j=0;
while((candidate[j]==dict[i+j]) && (j<clen)) {

j++;
}

if (j>best_len) {
best_len=j;
best_loc=i;
}

}
return((best_loc<<8)|best_len);

}

2
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Next Time

• See a clever way to reduce 
comparisons to constant work per input 
character (linear in data being 
compressed)
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Project Task
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Big Ideas
• Can reduce data size by identifying and 

reducing redundancy
• Can spend computation and data 

storage to reduce communication traffic
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Admin
• Feedback
• HW7 due Friday
• Project assignment out
• Reading for Monday online
• First project milestone due next Friday

– Including teaming
– Teams of 3
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