ESE 568: Mixed Signal Design and Modeling

Lec 5: September 17th, 2018 Basic 2-stage Opamp Design

Penn ESE 568 Fall 2018 - Khanna

Ideal Opamp

- □ The ideal opamp characterized by seven properties
 - Knowledge of these properties is sufficient to design and analyze a large number of useful circuits
- □ Basic opamp properties
 - Infinite open-loop voltage gain
 - Infinite input impedance
 - Zero output impedance
 - Zero noise contribution
 - Zero DC output offset
 - Infinite bandwidth
 - Differential inputs that stick together
 - Zero input differential voltage

Penn ESE 568 Fall 2018 - Khanna

Opamp Practical Circuits

□ Integrating amplifier

Differentiating amplifier

Penn ESE 568 Fall 2018 - Khanna

Opamp Design

Steps in Designing a CMOS Opamp

- 1) Choosing or creating the basic structure of the opamp
 - This step results in a schematic showing the transistors and their interconnections
 - This diagram does not change throughout the remainder of the design unless the specifications cannot be met, then a new or modified structure must be developed
- 2) Selection of the dc currents and transistor sizes
 - a.k.a Biasing and sizing
 - Most of the effort of design is in this category
 - Simulators are used to aid the designer in this phase

Penn ESE 568 Fall 2018 - Khanna

Steps in Designing a CMOS Opamp

- □ 3) Physical implementation of the design
 - Layout of the transistors
 - Floorplanning the connections, pin-outs, power supply buses and grounds
 - Extraction of the physical parasitics and re-simulation
 - Verification that the layout is a physical representation of the circuit
- 4) Fabrication
- □ 5) Measurement
 - Verification of the specifications
 - Modification of the design as necessary
 - Make sure it's not necessary!

Penn ESE 568 Fall 2018 - Khanna

Design Variables

- □ Boundary conditions (constraints):
 - 1. Process specification (V_T, μ , C_{ox}, etc.)
 - 2. Supply voltage and range
 - 3. Supply current and range
 - 4. Operating temperature and range

Penn ESE 568 Fall 2018 - Khanna

Design Variables

- Specifications:
 - 1. Open-loop Gain
 - 2. Gain bandwidth
 - 3. Settling time
 - 4. Slew rate
 - 5. Input common-mode range, ICMR
 - 6. Common-mode rejection ratio, CMRR
 - 7. Power-supply rejection ratio, PSRR
 - 8. Output-voltage swing
 - 9. Output resistance
 - 10. Offset
 - 11. Noise
 - 12. Layout area

Penn ESE 568 Fall 2018 - Khanna

Specifications

- □ 1. Open-loop Gain
 - Typically an op-amp may have a maximal open-loop gain of around 10⁵

$$A_{OL} = \frac{V_{out}}{V_{in}^+ - V_{in}^-}$$

Penn ESE 568 Fall 2018 - Khanna

2

Specifications

- □ 1. Open-loop Gain
 - \blacksquare Typically an op-amp may have a maximal open-loop gain of around 10^5

$$A_{OL} = \frac{V_{out}}{V_{in}^+ - V_{in}^-}$$

2. Gain bandwidth

Specifications

Penn ESE 568 Fall 2018 - Khanna

- □ 5. Input common-mode range, ICMR
 - The input common-mode range is the range of commonmode voltages over which the differential amplifier continues to sense and amplify the difference signal with the same gain.

Penn ESE 568 Fall 2018 - Khanna

Specifications

- □ 6. Common-mode rejection ratio, CMRR
 - CMRR is a measure of how well the differential amplifier rejects the common-mode input voltage in favor of the differential-input voltage.

$$CMRR = \frac{a_{vd}}{a_{vc}}$$

□ 7. Power-supply rejection ratio, PSRR

$$PSRR_{+} = \frac{a_{vd}}{a}$$

$$PSRR_{-} = \frac{a_{vd}}{a}$$

Penn ESE 568 Fall 2018 - Khanna

Specifications

- □ 8. Output-voltage swing
 - Expected output swing
- 9. Output resistance
 - Resistance seen into the output
- □ 10. Offset
 - Output offset voltage (V_{OS}(out))
 - The output offset voltage is the voltage which appears at the output of the differential amplifier when the input terminals are connected together.

Penn ESE 568 Fall 2018 - Khanna

Specifications

- □ 8. Output-voltage swing
 - Expected output swing
- 9. Output resistance
 - Resistance seen into the output
- □ 10. Offset
 - Output offset voltage (V_{OS}(out))
 - The output offset voltage is the voltage which appears at the output of the differential amplifier when the input terminals are connected together.
 - \blacksquare Input referred offset voltage (V $_{\rm OS}\!(in)$ = V $_{\rm OS}\!)$
 - The input referred offset voltage is equal to the output offset voltage divided by the differential voltage gain.
 - $\quad V_{\rm OS} = V_{\rm OS}({\rm out})/A_{\rm VD}$

Penn ESE 568 Fall 2018 - Khanna

Opamp Design Practical Advice

- □ 1) Decide upon a suitable topology
 - The topology should be the one capable of meeting most of the specifications
 - Try to avoid "inventing" a new topology but start with an existing topology
- 2) Determine the type of compensation needed to meet the specifications
 - Consider the load and stability requirements
 - Use some form of Miller compensation or a self-compensated approach
- 3) Design dc currents and device sizes for proper dc, ac, and transient performance
 - This begins with hand calculations based upon approximate design conations.
 - Compensation components are also sized in this step of the procedure.
 - After each device is sized by hand, a circuit simulator is used to fine tune the design

Penn ESE 568 Fall 2018 - Khanna

20

Opamp Design Practical Advice

- □ Two basic steps of design:
 - 1) "First-cut" this step is to use hand calculations to propose a design that has potential of satisfying the specifications. Design robustness is developed in this step.
 - 2) Optimization this step uses the computer to refine and optimize the design.

Penn ESE 568 Fall 2018 - Khanna

Basic 2-stage Opamp

Unity Gain Freq and Slew Rate Relationship between unity gain frequency and slew rate: $\omega_0 = \frac{g_{m1}}{C_C} \qquad SR = \frac{I_{D5}}{C_C} \qquad SR = \frac{I_{D5}}{g_{m1}} \omega_0$ Por 45° phase margin: $\omega_o = |p_2|$ $SR = \frac{I_{D5}}{g_{m1}} |p_2|$

Penn ESE 568 Fall 2018 - Khanna

Design Variables Specifications: 1. Open-loop Gain 2. Gain bandwidth 3. Settling time 4. Slew rate 5. Input common-mode range, ICMR 6. Common-mode rejection ratio, CMRR 7. Power-supply rejection ratio, PSRR 8. Output-voltage swing 9. Output resistance 10. Offset 11. Noise 12. Layout area

