# ESE 6680: Mixed Signal Design and Modeling

Lec 20: April 10, 2023 Data Converter Testing



Data Converter Testing

- Measuring DNL & INL
  - Servo-loop
  - Code density testing (histogram testing)
- Dynamic tests
  - Spectral testing → Reveals ADC errors associated with dynamic behavior i.e. ADC performance as a function of frequency
    - Direct Discrete Fourier Transform (DFT) based measurements utilizing sinusoidal signals
    - DFT measurements including windowing
  - Relationship between: DNL & SNR, INL & SFDR
  - Effective number of bits (ENOB)



- □ 1. Endpoints connected
- 2. Ideal characteristics derived eliminating offset & full-scale error (same as for DNL)
- □ 3. DNL → deviation of code width from D (1LSB)
- □ 4. INL → deviation of code transition from ideal



## How to Measure DNL/INL

#### DAC:

• Simply apply digital codes and use a good voltmeter to measure corresponding analog output

## How to Measure DNL/INL

DAC:

 Simply apply digital codes and use a good voltmeter to measure corresponding analog output

□ ADC

- Not as simple as DAC → need to find "decision levels",
   i.e. input voltages at all code boundaries
- One way: Adjust voltage source to find exact code trip points "code boundary servo"







- i<sub>1</sub> and i<sub>2</sub> are small, and C<sub>1</sub> is large (ΔV=i<sub>t</sub>/C<sub>1</sub>), so the ADC analog input moves a small fraction of an LSB (e.g. 0.1LSB) each sampling period
- For an input code of 101, the ADC analog input settles to the code boundary shown







## Code Boundary Servo

- A very good digital voltmeter (DVM) measures the analog input voltage corresponding to the desired code boundary
- DVMs have some interesting properties
  - They can have very high resolutions (8<sup>1</sup>/<sub>2</sub> decimal digit meters are inexpensive)
  - To achieve stable readings, DVMs average voltage measurements over multiple 60Hz ac line cycles to filter out pickup in the measurement loop



- ADCs of all kinds are notorious for kicking back highfrequency, signaldependent glitches to their analog inputs
- A magnified view of an analog input glitch follows ...





- Just before the input is sampled and conversion starts, the analog input is pretty quiet
- As the converter begins to quantize the signal, it kicks back charge





- The difference between what the ADC measures and what the DVM measures is not ADC INL, it's error in the INL measurement
- How do we control this error?





- A large C<sub>2</sub> reduces the effect of kick-back
- At the expense of longer measurement time



### How to Measure DNL/INL

DAC:

 Simply apply digital codes and use a good voltmeter to measure corresponding analog output

□ ADC

- Not as simple as DAC → need to find "decision levels",
   i.e. input voltages at all code boundaries
- One way: Adjust voltage source to find exact code trip points "code boundary servo"
- More versatile: Histogram testing → Apply a signal with known amplitude distribution and analyze digital code distribution at ADC output



- Code boundary measurements are slow
  - Long testing time
- Histogram testing
  - Apply input with known pdf (e.g. ramp) & quantize
  - Measure output pdf
  - Derive INL and DNL from deviation of measured pdf from expected result





- Slow (relative to conversion time) linear ramp applied to ADC
- DNL derived directly from total number of occurrences of each code @ the output of the ADC

## A/D Histogram Test Using Ramp Signal

- □ Example:
  - ADC sampling rate:  $f_s=100kHz \rightarrow T_s=10us$
  - 1LSB =10mV
    - For 0.01LSB measurement resolution:
    - $\rightarrow$  n=100 samples/code
    - → Ramp duration per code=100x10us=1ms
    - $\rightarrow$  Ramp slope: 10mV/ms



## A/D Histogram Test Using Ramp Signal

- Example:
  - ADC sampling rate:  $f_s=100kHz \rightarrow T_s=10us$
  - 1LSB =10mV
    - For 0.01LSB measurement resolution:
    - $\rightarrow$  n=100 samples/code
    - $\rightarrow$  Ramp duration per code=100x10us=1ms
    - $\rightarrow$  Ramp slope: 10mV/ms





Penn ESE 6680 Spring 2023 - Khanna adapted from Murmann EE315B, Stanford







- I- Remove "Over-range bins" (0 and full-scale)
- 2- Compute average count/bin (600/6=100 in this case)



DNL from Histogram

#### □ 3- Normalize:

- Divide histogram by average count/bin
- → ideal bins have exactly the average count, which, after normalization, would be 1
- → Non-ideal bins would have a normalized value greater or smaller than 1





- 4- Subtract '1' from the normalized code count 5-
- Result → DNL (+-0.4LSB in this case)



DNL and INL from Histogram

- DNL histogram → used to reconstruct the exact converter characteristic (having measured only the histogram)
- Width of all codes derived from measured DNL (Code width=DNL + 1LSB)
- INL → (deviation from a straight line through the end points) is found



DNL and INL from Histogram





- Ramp speed is adjusted to provide large number of output/code - e.g. an average of 100 outputs of each ADC code (for 1/100 LSB resolution)
- **Ramp** test can be quite slow for high resolution ADCs
- Example: 16bit ADC & 100 conversions/code @ 100kHz sampling rate:

#### (2<sup>16</sup>or 65,536 codes)(100 conversions/code) = 65.6 sec 100,000 conversions/sec

### Histogram Testing: Sinusoidal Input

 Ramp signal generators linear to only 8 to 10 bits & thus only good for testing ADCs < 10 bit res</li>

- →Need to find input signal with better purity for testing higher res. ADCs
- Solution: Use sinusoidal test signal (may need to filter out harmonics)
  - Problem: Ideal ADC histogram not flat but has "bath-tub shape"

Penn ESE 6680 Spring 2023 - Khanna adapted from Murmann EE315B, Stanford



#### ADC Output- Raw Histogram

ADC Histogram Test Using Sinusoidal Signals



Penn ESE 6680 Spring 2023 - Khanna adapted from Murmann EE315B, Stanford



### DNL/INL Extraction Matlab Program

```
% transition levels found by:
function [dnl,inl] = dnl inl sin(y);
                                          = -\cos(pi*ch/sum(h))
%DNL INL SIN
% dnl and inl ADC output
% input y contains the ADC output
                                        % linearized histogram
% vector obtained from quantizing a
                                        hlin = T(2:end) - T(1:end-1);
% sinusoid
                                        % truncate at least first and last
% Boris Murmann, Aug 2002
                                        % bin, more if input did not clip ADC
% Bernhard Boser, Sept 2002
                                        trunc=2;
                                        hlin trunc = hlin(1+trunc:end-trunc);
% histogram boundaries
minbin=min(v);
                                        % calculate 1sb size and dnl
maxbin=max(y);
                                        lsb= sum(hlin trunc) / (length(hlin trunc));
% histogram
                                        dnl= [0 hlin trunc/lsb-1];
h = hist(y, minbin:maxbin);
                                        misscodes = length(find(dnl<-0.99));
% cumulative histogram
                                        % calculate inl
ch = cumsum(h);
                                        inl= cumsum(dnl);
```

Example Sinusoid Histogram





- The histogram (as any ADC test, of course) characterizes one particular converter. Test many devices to get valid statistics.
- Histogram testing assumes monotonicity

E.g. "code flips" will not be detected.



- Dynamic sparkle codes produce only minor DNL/INL errors E.g. 123, 123, ..., 123, 0, 124, 124, ... → look at ADC output to detect
- Noise not detected & averaged out E.g. 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 10, 10, 10, ...
  - Ref: B. Ginetti and P. Jespers, "Reliability of Code Density Test for High Resolution ADCs," Electron. Lett., vol. 27, pp. 2231-3, Nov. 1991.

### Why Additional Tests/Metrics?

- □ Static testing does not tell the full story
  - E.g. no info about "noise" or high frequency effects
- Frequency dependence  $(f_s \text{ and } f_{in})$ ?
  - In principle we can vary f<sub>s</sub> and f<sub>in</sub> when performing histogram tests
  - Result of such sweeps is usually not very useful
  - Hard to separate error sources, ambiguity
  - Typically we use  $f_s = f_{sNOM}$  and  $f_{in} << f_s/2$  for histogram tests (Static metrics)
- □ For additional info regarding higher frequency operation → Spectral testing





- □ Input sinusoid → Needs to have significantly better purity compared to DAC linearity
- Spectrum analyzer needs to have better linearity than DUT
- **D** Typically, test performed at several different input signal frequencies



[Hendriks, "Specifying Communications DACs, IEEE Spectrum, July 1997]





- Need DAC with much better performance compared to ADC under test
- Beware of DAC output sinx/x frequency shaping (from zero-order hold)
- Good way to "get started"...





□ Issues to beware of:

- Linearity of the signal generator output has to be much better than ADC linearity
- Spectrum analyzer nonlinearities
  - $\rightarrow$  May need to build/purchase filters to address one or both above problems
- Clock generator signal jitter












- Sinusoidal waveform has all its power at one single frequency
- An ideal, infinite resolution ADC would preserve ideal, single tone spectrum

 DFT (Discrete Fourier Transform) used as a vehicle to reveal ADC deviations from ideality
 Penn ESE 6680 Spring 2023 - Khanna adapted from Murmann EE315B, Stanford

## DFT Properties

- **DFT** of N samples spaced  $T_s = 1/f_s$  seconds:
  - N frequency bins from DC to  $f_s$
  - Num of bins  $\rightarrow$  N & each bin has width= $f_s/N$
  - Bin # *m* represents frequencies at  $m * f_s/N$  [Hz]
- DFT frequency resolution:
  - Proportional to  $f_s/N$  in [Hz/bin]
  - DFT with N = 2<sup>k</sup> (k is an integer) can be found using computationally efficient FFT:
    - FFT  $\rightarrow$  Fast Fourier Transform



### Matlab Example: Normalized DFT







Even though the input signal is a pure sinusoidal waveform note that the DFT results does not look like the spectrum of a sinusoid ...

Seems that the signal is distributed among several bins



The DFT implicitly assumes that time sample blocks repeat every N samples





- The DFT implicitly assumes that time sample blocks repeat every N samples
- With a non-integer number of signal periods within the observation window, the input yields significant amplitude/phase discontinuity at the block boundary
- This energy spreads into other frequency bins as "spectral leakage"
- Spectral leakage can be eliminated by either
  - 1. Choice of integer number of sinusoids in each block
  - 2. Windowing





#### Integer # of Cycles versus Non-Integer # of Cycles



Choice of Number of Cycles & Samples

- To overcome frequency spectrum leakage problem:
  - Number of Cycles  $\rightarrow$  integer
  - N/cycles = f<sub>s</sub>/f<sub>x</sub> → noninteger (choose prime # of cycles) otherwise quant. Noise → periodic and non-random
  - Preferable to have N: → power of 2 (FFT instead of DFT)



(

### Example: Integer Number of Cycles



Penn ESE 6680 Spring 2023 - Khanna adapted from Murmann EE315B, Stanford

### Example: Integer Number of Cycles

 Fundamental falls into a single DFT bin

- Noise (this example numerical quantization noise) occupies all other bins
- "integer number of cycles" constrains signal frequency f<sub>x</sub>



### Example: Integer Number of Cycles

 Fundamental falls into a single DFT bin

- Noise (this example numerical quantization noise) occupies all other bins
- "integer number of cycles" constrains signal frequency f<sub>x</sub>
- Alternative: windowing →





- Spectral leakage can be attenuated by "windowing" time samples prior to the DFT
  - Windows taper smoothly down to zero at the beginning and the end of the observation window
  - Time samples are multiplied by window coefficients on a sample-by-sample basis → Convolution in frequency domain
- □ Large number choices of various windows
  - Tradeoff: attenuation versus fundamental signal spreading to number of adjacent bins
- Window examples: Nuttall versus Hann





- Time samples are multiplied by window coefficients on a sample-by-sample basis
- Multiplication in the time domain → convolution in the frequency domain



- Signal before windowing
- Time samples are multiplied by window coefficients on a sample-by-sample basis
- Signal after windowing
  - Windowing removes the discontinuity at block boundaries



- Windowing results in ~ 100dB attenuation of sidelobes
- Signal energy "smeared" over several (approximately 10) bins







## Integer Cycles Vs. Windowing

- □ Integer number of cycles
  - Signal energy for a single sinusoid Springs into single DFT bin
  - Requires careful choice of f<sub>x</sub>
  - Ideal for simulations
  - Measurements  $\rightarrow$  need to lock  $f_x$  to  $f_s$  (PLL)- not always possible
- Windowing
  - No restrictions on f<sub>x</sub> → no need to have the signal locked to f<sub>s</sub> → Good for measurements w/o having the capability to lock f<sub>x</sub> to f<sub>s</sub> or cases where input is not periodic
  - Signal energy and its harmonics distributed over several DFT bins handle smeared-out harmonics with care!
  - Requires more samples for a given accuracy

# Example: ADC Spectral Testing

□ ADC with B=10 bits

```
• Full scale input level = 2V
```

```
B = 10;
delta = 2/2^B;
%sampled sinusoid, N Samples
y = cos(2*pi*fx/fs*[0:N-1]);
%quantize samples to delta=1LSB
y=round(y/delta)*delta;
s = abs(fft(y/N*2);
f = (0:length(s)-1)/N;
```







• Noise bins: all except signal bin

```
bx = N*fx/fs + 1;
As = 20*log10(s(bx))
%set signal bin to 0
s(bx) = 0;
An = 10*log10(sum(s.^2))
SNR = As - An
```

Matlab→SNR = 62dB (10 bits)
 Computed SQNR = 6.02xN+1.76dB=61.96dB



### Why is Noise Floor Not @ -62dB?

- DFT bins act like an analog spectrum analyzer with bandwidth per bin of f<sub>s</sub>/N
- Assuming noise is uniformly distributed, noise per bin:
  - (Total noise)/(N/2)
- □ → The DFT noise floor wrt total noise:
  - -10log<sub>10</sub>(N/2) [dB] below the actual noise floor
- **•** For N=2048:
  - - $10\log_{10}(N/2) = -30 \text{ [dB]}$





- Need to annotate DFT plot such that actual noise floor can be readily computed by one of these 3 ways:
  - 1. Specify how many DFT points (N) are used
  - 2. Shift DFT noise floor by 10log10(N/2) [dB]
  - 3. Normalize to "noise power in 1Hz bandwidth" then noise is in the form of power spectral density



- For a real 10bit ADC spectral test results:
- $\Box$  SNR=55.9dB
- A 3rd harmonic is barely visible
- Is better view of distortion component possible?



Example: 10Bit ADC FFT

- Increasing N, the number of samples (at the cost of measurement or simulation time) distributes the noise over larger # of bins
- Larger # of bins → less noise power per bin (total noise stays constant)
- Note the 3rd harmonic is clearly visible when N is increased







- General Signal S
- **D**C
- Distortion D
- Noise N
- □ Ideal ADC adds:
  - Quantization noise
- **Real** ADC typically adds:
  - Thermal and flicker noise
  - Harmonic distortion associated with circuit nonlinearities



# Spectral Performance Metrics

- Gignal S
- **D**C
- Distortion D
- Noise N
- □ Signal-to-noise ratio
  - SNR = 10log[(Signal Power)/ (Noise Power)]
- In Matlab: Noise power includes power associated with all bins except:
  - DC
  - Signal
  - Signal harmonics



## ADC Spectral Performance Metrics



Penn ESE 6680 Spring 2023 - Khanna adapted from Murmann EE315B, Stanford





Quadratic shaped transfer function: → Gives rise to <u>even</u> order harmonics



Cubic shaped transfer function: → Gives rise to <u>odd</u> order harmonics

## Relationship INL & SFDR/SNDR

- Nature of harmonics depend on "shape" of INL curve
- □ Rule of Thumb: SFDR  $\approx 20\log(2^{\text{B}}/\text{INL})$ 
  - E.g. 1LSB INL, 10b  $\rightarrow$  SFDR  $\approx$  60dB
- Beware, this is of course only true under the same conditions at which the INL was taken, i.e. typically low input signal frequency

# SNR Degradation due to DNL



- Uniform quantization error pdf was assumed for ideal quantizer over the range of:  $+/-\Delta/2$
- □ Let's now add uniform DNL over  $+/-\Delta/2$  and repeat math...
  - Joint pdf for two uniform pdfs  $\rightarrow$  Triangular shape

SNR Degradation due to DNL

 $\Box$  To find total noise  $\rightarrow$  Integrate triangular pdf:



### $\rightarrow$ Error associated with DNL reduces overall SNR

# SNR Degradation due to DNL

- □ More general case:
  - Uniform quantization error (ideal)  $\pm 0.5\Delta$
  - Uniform DNL error ± DNL [LSB]
  - Convolution yields trapezoid shaped joint pdf
  - SQNR becomes:

$$SQNR = \frac{\frac{1}{2} \left(\frac{2^N \Delta}{2}\right)^2}{\frac{\Delta^2}{12} + \frac{DNL^2}{3}}$$



Degradation in dB:

$$SQNR\_\deg = 10\log_{10}(1 + 4DNL^2)$$

Valid only for cases where no missing codes





### INL & SFDR

- Type of distortion depends on "shape" of INL
- Rule of Thumb:

SFDR  $\cong$  20 log(2<sup>B</sup>/INL)

- E.g. 1LSB INL, 10b
→ SFDR≅60dB

### DNL & SNR

Assumptions:

- DNL pdf →uniform
- No missing codes


## Effective Number of Bits (ENOB)

- Is a 12-Bit converter with 68dB SNDR really a 12-Bit converter?
- Effective Number of Bits (ENOB) → # of bit of an ideal ADC with the same SQNR as the SNDR of the nonideal ADC

$$ENOB = \frac{SNDR - 1.76\text{dB}}{6.02\text{dB}}$$

$$=\frac{68-1.76}{6.02}=11.0$$
Bits

## □ → Above ADC is a 12bit ADC with ENOB=11bits



- At best, we get "ideal" ENOB only for negligible thermal noise, DNL, INL
- □ Low noise design is costly → 4x penalty in power per (ENOB-) bit or 6dB extra SNDR
- Rule of thumb for good performance/power tradeoff: ENOB < N-1</p>





R. H. Walden, "Analog-to-digital converter survey and analysis," IEEE J. on Selected Areas in Communications, pp. 539-50, April 1999



- Proj 3
  - Design Pipeline ADC
    - Start with single stage
    - 1 or 1.5 bit per stage is recommended
  - Think about Sub-blocks
    - Sub ADC (comparator)
    - MDAC
      - Sub DAC and gain element combine with switched cap circuit
    - S/H
  - Periphery circuitry
    - Non-overlapping clocks
    - Shift registers
    - HA/FA for bit combining
      - Only if redundancy (optional)
  - Big part is characterization of performance
    - FOM



- Should aim to have single stage working by Sunday night
  - Working = converts bits and calculates residual correctly
- Useful Ed Posts (under Project 3 tag)
  - (#135) Python code for residual calculations
  - (#136) HW 4 partial solutions for metric reporting
    - Sample matlab code
  - (#137) How to get simulation data from Canvas for importing into Matlab, Excel, etc.
  - Don't just take these blindly. Edit to suit your own needs!

## Opamp-less Boot Strapped S/H

