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ESE5320:
System-on-a-Chip Architecture

Day 5:  September 16, 2024
Dataflow Process Model
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Today
Dataflow Process Model
• Terms (part 1)
• Issues
• Abstraction
• Performance Prospects (part 2)
• Basic Approach
• As time permits (part 3)

– Dataflow variants
– Motivations/demands for variants
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Message
• Parallelism can be natural
• Expression can be agnostic to substrate

– Abstract out implementation details
– Tolerate variable delays may arise in 

implementation
• Divide-and-conquer

– Start with coarse-grain streaming dataflow
• Basis for performance optimization and 

parallelism exploitation
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Programmable SoC
• Implementation Platform for innovation

– This is what you target (avoid NRE)
– Implementation

 vehicle
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Reminder

• Goal:
exploit parallelism 
on heterogeneous 
PSoC to achieve 
desired performance 
(energy)
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Term: Process
• Abstraction of a processor
• Looks like each process is running on a 

separate processor
• Has own state, including

– Program Counter (PC)
– Memory
– Input/output

• May not actually run on processor
– Could be specialized hardware block
– May share a processor
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Thread

• Has a separate control location (PC)
• May share memory (contrast process)

– Run in common address space with other 
threads

• May not actually run on processor
– Could be specialized hardware block
– May share a processor
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FIFO

• Hardware Block
• Outputs data in 

order received 
– First-In, First-Out

• Tell it when you are 
providing data
– Write
– May choose not to 

insert on a cycle
• Need to signal

• Tell it when you are 
consuming data
– Read

• Tells you when it’s 
empty and has no 
data to provide

• Tells you when it’s 
full and can hold 
nothing else
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FIFO

Empty

DataOut

Read

Write

DataIn

Full

Day 4
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Process
• Processes (threads) allow expression of 

independent control
• Convenient for things that advance 

independently
• Process (thread) is the easiest way to 

express some behaviors
– Easier than trying to describe as a single 

process
• Can be used for performance optimization 

to improve resource utilization
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Independence Motivation
• Example operation

– 1 cycle 99% of time, 100 cycles 1% of time
• Average throughput of TF, SG on own?
• No FIFO

– When does it stall?
– What percent of time stall?
– Average Throughput?
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Independence Motivation
• Average time for TF, SG independently?

– 1 cycle 99% of time, 100 cycles 1% of time
• Throughput with FIFO?

– How is FIFO changing?
• What benefit from FIFO and processes?
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Independence Calculation
• Independent probability of miss

– Pf, Pg

• Concretely
– 1 cycle in map
– 100 run function and put in map

• If each runs independently (in isolation)
– T~= 1*(1-P)+P*100

• If run together in lock step
– Either can stall: P=Pf+Pg-PfPg

– T~= 1*(1-P)+(P)*100
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Multithread Web Page Load

• Typical browsers load images in 
separate threads
– Allows parallelism in image loads
– Doesn’t block display of text content 

(images that have already downloaded)
• Get to see that even if image load slow

– Separate thread keeps track of separate 
location in each image load
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Model (from Day 4) 
Communicating Threads

• Computation is a collection of 
sequential/control-flow “threads”

• Threads may communicate
– Through dataflow I/O
– (Through shared variables)

• View as hybrid or generalization
• CSP – Communicating Sequential 

Processes ! canonical model example
Penn ESE5320 Fall 2024 -- DeHon

14

14

Issues
• Communication – how move data 

between processes?
– What latency does this add?
– Throughput achievable?

• Synchronization – how define how 
processes advance relative to each 
other?

• Determinism – for the same inputs, do 
we get the same outputs?
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Today’s Stand

• Communication – FIFO-like channels
• Synchronization – dataflow with FIFOs
• Determinism – how to achieve

– …until you must give it up.
• Only hint at giving up at end of lecture, 

    time permitting
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Operation/Operator

• Operation – logical computation to be 
performed
– A process that communicates through 

dataflow inputs and outputs
• Operator – physical block that performs 

an Operation
– E.g. processor, hardware block
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Dataflow / Control Flow

Dataflow
• Program is a graph 

of operations
• Operation 

consumes tokens 
and produces 
tokens

• All operations run 
concurrently
– All processes

Control flow (e.g. C)
• Program is a 

sequence of 
operations

• Operation reads 
inputs and writes 
outputs into 
common store

• One operation runs 
at a time 
– defines successor

Day 4
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Token

• Data value with presence indication
– May be conceptual

• Only exist in high-level model
• Not kept around at runtime

– Or may be physically represented
• One bit represents presence/absence of data

Day 4
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Stream

• Logical abstraction of a persistent point-
to-point communication link between 
operations (processes)
– Has a (single) source and sink
– Carries data presence / flow control
– Provides in-order (FIFO) delivery of data 

from source to sink (producer to consumer)

stream

20

Penn ESE5320 Fall 2024 -- DeHon
21

Streams
• Captures communications structure

– Explicit producer!consumer link up
• Abstract communications

– Physical resources or implementation
– Delay from source to sink
– Delay of Operators

• Contrast
– C: producer->consumer implicit through memory
– Verilog/VHDL: cycles visible in implementation
– (can add on top of either C or Verilog) 
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Variable Delay Source to Sink

• How would placement of source and 
sink operator impact delay?

• How could sharing of interconnect 
between source and sink impact delay?
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P C1

C2

C3C2 C3

P C1
dedicated wire

C1P1 P2 P3

shared bus
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Communication Latency

• Once map to 
multiple processors

• Need to move data 
between processors

• That costs time
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On-Chip Delay
• Delay is proportional to distance travelled
• Make a wire twice the length

– Takes twice the latency to traverse
– (can pipeline)

• Modern chips
– Run at 100s of MHz to GHz
– Take 10s of ns to cross the chip
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Dataflow gives 
Clock Independent Semantics

Interconnect
Takes n-clocks
Latency
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Dataflow Process Network

• Collection of Operations
• Connected by Streams
• Communicating with Data Tokens
• (CSP restricted to stream 

communication)
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Dataflow Abstracts Timing

• Doesn’t say 
– on which cycle calculation occurs

• Does say
– What order operations occur in
– How data interacts

• i.e. which inputs get mixed together

• Permits
– Scheduling on different # and types of resources
– Operators with variable delay
– Variable delay in interconnect
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Dataflow Graphs 
Parallel Performance Prospect

Part 2
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Some Task Graphs
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Control
Motor 2
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Synchronous Dataflow (SDF)
with fixed operators

• Particular, restricted form of dataflow
• Each operation

– Consumes a fixed number of input tokens
– Produces a fixed number of output tokens
– Operator performs fixed number of 

operations (in fixed time) – data independent
– When full set of inputs are available

• Can produce output
– Can fire any (all) operations with inputs 

available at any point in time
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SDF Operator
Windowed FFT
• 1024 inputs
• 1024 outputs
• 10,240 multiplies
• 20,480 adds
• (or 30,720 primitive 

operations)
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1024 1024

30,720
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Processor Model

• Simple (for today’s lecture)
– Assume one primitive operation per cycle

• Could embelish
– Different time per operation type

• E.g. adds: 1 cycle, multiply: 3 cycles
– Multiple memories with different timings
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Time for Graph Iteration on 
Processors

• Single processor

• One processor per Operation (process)
" Teach = max(Nop1,Nop2,Nop3,…)

• General
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c(x,y) – 1 if Processor x runs task y

𝑇!"# = 𝑚𝑎𝑥 &
$

𝑐 1, 𝑖 ×𝑁𝑜𝑝𝑠$ ,&
$

𝑐(2, 𝑖)×𝑁𝑜𝑝𝑠$ ,&
$

𝑐(3, 𝑖)×𝑁𝑜𝑝𝑠$ , …

(simplified resource bound model)
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Intel Knights Landing
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[Intel, Micro 2016]
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GRVI/Phallanx

• Puts 1680 RISC-V32b Integer cores 
• On XCVU9P FPGA
• http://fpga.org/2017/01/12/grvi-phalanx-joins-the-kilocore-club/
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Biglab
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Map to different processors

• Map to (preclass 1)
– One processor performance?
– One process per processor performance?
– Two processors

• How?
• Performance?

– Bottleneck?
Penn ESE5320 Fall 2024 -- DeHon
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30,000 15,000 3,000 2,000
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Refine Data Parallel

• If component is data parallel, can split 
out parallel tasks
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Refine Pipeline

• If operation internally pipelineable, 
break out pipeline into separate tasks
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6,000 6,000 6,000 6,000 6,000

7,500 3,000

2,000

Performance with one processor per operation?
   Achieve same performance with how many processors?
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Apple A16 Bionic
• ? 110+mm2, 4nm 
• 16 Billion Tr.
• iPhone 14 
• 6 ARM cores

– 2 fast (3.5GHz)
– 4 low energy (2GHz)

• 5 custom GPUs 
(1.4GHz)

• 16 Neural Engines
– 17 Trillion ops/s?
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Heterogeneous Processor

• GPU perform 10 primitive FFT Ops per cycle
• Fast CPU can perform 2 ops/cycle
• Slow CPU 1 op/cycle
• Map: FFT to GPU, Select to 2 Fast CPUs, 

quantize and Entropy each to own Slow CPU
• Cycles/graph iteration?

Penn ESE5320 Fall 2024 -- DeHon
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Windowed
      FFT

Select
Freq.

Entropy
EncodeQuantize

30,000 3,000 2,000

Select
Freq.

7,500 each

42
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Heterogeneous Processor

GPU Fast CPU Slow CPU
Windowed FFT 3,000 15,000 30,000
Select Freq. 1 3,750 7,500
Select Freq. 2 3,750 7,500
Quantize 1,500 3,000
Entropy Encode 1,000 2,000
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Windowed
      FFT

Select
Freq.

Entropy
EncodeQuantize

30,000 3,000 2,000

Select
Freq.

7,500 each
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Heterogeneous Processor

GPU Fast CPU Slow CPU
Windowed FFT 3,000 15,000 30,000
Select Freq. 1 3,750 7,500
Select Freq. 2 3,750 7,500
Quantize 1,500 3,000
Entropy Encode 1,000 2,000
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Windowed
      FFT

Select
Freq.

Entropy
EncodeQuantize

30,000 3,000 2,000

Select
Freq.

7,500 each

Max(3000,3750,3000,2000) = 3750
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Heterogeneous Processor

GPU Fast CPU Slow CPU
Windowed FFT 3,000 15,000 30,000
Select Freq. 1 3,750 7,500
Select Freq. 2 3,750 7,500
Quantize 1,500 3,000
Entropy Encode 1,000 2,000
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Windowed
      FFT

Select
Freq.

Entropy
EncodeQuantize

30,000 3,000 2,000

Select
Freq.

7,500 each

General case – find assignment with optimal timing

45

Custom Accelerator
• Dataflow Process doesn’t need to be 

mapped to a processor
• Map FFT to custom datapath on FPGA 

logic
– Read and produce one element per cycle
– 1024 cycles to process 1024-point FFT
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1024 15,000 3,000 2,000
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Operations
• Can be implemented on different 

operators with different characteristics
– Small or large processor
– Hardware unit
– Different levels of internal 

• Data-level parallelism
• Instruction-level parallelism
• Pipeline parallelism

• May itself be described as
– Dataflow process network, sequential, 

hardware register transfer languagePenn ESE5320 Fall 2024 -- DeHon
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Streams
• Stream: logical communication link
• Some implementation options:

– TCP/IP link over Internet
– On-Chip bus
– Buffer in memory

• Appropriate for
– 2 processes on separate processors on 

same chip
– 2 threads on same processor
– One process at Penn, one at Amazon

Penn ESE5320 Fall 2024 -- DeHon
48

C2 C3

P C1
dedicated wire

C1P1 P2 P3

shared bus
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Add Delay
• What does it do to computation

 if add an operation that copies inputs to 
outputs with some latency?
– Impact on function?
– What is throughput impact when Identity 

operation has
• Latency 10, throughput 1 value per cycle?
• (reminder 1024 values between FFT and Select 

Freq.)
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15,000 3,000 2,00030,000 1024
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Semantics (meaning)

• Need to implement semantics
– i.e. get same result as if computed as 

indicated
• But can implement any way we want

– That preserves the semantics
– Exploit freedom of implementation

50

Basic
Approach
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Approach (1)
• Identify natural parallelism
• Convert to streaming flow

– Initially leave operations in software
– Focus on correctness

• Identify flow rates, computation per 
operator, parallelism needed

• Refine operations
– Decompose further parallelism?
– E.g. data parallel split, ILP implementations
– model potential hardwarePenn ESE5320 Fall 2024 -- DeHon
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Approach (2)

• Refine coordination as necessary for 
implementation

• Map operations and streams to 
resources
– Provision hardware
– Scheduling: Map operations to operators, 

memories, interconnect
• Profile and tune
• Refine
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Dataflow Variants

Part 3: 
(coverage here depends on time 

available)
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Motivation

• Want to understand 
– what guarantees we can have on 

computation
– Limitations on computation or optimization 

to get those guarantees
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Terminology: Turing Complete

• Can implement any computation describable 
with a Turing Machine
– (theoretical model of computing by Alan Turing)

• Turing Machine – captures our notion of 
what is computable
– If it cannot be computed by a Turing Machine, 

we don’t know how to compute it
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Process Network Roundup
Model Deterministic

Result
Deterministic 
Timing

Turing 
Complete

SDF+fixed-delay 
operators

Y Y N

SDF+variable 
(data-dependent) 
delay operators
Dynamic Rate 
DF blocking
Dynamic Rate 
DF non-blocking
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Good
For 
correctness

Good
For 
Real-Time

Completeness
(Compute
  anything)
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Variable Delay
• Two different causes of “variable” delay

1. Operator-dependent
2. Data-dependent

• Operator-dependent
– Depends on operator select

• Fast processor, slow processor, GPU
• Fixed time once select

• Data-Dependent
– Depends on data being processed

• Examples to come
Penn ESE5320 Fall 2024 -- DeHon
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Motivations and Demands 
for Dataflow Options

Time Permitting
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Data-Dependent Variable 
Delay Operators

• Why might a multiplier have data-
dependent variable delay?
– Hint: consider shift-and-add multiply

• Multiply by 3 vs. multiply by 16,777,215

Penn ESE5320 Fall 2024 -- DeHon
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GCD (Preclass 3)
• What is delay of 

GCD computation? • while(a!=b)
– t=max(a,b)-min(a,b)
– a=min(a,b)
– b=t

• return(a);

Penn ESE5320 Fall 2024 -- DeHon
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Data-Dependent Variable 
Delay Operators

• Operators with Data-Dependent 
Variable Delay
– Cached memory or computation
– Shift-and-add multiply
– Iterative divide or square-root
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Process Network Roundup
Model Deterministic

Result
Deterministic 
Timing

Turing 
Complete

SDF+fixed-delay 
operators

Y Y N

SDF+variable 
(data-dependent) 
delay operators

Y N N

Dynamic Rate 
DF blocking
Dynamic Rate 
DF non-blocking
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Good
For 
correctness

Good
For 
Real-Time

Completeness
(Compute
  anything)
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Run Length Encoding 
(preclass 2)

• How many inputs 
read for each 
output?

• What is implication 
of static rate 
dataflow on 
compression?
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2. Consider an operation that performs Run Length Encoding (RLE).

rle() {

pending=NONE;

run_count=0;

while (true)

{

next=read_input();

if (next==pending)

run_count++;

else

{

if (run_count>0)

{

write_output(pending);

write_output(run_count);

}

pending=next;

run_count=1;

}

}

}

What is the ratio of inputs read to outputs produced for this operation?

3. Consider performing gcd (greatest common divisor):

gcd(int in1,int in2)

{ a=in1; b=in2; while(a!=b) {t=max(a,b)-min(a,b); b=min(a,b); a=t;} return(a);}
How long does it take to perform gcd?
(count each max, min, subtract as one unit time, ignore loop control)

[Hint: consider gcd(42,24) and gcd(42,21).]

2

64
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Data-Dependent Rates?

• Static Rates limiting
– Compress/decompress

• Lossless
• Even Run-Length-Encoding

– Filtering
• Discard all packets from spamRus

– Anything data dependent
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Process Network Roundup
Model Deterministic

Result
Deterministic 
Timing

Turing 
Complete

SDF+fixed-delay 
operators

Y Y N

SDF+variable 
(data-dependent) 
delay operators

Y N N

Dynamic Rate 
DF blocking

Y N Y

Dynamic Rate 
DF non-blocking
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Good
For 
correctness

Good
For 
Real-Time

Completeness
(Compute
  anything)
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Terminology: Blocking

• Block – conditions can prevent an 
operation from occurring at a particular 
time

• E.g. – if a fire-truck is stopped in an 
intersection, it may block your way
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Non-Blocking Stream 
Primitives

• Blocking 
– only primitives are read, write
– If data not present, block for data to be available

• Non-blocking
– Add primitives to ask if data is available (if stream 

ready for write)
   if (not(empty(in1)) next_pkt=in1.read()
   else if (not(empty(in2)) next_pkt=in2.read()
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When non-blocking necessary?

• Consider a server with multiple clients
– Clients requests are independent, random

• No guarantee make same number or rate of 
requests

– What happens if must wait for a request 
from each of clients?

– What would prefer to do?
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Non-Blocking
• Removed model restriction 

– Can ask if token present
• Gained expressive power

– Can grab data as shows up
• Weaken our guarantees

– Possible to get non-deterministic behavior
• Depends on timing

– Which we’ve said may vary with mapping

• Use when necessary, avoid if possible
Penn ESE5320 Fall 2024 -- DeHon
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Process Network Roundup
Model Deterministic

Result
Deterministic 
Timing

Turing 
Complete

SDF+fixed-delay 
operators

Y Y N

SDF+variable 
(data-dependent) 
delay operators

Y N N

Dynamic Rate 
DF blocking

Y N Y

Dynamic Rate 
DF non-blocking

N N Y
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Good
For 
correctness

Good
For 
Real-Time

Completeness
(Compute
  anything)

71

Big Ideas
• Capture gross parallel structure with 

Process Network
• Use dataflow synchronization for 

determinism
– Abstract out timing of implementations
– Give freedom of implementation

• Exploit freedom to refine mapping to 
optimize performance

• Minimally use non-determinism as 
necessary
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Admin
• Remember feedback

– Today’s lecture and HW2
• Reading for Day 6 on web
• HW3 due Friday

– Implementing multiprocessor solutions on 
homogeneous (ARM) processor cores

Penn ESE5320 Fall 2024 -- DeHon
73

73


