
ESE 6680: Mixed Signal Design and 
Modeling

Lec 20: April 10, 2023
Data Converter Testing

Penn ESE 6680 Spring 2023 - Khanna adapted from 
Murmann EE315B, Stanford 



Data Converter Testing

 Measuring DNL & INL 
 Servo-loop 
 Code density testing (histogram testing) 

 Dynamic tests 
 Spectral testing  Reveals ADC errors associated with 

dynamic behavior i.e. ADC performance as a function of 
frequency 

 Direct Discrete Fourier Transform (DFT) based measurements utilizing 
sinusoidal signals 

 DFT measurements including windowing 

 Relationship between: DNL & SNR, INL & SFDR
 Effective number of bits (ENOB)
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ADC DNL/INL (endpoint)

 1. Endpoints connected

 2. Ideal characteristics derived 
eliminating offset & full-scale 
error (same as for DNL)

 3. DNL  deviation of code 
width from D (1LSB)

 4. INL  deviation of 
code transition from ideal
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How to Measure DNL/INL

 DAC:
 Simply apply digital codes and use a good voltmeter 

to measure corresponding analog output
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How to Measure DNL/INL

 DAC:
 Simply apply digital codes and use a good voltmeter 

to measure corresponding analog output

 ADC
 Not as simple as DAC  need to find "decision levels", 

i.e. input voltages at all code boundaries
 One way: Adjust voltage source to find exact code 

trip points "code boundary servo”
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Code Boundary Servo
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Code Boundary Servo

 i1 and i2 are small, and C1 is 
large (ΔV=it/C1), so the ADC 
analog input moves a 
small fraction of an LSB (e.g.
0.1LSB) each sampling 
period

 For an input code of 101, the 
ADC analog input settles to 
the code boundary shown
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Code Boundary Servo
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Code Boundary Servo

 A very good digital voltmeter (DVM) measures the 
analog input voltage corresponding to the desired 
code boundary

 DVMs have some interesting properties
 They can have very high resolutions (8½ decimal digit 

meters are inexpensive)
 To achieve stable readings, DVMs average voltage 

measurements over multiple 60Hz ac line cycles to filter 
out pickup in the measurement loop
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Code Boundary Servo

 ADCs of all kinds are notorious 
for kicking back high-
frequency, signal-
dependent glitches to their 
analog inputs

 A magnified view of an analog 
input glitch follows …
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Code Boundary Servo

 Just before the input is 
sampled and conversion 
starts, the analog input is 
pretty quiet

 As the converter begins to 
quantize the signal, it kicks 
back charge
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Code Boundary Servo

 The difference between 
what the ADC measures 
and what the DVM 
measures is not ADC INL, 
it’s error in the INL 
measurement

 How do we control 
this error?
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Code Boundary Servo

 A large C2 reduces the effect 
of kick-back

 At the expense of longer 
measurement time
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How to Measure DNL/INL

 DAC:
 Simply apply digital codes and use a good voltmeter 

to measure corresponding analog output

 ADC
 Not as simple as DAC  need to find "decision levels", 

i.e. input voltages at all code boundaries
 One way: Adjust voltage source to find exact code 

trip points "code boundary servo”
 More versatile: Histogram testing  Apply a signal with 

known amplitude distribution and analyze digital code 
distribution at ADC output
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Histogram Testing

 Code boundary measurements are slow
 Long testing time

 Histogram testing
 Apply input with known pdf (e.g. ramp) & quantize
 Measure output pdf
 Derive INL and DNL from deviation of measured pdf

from expected result
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Histogram Test Setup

 Slow (relative to conversion time) linear ramp applied to 
ADC

 DNL derived directly from total number of occurrences of 
each code @ the output of the ADC
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A/D Histogram Test Using Ramp Signal

 Example:
 ADC sampling 

rate: fs=100kHz 
Ts=10us

 1LSB =10mV
 For 0.01LSB 

measurement resolution:
  n=100 samples/code
  Ramp duration per 

code=100x10us=1ms
  Ramp slope: 10mV/ms
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A/D Histogram Test Using Ramp Signal

 Example:
 ADC sampling 

rate: fs=100kHz 
Ts=10us

 1LSB =10mV
 For 0.01LSB 

measurement resolution:
  n=100 samples/code
  Ramp duration per 

code=100x10us=1ms
  Ramp slope: 10mV/ms
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Ramp Histogram Example: Ideal 3-bit ADC
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Ramp Histogram Example: Real 3-bit ADC
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DNL from Histogram

 1- Remove “Over-range 
bins” (0 and full-scale)

 2- Compute average 
count/bin (600/6=100 in 
this case)
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DNL from Histogram

 3- Normalize:
 Divide histogram by average 

count/bin
  ideal bins have exactly 

the average count, which, 
after normalization, would be 
1

  Non-ideal bins would 
have a normalized value greater 
or smaller than 1
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DNL from Histogram

 4- Subtract ‘1’ from 
the normalized code count 5-

 Result  DNL (+-0.4LSB in 
this case)

23
Penn ESE 6680 Spring 2023 - Khanna adapted from 
Murmann EE315B, Stanford 



DNL and INL from Histogram

 DNL histogram  used 
to reconstruct the exact 
converter characteristic 
(having measured only the 
histogram)

 Width of all codes derived 
from measured DNL (Code 
width=DNL + 1LSB)

 INL  (deviation from a 
straight line through the end 
points) is found
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DNL and INL from Histogram
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Measuring DNL

 Ramp speed is adjusted to provide large number 
of output/code - e.g. an average of 100 outputs of 
each ADC code (for 1/100 LSB resolution)

 Ramp test can be quite slow for high resolution ADCs
 Example: 16bit ADC & 100 conversions/code @ 

100kHz sampling rate:
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Histogram Testing: Sinusoidal Input

 Ramp signal generators 
linear to only 8 to 10 bits & 
thus only good for testing 
ADCs < 10 bit res
 Need to find input 

signal with better purity for 
testing higher res. ADCs

 Solution: Use sinusoidal test 
signal (may need to filter 
out harmonics)
 Problem: Ideal 

ADC histogram not flat but has 
“bath-tub shape”
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ADC Histogram Test Using Sinusoidal Signals
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DNL/INL Extraction Matlab Program 
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Example Sinusoid Histogram
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Histogram Testing Limitations

 The histogram (as any ADC test, of course) characterizes one particular 
converter. Test many devices to get valid statistics.

 Histogram testing assumes monotonicity
E.g. “code flips” will not be detected.

 Dynamic sparkle codes produce only minor DNL/INL errors E.g. 123, 
123, …, 123, 0, 124, 124, …  look at ADC output to detect

 Noise not detected & averaged out E.g. 9, 9, 9, 10, 9, 9, 9, 10, 9, 10, 10, 
10, …

 Ref: B. Ginetti and P. Jespers, “Reliability of Code Density Test for High 
Resolution ADCs,” Electron. Lett., vol. 27, pp. 2231-3, Nov. 1991.
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Why Additional Tests/Metrics?

 Static testing does not tell the full story
 E.g. no info about "noise“ or high frequency effects

 Frequency dependence (fs and fin) ?
 In principle we can vary fs and fin when 

performing histogram tests
 Result of such sweeps is usually not very useful
 Hard to separate error sources, ambiguity
 Typically we use fs=fsNOM and fin << fs/2 for histogram 

tests (Static metrics)

 For additional info regarding higher 
frequency operation  Spectral testing
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DAC Spectral Test or Simulation

 Input sinusoid  Needs to have significantly better purity compared 
to DAC linearity

 Spectrum analyzer needs to have better linearity than DUT
 Typically, test performed at several different input signal frequencies
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Typical DAC Output Spectrum
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Direct ADC Spectral Test via DAC

 Need DAC with much better performance compared to ADC under test
 Beware of DAC output sinx/x frequency shaping (from zero-order 

hold)
 Good way to "get started"...
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Direct ADC-DAC Test
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 Issues to beware of:
 Linearity of  the signal generator output has to be much better than ADC linearity
 Spectrum analyzer nonlinearities

 May need to build/purchase filters to address one or both above problems

 Clock generator signal jitter



Filtering ADC Input Signal
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ADC Spectral Test via Data Acquisition System
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Analyzing ADC Outputs via DFT

 Sinusoidal waveform has all its power at one single 
frequency

 An ideal, infinite resolution ADC would preserve ideal, single 
tone spectrum

 DFT (Discrete Fourier Transform) used as a vehicle to reveal 
ADC deviations from ideality
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DFT Properties

 DFT of N samples spaced Ts=1/fs seconds:
 N frequency bins from DC to fs
 Num of bins  N & each bin has width= fs/N
 Bin # m represents frequencies at m * fs/N [Hz]

 DFT frequency resolution:
 Proportional to fs/N in [Hz/bin]
 DFT with N = 2k (k is an integer) can be found 

using computationally efficient FFT:
 FFT  Fast Fourier Transform
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Matlab Example: Normalized DFT
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DFT Noise
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DFT Periodicity

 The DFT implicitly assumes that time 
sample blocks repeat every N samples
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DFT Periodicity

 The DFT implicitly assumes that time 
sample blocks repeat every N samples

 With a non-integer number of signal 
periods within the observation window, 
the input yields 
significant amplitude/phase 
discontinuity at the block boundary

 This energy spreads into other frequency 
bins as “spectral leakage”

 Spectral leakage can be eliminated by 
either
 1. Choice of integer number of sinusoids 

in each block
 2. Windowing
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Frequency Spectrum
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Choice of Number of Cycles & Samples

 To overcome frequency 
spectrum leakage problem:
 Number of Cycles  integer
 N/cycles = fs/fx  non-

integer (choose prime # of 
cycles) otherwise quant. Noise 
 periodic and non-random

 Preferable to have N:  power 
of 2 (FFT instead of DFT)
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Example: Integer Number of Cycles
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Example: Integer Number of Cycles
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Example: Integer Number of Cycles



Windowing

 Spectral leakage can be attenuated by 
“windowing” time samples prior to the DFT
 Windows taper smoothly down to zero at the beginning 

and the end of the observation window
 Time samples are multiplied by window coefficients on 

a sample-by-sample basis  Convolution in frequency 
domain

 Large number choices of various windows
 Tradeoff: attenuation versus fundamental signal spreading 

to number of adjacent bins

 Window examples: Nuttall versus Hann
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Example: Nuttall Window

 Time samples are multiplied by window coefficients on a 
sample-by-sample basis 

 Multiplication in the time domain  convolution in the 
frequency domain
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Windowed Data

 Signal before windowing

 Time samples are multiplied 
by window coefficients on a 
sample-by-sample basis

 Signal after windowing
 Windowing removes the 

discontinuity at block 
boundaries
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DFT of Windowed Signal
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Nuttall vs. Hann
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Integer Cycles Vs. Windowing

 Integer number of cycles
 Signal energy for a single sinusoid Springs into single DFT bin
 Requires careful choice of fx
 Ideal for simulations
 Measurements  need to lock fx to fs (PLL)- not always possible

 Windowing
 No restrictions on fx  no need to have the signal locked to fs 

Good for measurements w/o having the capability to lock fx to fs
or cases where input is not periodic

 Signal energy and its harmonics distributed over several DFT bins –
handle smeared-out harmonics with care!

 Requires more samples for a given accuracy
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Example: ADC Spectral Testing

 ADC with B=10 bits 
 Full scale input level = 2V 

B = 10; 

delta = 2/2^B; 

%sampled sinusoid, N Samples 

y = cos(2*pi*fx/fs*[0:N-1]); 

%quantize samples to delta=1LSB 

y=round(y/delta)*delta; 

s = abs(fft(y/N*2); 

f = (0:length(s)-1)/N;
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ADC Output Spectrum

 Input signal bin:
 Bx @ bin # (N * fx/fs + 1)

(Matlab arrays start at 1) 
 Asignal = 0dBFS 

 What is the SNR?
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Note this case only has quantization noise



ADC Output Spectrum

 Noise bins: all except signal bin 

bx = N*fx/fs + 1; 

As = 20*log10(s(bx)) 

%set signal bin to 0 

s(bx) = 0; 

An = 10*log10(sum(s.^2)) 

SNR = As - An 

 MatlabSNR = 62dB (10 bits) 
 Computed SQNR = 

6.02xN+1.76dB=61.96dB
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Why is Noise Floor Not @ -62dB?

 DFT bins act like an analog 
spectrum analyzer with 
bandwidth per bin of fs/N 

 Assuming noise is uniformly 
distributed, noise per bin: 
 (Total noise)/(N/2) 

  The DFT noise floor wrt
total noise:
 -10log10(N/2) [dB] below the actual 

noise floor 

 For N=2048: 
 -10log10(N/2) =-30 [dB]

59
Penn ESE 6680 Spring 2023 - Khanna adapted from 
Murmann EE315B, Stanford 



DFT Plot Annotation 

 Need to annotate DFT plot such that actual noise 
floor can be readily computed by one of these 3 
ways: 
 1. Specify how many DFT points (N) are used 
 2. Shift DFT noise floor by 10log10(N/2) [dB]
 3. Normalize to "noise power in 1Hz bandwidth“ then 

noise is in the form of power spectral density
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Example: 10Bit ADC FFT 

 For a real 10bit ADC spectral 
test results: 

 SNR=55.9dB 
 A 3rd harmonic is barely 

visible 
 Is better view of distortion 

component possible?
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Example: 10Bit ADC FFT 

 Increasing N, the number 
of samples (at the cost of 
measurement or 
simulation time) 
distributes the noise over 
larger # of bins 

 Larger # of bins  less 
noise power per bin (total 
noise stays constant) 

 Note the 3rd harmonic is 
clearly visible when N is 
increased

62
Penn ESE 6680 Spring 2023 - Khanna adapted from 
Murmann EE315B, Stanford 



Spectral Performance Metrics 

 Signal S 
 DC
 Distortion D 
 Noise N 

 Ideal ADC adds: 
 Quantization noise 

 Real ADC typically adds: 
 Thermal and flicker noise
 Harmonic distortion associated 

with circuit nonlinearities
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Spectral Performance Metrics 

 Signal S 
 DC
 Distortion D 
 Noise N 

 Signal-to-noise ratio 
 SNR = 10log[(Signal Power)/ 

(Noise Power)] 

 In Matlab: Noise power 
includes power associated with 
all bins except: 
 DC 
 Signal 
 Signal harmonics
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ADC Spectral Performance Metrics 

 SDR & SNDR & SFDR 
 SDRSignal-to-distortion ratio 

 10log[(Signal Power)/(Total 
Distortion Power)] 

 SNDRSignal-to-(noise+distortion) 
 10log[S/(N+D)] 

 SFDRSpurious-free dynamic range 
 10log[(Signal)/(Largest Harmonic)] 
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Relationship INL & SFDR/SNDR
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Relationship INL & SFDR/SNDR 

 Nature of harmonics depend on "shape" of INL 
curve 

 Rule of Thumb: SFDR ≈ 20log(2B/INL) 
 E.g. 1LSB INL, 10b  SFDR ≈ 60dB 

 Beware, this is of course only true under the same 
conditions at which the INL was taken, i.e. typically 
low input signal frequency
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SNR Degradation due to DNL 

 Uniform quantization error pdf was assumed for ideal 
quantizer over the range of: +/- Δ/2 

 Let's now add uniform DNL over +/- Δ/2 and repeat 
math...  
 Joint pdf for two uniform pdfs  Triangular shape
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SNR Degradation due to DNL 

 To find total noise  Integrate triangular pdf: 

 Compare to ideal quantizer: 

Error associated with DNL reduces overall SNR
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SNR Degradation due to DNL 

 More general case: 
 Uniform quantization error (ideal) ±0.5Δ
 Uniform DNL error ±DNL [LSB] 
 Convolution yields trapezoid shaped joint pdf
 SQNR becomes:
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SNR Degradation due to DNL 

 Degradation in dB:
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𝑆𝑄𝑁𝑅_ deg = 10 log!" 1 + 4𝐷𝑁𝐿#



Summary
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Effective Number of Bits (ENOB) 

 Is a 12-Bit converter with 68dB SNDR really a 12-Bit 
converter? 

 Effective Number of Bits (ENOB)# of bit of an ideal 
ADC with the same SQNR as the SNDR of the nonideal
ADC 

 Above ADC is a 12bit ADC with ENOB=11bits
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ENOB 

 At best, we get "ideal" ENOB only for negligible 
thermal noise, DNL, INL 

 Low noise design is costly  4x penalty in power 
per (ENOB-) bit or 6dB extra SNDR 

 Rule of thumb for good performance/power 
tradeoff: ENOB < N-1
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ENOB Survey
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Admin

 Proj 3 
 Design Pipeline ADC

 Start with single stage
 1 or 1.5 bit per stage is recommended

 Think about Sub-blocks
 Sub ADC (comparator)
 MDAC

 Sub DAC and gain element combine with switched cap circuit
 S/H

 Periphery circuitry
 Non-overlapping clocks
 Shift registers
 HA/FA for bit combining

 Only if redundancy (optional)

 Big part is characterization of performance
 FOM
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Admin (con’t)

 Should aim to have single stage working by Sunday 
night
 Working = converts bits and calculates residual correctly

 Useful Ed Posts (under Project 3 tag)
 (#135) Python code for residual calculations 
 (#136) HW 4 partial solutions for metric reporting

 Sample matlab code

 (#137) How to get simulation data from Canvas for
importing into Matlab, Excel, etc.

 Don’t just take these blindly.  Edit to suit your own needs!  
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Opamp-less Boot Strapped S/H
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