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Data Converter Testing

 Measuring DNL & INL 
 Servo-loop 
 Code density testing (histogram testing) 

 Dynamic tests 
 Spectral testing  Reveals ADC errors associated with 

dynamic behavior i.e. ADC performance as a function of 
frequency 

 Direct Discrete Fourier Transform (DFT) based measurements utilizing 
sinusoidal signals 

 DFT measurements including windowing 

 Relationship between: DNL & SNR, INL & SFDR
 Effective number of bits (ENOB)
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ADC DNL/INL (endpoint)

 1. Endpoints connected

 2. Ideal characteristics derived 
eliminating offset & full-scale 
error (same as for DNL)

 3. DNL  deviation of code 
width from D (1LSB)

 4. INL  deviation of 
code transition from ideal
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How to Measure DNL/INL

 DAC:
 Simply apply digital codes and use a good voltmeter 

to measure corresponding analog output
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How to Measure DNL/INL

 DAC:
 Simply apply digital codes and use a good voltmeter 

to measure corresponding analog output

 ADC
 Not as simple as DAC  need to find "decision levels", 

i.e. input voltages at all code boundaries
 One way: Adjust voltage source to find exact code 

trip points "code boundary servo”
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Code Boundary Servo
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Code Boundary Servo

 i1 and i2 are small, and C1 is 
large (ΔV=it/C1), so the ADC 
analog input moves a 
small fraction of an LSB (e.g.
0.1LSB) each sampling 
period

 For an input code of 101, the 
ADC analog input settles to 
the code boundary shown
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Code Boundary Servo
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Code Boundary Servo

 A very good digital voltmeter (DVM) measures the 
analog input voltage corresponding to the desired 
code boundary

 DVMs have some interesting properties
 They can have very high resolutions (8½ decimal digit 

meters are inexpensive)
 To achieve stable readings, DVMs average voltage 

measurements over multiple 60Hz ac line cycles to filter 
out pickup in the measurement loop
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Code Boundary Servo

 ADCs of all kinds are notorious 
for kicking back high-
frequency, signal-
dependent glitches to their 
analog inputs

 A magnified view of an analog 
input glitch follows …
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Code Boundary Servo

 Just before the input is 
sampled and conversion 
starts, the analog input is 
pretty quiet

 As the converter begins to 
quantize the signal, it kicks 
back charge
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Code Boundary Servo

 The difference between 
what the ADC measures 
and what the DVM 
measures is not ADC INL, 
it’s error in the INL 
measurement

 How do we control 
this error?
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Code Boundary Servo

 A large C2 reduces the effect 
of kick-back

 At the expense of longer 
measurement time
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How to Measure DNL/INL

 DAC:
 Simply apply digital codes and use a good voltmeter 

to measure corresponding analog output

 ADC
 Not as simple as DAC  need to find "decision levels", 

i.e. input voltages at all code boundaries
 One way: Adjust voltage source to find exact code 

trip points "code boundary servo”
 More versatile: Histogram testing  Apply a signal with 

known amplitude distribution and analyze digital code 
distribution at ADC output
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Histogram Testing

 Code boundary measurements are slow
 Long testing time

 Histogram testing
 Apply input with known pdf (e.g. ramp) & quantize
 Measure output pdf
 Derive INL and DNL from deviation of measured pdf

from expected result
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Histogram Test Setup

 Slow (relative to conversion time) linear ramp applied to 
ADC

 DNL derived directly from total number of occurrences of 
each code @ the output of the ADC
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A/D Histogram Test Using Ramp Signal

 Example:
 ADC sampling 

rate: fs=100kHz 
Ts=10us

 1LSB =10mV
 For 0.01LSB 

measurement resolution:
  n=100 samples/code
  Ramp duration per 

code=100x10us=1ms
  Ramp slope: 10mV/ms
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A/D Histogram Test Using Ramp Signal

 Example:
 ADC sampling 

rate: fs=100kHz 
Ts=10us

 1LSB =10mV
 For 0.01LSB 

measurement resolution:
  n=100 samples/code
  Ramp duration per 

code=100x10us=1ms
  Ramp slope: 10mV/ms
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Ramp Histogram Example: Ideal 3-bit ADC
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Ramp Histogram Example: Real 3-bit ADC
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DNL from Histogram

 1- Remove “Over-range 
bins” (0 and full-scale)

 2- Compute average 
count/bin (600/6=100 in 
this case)
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DNL from Histogram

 3- Normalize:
 Divide histogram by average 

count/bin
  ideal bins have exactly 

the average count, which, 
after normalization, would be 
1

  Non-ideal bins would 
have a normalized value greater 
or smaller than 1
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DNL from Histogram

 4- Subtract ‘1’ from 
the normalized code count 5-

 Result  DNL (+-0.4LSB in 
this case)
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DNL and INL from Histogram

 DNL histogram  used 
to reconstruct the exact 
converter characteristic 
(having measured only the 
histogram)

 Width of all codes derived 
from measured DNL (Code 
width=DNL + 1LSB)

 INL  (deviation from a 
straight line through the end 
points) is found
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DNL and INL from Histogram
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Measuring DNL

 Ramp speed is adjusted to provide large number 
of output/code - e.g. an average of 100 outputs of 
each ADC code (for 1/100 LSB resolution)

 Ramp test can be quite slow for high resolution ADCs
 Example: 16bit ADC & 100 conversions/code @ 

100kHz sampling rate:
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Histogram Testing: Sinusoidal Input

 Ramp signal generators 
linear to only 8 to 10 bits & 
thus only good for testing 
ADCs < 10 bit res
 Need to find input 

signal with better purity for 
testing higher res. ADCs

 Solution: Use sinusoidal test 
signal (may need to filter 
out harmonics)
 Problem: Ideal 

ADC histogram not flat but has 
“bath-tub shape”
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ADC Histogram Test Using Sinusoidal Signals
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DNL/INL Extraction Matlab Program 
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Example Sinusoid Histogram
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Histogram Testing Limitations

 The histogram (as any ADC test, of course) characterizes one particular 
converter. Test many devices to get valid statistics.

 Histogram testing assumes monotonicity
E.g. “code flips” will not be detected.

 Dynamic sparkle codes produce only minor DNL/INL errors E.g. 123, 
123, …, 123, 0, 124, 124, …  look at ADC output to detect

 Noise not detected & averaged out E.g. 9, 9, 9, 10, 9, 9, 9, 10, 9, 10, 10, 
10, …

 Ref: B. Ginetti and P. Jespers, “Reliability of Code Density Test for High 
Resolution ADCs,” Electron. Lett., vol. 27, pp. 2231-3, Nov. 1991.
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Why Additional Tests/Metrics?

 Static testing does not tell the full story
 E.g. no info about "noise“ or high frequency effects

 Frequency dependence (fs and fin) ?
 In principle we can vary fs and fin when 

performing histogram tests
 Result of such sweeps is usually not very useful
 Hard to separate error sources, ambiguity
 Typically we use fs=fsNOM and fin << fs/2 for histogram 

tests (Static metrics)

 For additional info regarding higher 
frequency operation  Spectral testing
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DAC Spectral Test or Simulation

 Input sinusoid  Needs to have significantly better purity compared 
to DAC linearity

 Spectrum analyzer needs to have better linearity than DUT
 Typically, test performed at several different input signal frequencies

33
Penn ESE 6680 Spring 2023 - Khanna adapted from 
Murmann EE315B, Stanford 



Typical DAC Output Spectrum
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Direct ADC Spectral Test via DAC

 Need DAC with much better performance compared to ADC under test
 Beware of DAC output sinx/x frequency shaping (from zero-order 

hold)
 Good way to "get started"...
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Direct ADC-DAC Test
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 Issues to beware of:
 Linearity of  the signal generator output has to be much better than ADC linearity
 Spectrum analyzer nonlinearities

 May need to build/purchase filters to address one or both above problems

 Clock generator signal jitter



Filtering ADC Input Signal
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ADC Spectral Test via Data Acquisition System
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Analyzing ADC Outputs via DFT

 Sinusoidal waveform has all its power at one single 
frequency

 An ideal, infinite resolution ADC would preserve ideal, single 
tone spectrum

 DFT (Discrete Fourier Transform) used as a vehicle to reveal 
ADC deviations from ideality
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DFT Properties

 DFT of N samples spaced Ts=1/fs seconds:
 N frequency bins from DC to fs
 Num of bins  N & each bin has width= fs/N
 Bin # m represents frequencies at m * fs/N [Hz]

 DFT frequency resolution:
 Proportional to fs/N in [Hz/bin]
 DFT with N = 2k (k is an integer) can be found 

using computationally efficient FFT:
 FFT  Fast Fourier Transform
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Matlab Example: Normalized DFT
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DFT Noise
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DFT Periodicity

 The DFT implicitly assumes that time 
sample blocks repeat every N samples
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DFT Periodicity

 The DFT implicitly assumes that time 
sample blocks repeat every N samples

 With a non-integer number of signal 
periods within the observation window, 
the input yields 
significant amplitude/phase 
discontinuity at the block boundary

 This energy spreads into other frequency 
bins as “spectral leakage”

 Spectral leakage can be eliminated by 
either
 1. Choice of integer number of sinusoids 

in each block
 2. Windowing
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Frequency Spectrum
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Choice of Number of Cycles & Samples

 To overcome frequency 
spectrum leakage problem:
 Number of Cycles  integer
 N/cycles = fs/fx  non-

integer (choose prime # of 
cycles) otherwise quant. Noise 
 periodic and non-random

 Preferable to have N:  power 
of 2 (FFT instead of DFT)
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Example: Integer Number of Cycles
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Example: Integer Number of Cycles
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Windowing

 Spectral leakage can be attenuated by 
“windowing” time samples prior to the DFT
 Windows taper smoothly down to zero at the beginning 

and the end of the observation window
 Time samples are multiplied by window coefficients on 

a sample-by-sample basis  Convolution in frequency 
domain

 Large number choices of various windows
 Tradeoff: attenuation versus fundamental signal spreading 

to number of adjacent bins

 Window examples: Nuttall versus Hann
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Example: Nuttall Window

 Time samples are multiplied by window coefficients on a 
sample-by-sample basis 

 Multiplication in the time domain  convolution in the 
frequency domain
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Windowed Data

 Signal before windowing

 Time samples are multiplied 
by window coefficients on a 
sample-by-sample basis

 Signal after windowing
 Windowing removes the 

discontinuity at block 
boundaries
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DFT of Windowed Signal
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Nuttall vs. Hann
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Integer Cycles Vs. Windowing

 Integer number of cycles
 Signal energy for a single sinusoid Springs into single DFT bin
 Requires careful choice of fx
 Ideal for simulations
 Measurements  need to lock fx to fs (PLL)- not always possible

 Windowing
 No restrictions on fx  no need to have the signal locked to fs 

Good for measurements w/o having the capability to lock fx to fs
or cases where input is not periodic

 Signal energy and its harmonics distributed over several DFT bins –
handle smeared-out harmonics with care!

 Requires more samples for a given accuracy
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Example: ADC Spectral Testing

 ADC with B=10 bits 
 Full scale input level = 2V 

B = 10; 

delta = 2/2^B; 

%sampled sinusoid, N Samples 

y = cos(2*pi*fx/fs*[0:N-1]); 

%quantize samples to delta=1LSB 

y=round(y/delta)*delta; 

s = abs(fft(y/N*2); 

f = (0:length(s)-1)/N;
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ADC Output Spectrum

 Input signal bin:
 Bx @ bin # (N * fx/fs + 1)

(Matlab arrays start at 1) 
 Asignal = 0dBFS 

 What is the SNR?
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ADC Output Spectrum

 Noise bins: all except signal bin 

bx = N*fx/fs + 1; 

As = 20*log10(s(bx)) 

%set signal bin to 0 

s(bx) = 0; 

An = 10*log10(sum(s.^2)) 

SNR = As - An 

 MatlabSNR = 62dB (10 bits) 
 Computed SQNR = 

6.02xN+1.76dB=61.96dB
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Why is Noise Floor Not @ -62dB?

 DFT bins act like an analog 
spectrum analyzer with 
bandwidth per bin of fs/N 

 Assuming noise is uniformly 
distributed, noise per bin: 
 (Total noise)/(N/2) 

  The DFT noise floor wrt
total noise:
 -10log10(N/2) [dB] below the actual 

noise floor 

 For N=2048: 
 -10log10(N/2) =-30 [dB]
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DFT Plot Annotation 

 Need to annotate DFT plot such that actual noise 
floor can be readily computed by one of these 3 
ways: 
 1. Specify how many DFT points (N) are used 
 2. Shift DFT noise floor by 10log10(N/2) [dB]
 3. Normalize to "noise power in 1Hz bandwidth“ then 

noise is in the form of power spectral density
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Example: 10Bit ADC FFT 

 For a real 10bit ADC spectral 
test results: 

 SNR=55.9dB 
 A 3rd harmonic is barely 

visible 
 Is better view of distortion 

component possible?
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Example: 10Bit ADC FFT 

 Increasing N, the number 
of samples (at the cost of 
measurement or 
simulation time) 
distributes the noise over 
larger # of bins 

 Larger # of bins  less 
noise power per bin (total 
noise stays constant) 

 Note the 3rd harmonic is 
clearly visible when N is 
increased
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Spectral Performance Metrics 

 Signal S 
 DC
 Distortion D 
 Noise N 

 Ideal ADC adds: 
 Quantization noise 

 Real ADC typically adds: 
 Thermal and flicker noise
 Harmonic distortion associated 

with circuit nonlinearities
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Spectral Performance Metrics 

 Signal S 
 DC
 Distortion D 
 Noise N 

 Signal-to-noise ratio 
 SNR = 10log[(Signal Power)/ 

(Noise Power)] 

 In Matlab: Noise power 
includes power associated with 
all bins except: 
 DC 
 Signal 
 Signal harmonics
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ADC Spectral Performance Metrics 

 SDR & SNDR & SFDR 
 SDRSignal-to-distortion ratio 

 10log[(Signal Power)/(Total 
Distortion Power)] 

 SNDRSignal-to-(noise+distortion) 
 10log[S/(N+D)] 

 SFDRSpurious-free dynamic range 
 10log[(Signal)/(Largest Harmonic)] 
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Relationship INL & SFDR/SNDR
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Relationship INL & SFDR/SNDR 

 Nature of harmonics depend on "shape" of INL 
curve 

 Rule of Thumb: SFDR ≈ 20log(2B/INL) 
 E.g. 1LSB INL, 10b  SFDR ≈ 60dB 

 Beware, this is of course only true under the same 
conditions at which the INL was taken, i.e. typically 
low input signal frequency
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SNR Degradation due to DNL 

 Uniform quantization error pdf was assumed for ideal 
quantizer over the range of: +/- Δ/2 

 Let's now add uniform DNL over +/- Δ/2 and repeat 
math...  
 Joint pdf for two uniform pdfs  Triangular shape
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SNR Degradation due to DNL 

 To find total noise  Integrate triangular pdf: 

 Compare to ideal quantizer: 

Error associated with DNL reduces overall SNR
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SNR Degradation due to DNL 

 More general case: 
 Uniform quantization error (ideal) ±0.5Δ
 Uniform DNL error ±DNL [LSB] 
 Convolution yields trapezoid shaped joint pdf
 SQNR becomes:
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SNR Degradation due to DNL 

 Degradation in dB:
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𝑆𝑄𝑁𝑅_ deg = 10 log!" 1 + 4𝐷𝑁𝐿#



Summary
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Effective Number of Bits (ENOB) 

 Is a 12-Bit converter with 68dB SNDR really a 12-Bit 
converter? 

 Effective Number of Bits (ENOB)# of bit of an ideal 
ADC with the same SQNR as the SNDR of the nonideal
ADC 

 Above ADC is a 12bit ADC with ENOB=11bits
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ENOB 

 At best, we get "ideal" ENOB only for negligible 
thermal noise, DNL, INL 

 Low noise design is costly  4x penalty in power 
per (ENOB-) bit or 6dB extra SNDR 

 Rule of thumb for good performance/power 
tradeoff: ENOB < N-1
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ENOB Survey
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Admin

 Proj 3 
 Design Pipeline ADC

 Start with single stage
 1 or 1.5 bit per stage is recommended

 Think about Sub-blocks
 Sub ADC (comparator)
 MDAC

 Sub DAC and gain element combine with switched cap circuit
 S/H

 Periphery circuitry
 Non-overlapping clocks
 Shift registers
 HA/FA for bit combining

 Only if redundancy (optional)

 Big part is characterization of performance
 FOM
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Admin (con’t)

 Should aim to have single stage working by Sunday 
night
 Working = converts bits and calculates residual correctly

 Useful Ed Posts (under Project 3 tag)
 (#135) Python code for residual calculations 
 (#136) HW 4 partial solutions for metric reporting

 Sample matlab code

 (#137) How to get simulation data from Canvas for
importing into Matlab, Excel, etc.

 Don’t just take these blindly.  Edit to suit your own needs!  
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Opamp-less Boot Strapped S/H
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