
1

Penn ESE5320 Fall 2024 -- DeHon
1

ESE5320:
System-on-a-Chip Architecture

Day 4: September 11, 2024
Parallelism Overview

Board holders pickup boards
Preclass

1

Penn ESE5320 Fall 2024 -- DeHon
2

Today
• Compute Models (Part 1)

– How do we express and reason about
parallel execution freedom

• Types of Parallelism (Part 2)
– How can we slice up and think about

parallelism?
– How exploit parallelism

2

Message

• Many useful models for parallelism
– Help conceptualize

• One-size does not fill all
– Match to problem
– Will want to exploit all of them

Penn ESE5320 Fall 2024 -- DeHon
3

3

Parallel Compute Models

Control Flow, Dataflow
Combining

Explicit, Implicit Parallelism

Penn ESE5320 Fall 2024 -- DeHon
4

4

Term: Operation

• Operation – logic computation to be
performed

Penn ESE5320 Fall 2024 -- DeHon
5

5

Penn ESE5320 Fall 2024 -- DeHon
6

Sequential Control Flow

Control flow
• Program is a

sequence of
operations

• Operation reads
inputs and writes
outputs into common
store (memory)

• One operation runs at
a time
– defines successor

Model of correctness is
sequential execution

Examples
• C (Java, …)
• Finite-State Machine

(FSM)
• Finite Automata (FA)
• assembly code (ISA)

6

2

Parallelism can be explicit

• State which
operations occur on
a cycle

• Multiply, add for
quadratic equation

Penn ESE5320 Fall 2024 -- DeHon
7

cycle mpy add
1 B,x
2 x,x (Bx)+C
3 A,x2

4 Ax2+(Bx+C)

7

Parallelism can be implicit

• Sequential
expression

• Infer data
dependencies

T1=x*x
T2=A*T1
T3=B*x
T4=T2+T3
Y=C+T4

• Or
Y=A*x*x+B*x+C

Penn ESE5320 Fall 2024 -- DeHon
8

8

Implicit Parallelism

• d=(x1-x2)*(x1-x2) + (y1-y2)*(y1-y2)

• What parallelism exists here?

Penn ESE5320 Fall 2024 -- DeHon
9

9

Parallelism can be implicit

• Sequential
expression

• Infer data
dependencies

for (i=0;i<100;i++)
 y[i]=A*x[i]*x[i]+B*x[i]+C

Why can these
operations be
performed in parallel?

Penn ESE5320 Fall 2024 -- DeHon
10

10

Penn ESE5320 Fall 2024 -- DeHon
11

Dataflow / Control Flow

Dataflow
• Program is a graph

of operations
• Operation

consumes tokens
and produces
tokens

• All operations run
concurrently

Control flow (e.g. C)
• Program is a

sequence of
operations

• Operation reads
inputs and writes
outputs into
common store

• One operation runs
at a time
– defines successor

11

Penn ESE5320 Fall 2024 -- DeHon
12

Token

• Data value with presence indication
– May be conceptual

• Only exist in high-level model
• Not kept around at runtime

– Or may be physically represented
• One bit represents presence/absence of data

12

3

FIFO

• Hardware Block
• Outputs data in

order received
– First-In, First-Out

• Tell it when you are
providing data
– Write
– May choose not to

insert on a cycle
• Need to signal

• Tell it when you are
consuming data
– Read

• Tells you when it’s
empty and has no
data to provide

• Tells you when it’s
full and can hold
nothing else

Penn ESE5320 Fall 2024 -- DeHon
13

FIFO

Empty

DataOut

Read

Write

DataIn

Full

What are data presence indicators here?

13

Token Examples?

• How signal miss in processor data
cache and processor needs to wait for
data?

Penn ESE5320 Fall 2024 -- DeHon
14

14

Penn ESE5320 Fall 2024 -- DeHon
15

Operation

• Takes in one or more inputs
• Computes on the inputs
• Produces results

• Logically self-timed
– “Fires” only when input set present
– Signals availability of output

15

Penn ESE5320 Fall 2024 -- DeHon
16

16

Penn ESE5320 Fall 2024 -- DeHon
17

Dataflow Graph
• Represents

– computation sub-blocks
– linkage

• Abstractly
– controlled by data presence

17

Penn ESE5320 Fall 2024 -- DeHon
18

Dataflow Graph Example

18

4

Penn ESE5320 Fall 2024 -- DeHon
19

Dataflow / Control Flow

Dataflow
• Program is a graph

of operations
• Operation

consumes tokens
and produces
tokens

• All operations run
concurrently

Control flow (e.g. C)
• Program is a

sequence of
operations

• Operation reads
inputs and writes
outputs into
common store

• One operation runs
at a time
– defines successor

19

Communicating Threads
• Computation is a collection of

sequential/control-flow “threads”
• Threads may communicate

– Through dataflow I/O
– (Through shared variables)

• View as hybrid or generalization
– Of control flow and dataflow

• CSP – Communicating Sequential
Processes ! canonical model example

Penn ESE5320 Fall 2024 -- DeHon
20

20

Compute Models

Penn ESE5320 Fall 2024 -- DeHon
22

22

All Used

• All of these things get used in modern
CPUs and SoCs
– Sequential control flow
– Operation parallelism
– Data presence and data-driven flow
– Multiple threads
– Data Parallel

Penn ESE5320 Fall 2024 -- DeHon
23

23

Value of Multiple Models

• When you have a big enough
hammer, everything looks like
a nail.

• Many stuck on single model
– Try to make all problems look like their nail

• Value to diversity / heterogeneity
– One size does not fit all

Penn ESE5320 Fall 2024 -- DeHon
24

24

Types of Parallelism

Part 2

Penn ESE5320 Fall 2024 -- DeHon
25

25

5

Types of Parallelism

• Data Level – Perform same
computation on different data items

• Thread or Task Level – Perform
separable (perhaps heterogeneous)
tasks independently

• Instruction Level – Within a single
sequential thread, perform multiple
operations on each cycle.

Penn ESE5320 Fall 2024 -- DeHon
26

26

Pipeline Parallelism

• Pipeline – organize computation as a
spatial sequence of concurrent
operations
– Can introduce new inputs before finishing
– Instruction- or thread-level
– Use for data-level parallelism
– Can be directed graph

Penn ESE5320 Fall 2024 -- DeHon
27

27

Sequential

• Single person build E
• Latency?
• Throughput?

Penn ESE5320 Fall 2024 -- DeHon
28

28

Data Parallel
• Everyone with Legos build own E

Penn ESE5320 Fall 2024 -- DeHon
29

29

Data Parallel
• Everyone in class build own E
• Latency?
• Throughput?

• Ideal speedup?
• Resource Bound?

– 100 Es, 12 people
• When useful?

Penn ESE5320 Fall 2024 -- DeHon
30

30

Data-Level Parallelism

• Data Level – Perform same
computation on different data items

• Resource Bound: Tdp = Tseq/P
• (with enough independent problems,

match our resource bound computation)

Penn ESE5320 Fall 2024 -- DeHon
31

31

6

Thread Parallel
• Each person build distinct letter or

number (e.g. E, S, 5, 3, 2, 0)

Penn ESE5320 Fall 2024 -- DeHon
32

32

Thread Parallel

Penn ESE5320 Fall 2024 -- DeHon
33

Likely get
 3 volunteers
 to help demo.

33

Thread Parallel
• Each person build distinct letter or

number (e.g. E, S, 5, 3, 2, 0)
• Latency? (assume each has <=9 bricks)
• Throughput?

– Build 6 distinct letters
– Using 6 people
– (distinct letters/time-unit)

• Speedup over sequential build of 6
letters?

Penn ESE5320 Fall 2024 -- DeHon
34

34

Thread-Level Parallelism

• Thread or Task Level – Perform
separable (perhaps heterogeneous)
tasks independently

• Resource Bound: Ttp = Tseq/P
• Ttp=max(Tt1,Tt2,Tt3,…)

– Less speedup than ideal if not balanced
• Can produce a diversity of calculations

– Useful if have limited need for the same
calculation

Penn ESE5320 Fall 2024 -- DeHon
35

35

Instruction-Level Parallelism

• Build single letter in lock step
• Group of 3

– [3 volunteers; steps up front]
• Resource Bound for 3 people building

9-brick letter?
• Announce steps from slide

– Stay in step with slides

Penn ESE5320 Fall 2024 -- DeHon
36

36

Group Communication

• Groups of 3
• Note who was

person 1 task
• 2, 3 will need to

pass completed
substructures

Penn ESE5320 Fall 2024 -- DeHon
37

37

7

Step 0

Penn ESE5320 Fall 2024 -- DeHon
38

38

Step 1

Penn ESE5320 Fall 2024 -- DeHon
39

39

Step 2

Penn ESE5320 Fall 2024 -- DeHon
40

40

Step 3

Penn ESE5320 Fall 2024 -- DeHon
41

41

Instruction-Level Parallelism
(ILP)

• Latency?
• Throughput?

• Can reduce latency for single letter
• Resource Bound: Tlatency = Tseqlatency/P

– Remember critical path bound applies;
dependencies may limit

Penn ESE5320 Fall 2024 -- DeHon
42

42

Instruction-Level Pipeline

• Each person adds one brick to build
• Resources? (people in pipeline?)
• Run pipeline once alone
• Latency? (brick-adds to build letter)
• Then run pipeline with 5 inputs
• Throughput? (letters/brick-add-time)

Penn ESE5320 Fall 2024 -- DeHon
43

43

8

Thread Graph
• How would we build with task level

parallelism?
– Tasks?
– Dependencies?

Penn ESE5320 Fall 2024 -- DeHon
44

44

Types of Parallelism

• Data Level – Perform same
computation on different data items

• Thread or Task Level – Perform
separable (perhaps heterogeneous)
tasks independently

• Instruction Level – Within a single
sequential thread, perform multiple
operations on each cycle.

Penn ESE5320 Fall 2024 -- DeHon
45

45

Pipeline Parallelism

• Pipeline – organize computation as a
spatial sequence of concurrent
operations
– Can introduce new inputs before finishing
– Instruction- or thread-level
– Use for data-level parallelism
– Can be directed graph

Penn ESE5320 Fall 2024 -- DeHon
46

46

Penn ESE5320 Fall 2024 -- DeHon
47

Big Ideas

• Many parallel compute models
– Sequential, Dataflow, CSP

• Find natural parallelism in problem
• Mix-and-match
• Likely to need all of them at some point

47

Admin
• Reading Day 5 on web
• HW2 due Friday
• HW3 out

– Including partner assignments on canvas
– Board Holder reach out to partner ASAP

Penn ESE5320 Fall 2024 -- DeHon
48

48

