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Abstract
Reducing the variance of estimators for policy
gradient has long been the focus of reinforcement
learning research. While classic algorithms like
REINFORCE find an ε-approximate first-order
stationary point in O(1/ε4) random trajectory
simulations, no provable improvement on the
complexity has been made so far. This paper
presents a Hessian aided policy gradient method
with the first improved sample complexity of
O(1/ε3). While our method exploits information
from the policy Hessian, it can be implemented
in linear time with respect to the parameter di-
mension and is hence applicable to sophisticated
DNN parameterization. Simulations on standard
tasks validate the efficiency of our method.

1. Introduction
A Markov Decision Process (MDP) is determined by time-
varying system states, actions to affect the transition proba-
bility between states, and instantaneous rewards collected
as a function of the state visited and the action taken (Puter-
man, 2014). Whenever the system visits a particular state,
the agent chooses an action that is dictated by a (possibly
stochastic) policy. As the agent moves from state to state,
it collects an aggregate reward given by a discounted sum
of the instantaneous rewards. The optimal policy of an
MDP is the one that maximizes such aggregate reward. The
focus of this paper is to find the optimal policy in model-
free reinforcement learning (RL) problems where transition
probabilities and rewards are unknown and can only be esti-
mated by probing the system through the execution of policy
actions (Sutton and Barto, 2018).

Policy gradient methods and its variants constitute the set
of tools that are most widely used for finding good policies
in MDPs (Williams, 1992; Sutton et al., 2000; Baxter and
Bartlett, 2001). Such methods directly find the optimal pol-
icy through the use of stochastic first-order differentials of
the accumulated reward relative to policy variations. Their
popularity notwithstanding, they are known to have low sam-
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ple efficiency demanding hundreds of thousands of Monte
Carlo simulations of full trajectories even when dealing
with relatively simple MDPs. Large sample complexity is
inherent to MDPs because to evaluate individual stochas-
tic policy gradients we need to run a full trajectory under
the current policy. Such trajectories are composed of large
number of individual transitions which not only makes them
costly to simulate but also results in gradient estimates with
large variances as the randomness of individual transitions
is compounded over the trajectory’s time horizon (Williams,
1992; Sutton, 1984; Arulkumaran et al., 2017; Sutton and
Barto, 2018).

Besides the aforementioned MDP-specific challenges, pol-
icy gradient inherits the limitations of any stochastic gradi-
ent descent method used for optimizing a nonconvex func-
tion. This manifests in the need for O(1/ε4) stochastic
first-order queries to find an ε-approximate first order sta-
tionary point (ε-FOSP) (Nesterov, 2013). In the supervised
learning literature this slow convergence is alleviated with
variance reduction techniques which exploit correlations
between consecutive stochastic gradient estimators (Roux
et al., 2012; Johnson and Zhang, 2013; Defazio et al., 2014;
Nguyen et al., 2017; Fang et al., 2018). Give the dramatic
impact of VR on the SL, we should expect it to be even more
effective in reinforcement learning where policy gradients
are prone to larger variances.

However, direct transplanting the variance reduction tech-
niques tailored for supervised learning does not reduced the
O(1/ε4) sample complexity (Papini et al., 2018). This hap-
pens because variance reduction techniques make explicit
use of the fact that the randomness in the objective function
is oblivious to the argument, i.e., the randomness that affects
the choice of a function does not depend the variables. This
is not true for RL problems in which the transition probabil-
ities themselves are controlled by the policy. Consequently,
when applying variance reduction techniques to these non-
oblivious objectives, the improvements in convergence rates
that are obtained in supervised learning do not materialize.

Contributions. In this paper, we develop a Hessian-
aided variance reduction method that is applicable to non-
oblivious objectives. In particular, we give the first prov-
able sample-efficiency improvement over stochastic gra-
dient based policy-gradient type methods: We reduce the
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trajectory complexity from O(1/ε4) to O(1/ε3) to obtain
an ε-FOSP. To do so, we construct a novel, efficiently
computable, and unbiased variance reduced gradient esti-
mator for non-oblivious objectives by integrating carefully
designed Hessian-vector products along the solution path.
Our estimator utilizes the stochastic approximation of the
second-order policy differential without compromising the
linear per-iteration computation complexity and is hence
suitable for complex and high dimensional parameteriza-
tions. Additionally, existing RL techniques like actor-critic
and GAE can be seamlessly integrated to our algorithm.
We also provide extensive simulations on various reinforce-
ment learning tasks to validate our analysis and illustrate
the efficiency of our method.

Notation. Lowercase boldface v denotes a vector and up-
percase boldface A denotes a matrix. We use ‖v‖ to denote
the Euclidean norm of vector v and use ‖A‖ to denote
the spectral norm of matrix A. E[X] and V[X] denote the
expectation and variance of a random variable X .

2. Preliminaries
Consider a discrete time index h ≥ 0 and a Markov sys-
tem with time varying states sh ∈ S and actions ah ∈ A.
The probability distribution of the initial state is ρ(s0) and
the conditional probability distribution of transitioning into
sh+1 given that we are in state sh and take action ah is
P(sh+1|sh, ah). Actions are chosen according to a possi-
bly random policy π in which π(ah|sh) is the distribution
for taking action ah when observing state sh. We assume
policies are parametrized by a vector θ ∈ Rd and use πθ
as a shorthand for the conditional distribution π(ah|sh; θ)
associated to θ. For a given time horizonH we define the tra-
jectory τ := (s1, a1, . . . , sH , aH) as the collection of state
action pairs experienced up until time h = H . Given the ini-
tial distribution ρ(s0), the transition kernel P(sh+1|sh, ah),
and the Markov property of the system, it follows that the
probability distribution over trajectories τ is

p(τ ;πθ) := ρ(s0)

H∏
h=1

P(sh+1|sh, ah)π(ah|sh). (1)

Associated with a state action pair we have a reward
function r(sh, ah). When following a trajectory τ :=
(s1, a1, . . . , sH , aH), we consider the accumulated reward
discounted by a geometric factor γ

R(τ) :=

H∑
h=1

γhr(sh, ah). (2)

Our goal is to find the policy parameter θ that maximizes
the expected discounted trajectory reward

max
θ∈Rd

J(θ) := Eτ [R(τ)] =

∫
R(τ)p(τ ;πθ)dτ. (3)

Unlike traditional supervised learning problems, the under-
lying distribution p depends on the variable θ and hence
varies through the whole optimization procedure. We refer
to such property as non-oblivious.
Due to the non-convexity of (3), we are satisfied with find-
ing an ε-approximate First-Order Stationary Point (ε-FOSP),
denoted by θε, such that

‖∇J(θε)‖ ≤ ε. (4)

As a standard tool to achieve such goal, policy gradient,
a.k.a. the first-order differential of the objective (3), can be
expressed as

∇J(θ) := Eτ∼p(τ ;πθ)[

H∑
h=1

Ψh(τ)∇ log πθ(ah|sh)], (5)

where we denote Ψh(τ) :=
∑H
i=h γ

ir(si, ai) for a fixed
trajectory τ . LetM be a set of random trajectories sampled
according to distribution p(·;πθ). An unbiased stochastic
policy-gradient estimator can be constructed by

g(θ;M) :=
1

|M|
∑
τ∈M

H∑
h=1

Ψh(τ)∇ log πθ(ah|sh). (6)

2.1. Variance Reduced Gradient Estimator

Most of the literature on variance reduction techniques fo-
cuses on the oblivious setting. For example, supervised
learning is usually characterized through the following
stochastic optimization framework

max
x∈Rd

F (x) := Ez∼q(z)[f(x; z)], (7)

where the samples z ∈ Z have distribution q(z) and the
functions f(; z) : Rd → R are smooth, potentially non-
convex loss functions with respect to sample z. Since the
underlying distribution q(z) is invariant to the variable x,
we refer to (7) as an oblivious objective.

For oblivious objectives, a recent method called Variance
Reduced Gradient Estimator has been proposed to reduce
sample complexity of vanilla stochastic gradient methods
with provable guarantees (Reddi et al., 2016; Fang et al.,
2018; Zhou et al., 2018). Let x̃ be some reference point and
h̃ be an unbiased gradient estimator at x̃. Given x̃ and h̃,
the variance-reduced gradient estimator at a point xt, which
we denote by htvr, is of the form:

htvr := h̃ + h(xt;M)− h(x̃;M), (8)

whereM is a set of samples drawn from q(z) and

h(x;M) :=
1

|M|
∑
z∈M

∇f(x; z). (9)
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Algorithm 1 Hessian Aided Policy Gradient (HAPG)
1: for t = 0 to T do
2: if mod (t, p) = 0 then
3: Sample |M0| trajectories to compute minibatch

stochastic policy gradient estimator at θt

gt =
1

|M0|
∑
τ∈M0

H∑
h=1

Ψh(τ) · ∇ log πθt(ah; sh);

4: else
5: Sample |M| random tuples (a, τ(a)) to construct

gradient difference estimator ∆t using (15)
6: gt = gt−1 + ∆t;
7: end if
8: θt+1 = θt + η · gt/‖gt‖;
9: end for

Note that h(xt;M) and h(x̃;M) use the same sample
batchM, which is critical for reducing variance. The for-
mulation (8) captures several variance-reduction techniques
such as the seminal SVRG estimator (Johnson and Zhang,
2013) and the recent SPIDER estimator (Fang et al., 2018).

While it is tempting to generalize the above-mentioned
variance reduction technique to reinforcement learning (i.e.
the non-oblivious setting), there has been no provable suc-
cess. For example, the Stochastic Variance Reduced Pol-
icy Gradient (SVRPG) from (Papini et al., 2018) incorpo-
rates such technique in its gradient estimator design, but
still requires the same amount of random trajectories as the
vanilla stochastic policy-gradient type method, i.e. O( 1

ε4 ),
to achieve an ε-FOSP (4).

3. Methodology
In this section, we derive our Hessian Aided Policy Gradi-
ent (HAPG) method for the non-oblivious and non-convex
objective (3). HAPG is the first algorithm to achieve prov-
ably better sample efficiency than the policy-gradient type
method, from O(1/ε4) to O(1/ε3). Note that while our
method conceptually utilizes curvature information, HAPG
can be implemented in linear time in terms of the parame-
ter dimension d, without explicitly computing the Hessian
matrix.

Suppose we are given a variable sequence {θs}ts=0. Then
the gradient at θt can be written in a path-integral form:

∇J(xt) = ∇J(θ0) +

t∑
s=1

∇J(θs)−∇J(θs−1). (10)

Let ∆s be an unbiased estimator for the gradient difference
∇J(θs)−∇J(θs−1) and recall the policy gradient defined
in (6). We can recursively construct the following estimator

for ∇J(θt):

gt =

{
g(θt;M0) mod (t, p) = 0,

gt−1 + ∆t mod (t, p) 6= 0.
(11)

whereM0 is a mini-batch of trajectories sampled according
to p(·|πθ) and p is a given epoch length. In words, after
every p iterations, we directly estimate the gradient using
a min-batchM0 of stochastic trajectories, and in between,
we maintain an unbiased estimate by recursively adding the
correction term ∆t to the current estimate gt−1.

Having estimator (11), we will use gt to update θt+1 in a
normalized gradient ascent manner:

θt+1 := θt + ηt · gt

‖gt‖
. (12)

Our method is presented in Algorithm 1.

We now focus on the construction of ∆t. From the Taylor’s
expansion, the gradient difference can be written as

∇J(θt)−∇J(θt−1) =

∫ 1

0

[∇2J(θ(a)) · v]da

=

[∫ 1

0

∇2J(θ(a))da

]
· v, (13)

where we denote θ(a) := a · θt + (1 − a) · θt−1 and
v := θt − θt−1. Note that the integral in (13) is just the
expectation Ea[∇2J(θ(a))], which admits the unbiased es-
timator ∇2J(θ(ā)) with ā uniformly sampled from [0, 1].
Therefore, if we have an unbiased estimator of∇2J(θ) for
arbitrary θ, we can construct ∆t. To do so, note that the
policy Hessian ∇2J(θ) can be expressed by1

∇2J(θ) = Eτ
[
∇Φ(θ; τ)∇ log p(τ ;πθ)

>
+∇2Φ(θ; τ)

]
,

where the trajectory τ has the distribution p(τ ;πθ) and

Φ(θ; τ) =

H∑
h=1

H∑
i=h

γir(si, ai) log πθ(ah|sh).

Hence, we can construct an unbiased estimator ∇̃2(θ; τ) for
∇2J(θ) by sampling τ according to p(τ ;πθ) and let

∇̃2(θ; τ) := ∇Φ(θ; τ)∇ log p(τ ;πθ)
>

+∇2Φ(θ; τ). (14)

Putting things together, letM be a mini-batch of random
tuple (a, τ(a)) where a ∈ R is uniformly distributed over
[0, 1] and τ(a) is a trajectory sampled according to distribu-
tion p(τ(a);πθ(a)) (recall θ(a) := a · θt + (1− a) · θt−1).
We have the construction of ∆t by

∆t := ∇̃2(θ;M) · v, (15)

1A detailed derivation is provided in the appendix.
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where ∇̃2(θ;M) is a minibatch version of (14) defined by

∇̃2(θ;M) :=
1

|M|
∑

(a,τ(a))∈M

∇̃2(θ(a); τ(a)), (16)

and v = θt − θt−1.

Let us reemphasize that the estimator (15) can be computed
in linear time in terms of the parameter dimension d: First
note that computing ∆t is equivalent to computing |M|
matrix-vector product ∇̃2(θ; τ) · v. From (14) we can write

∇̃2(θ; τ)·v=(∇ log p(τ ;πθ)
>
v)∇Φ(θ; τ) +∇2Φ(θ; τ)·v.

Clearly, the first term can be computed in time O(Hd). Ad-
ditionally, the second term is a Hessian-vector product, and
can be computed either with Pearlmutter’s algorithm (Pearl-
mutter, 1994) or using finite difference (Wright and Nocedal,
1999) in O(Hd) time as discussed later in Section 3.1.

Remark 3.1. The choice of Ψh(τ) =
∑H
i=h γ

ir(si, ai) is
for deriving a tight bound on the norm of the stochastic
policy gradient and policy Hessian. In practice, we can
incorporate a state-dependent baseline into Ψh(τ) to fur-
ther improve the performance, see (31) in the Experiment
section. In that case, theO(1/ε3) trajectory complexity still
holds as the estimator g in (6) remains unbiased.

Remark 3.2. Note that estimator (8) for the oblivious
loss (7) shares the same spirit of (11) except that it es-
timates ∇F (xi) and ∇F (xi−1) separately by h(xt;M)
and h(xt−1;M) (taking x̃ = xt−1). However, such sepa-
rated estimation is biased in reinforcement learning: Let
M be a minibatch of trajectories sampled from p(·|πθt)
and recall the definition of g(θ;M) in (6). We have
Eg(θt;M) = ∇J(θt) but Eg(θ̃;M) 6= ∇J(θ̃).

3.1. Finite Difference for Hessian-Vector Product

In this section, we briefly describe the finite difference
method for computing the Hessian-vector product. Let
φ : Rd → R be a twice differential function. Our goal
is to compute, for arbitrary θ,v ∈ R, ∇2φ(θ) · v. From the
mean value theorem, we have for ε > 0

ξε(v;φ) :=
∇φ(θ + εv)−∇φ(θ − εv)

2ε
= ∇2φ(θ(ε)) · v,

where θ(ε) = θ+ a(ε) · v with a ∈ [−ε, ε]. By taking ε suf-
ficiently small and assuming the second-order smoothness
of φ, i.e.

‖∇2φ(x)−∇2φ(y)‖ ≤ L2‖x− y‖,

for arbitrary x,y ∈ Rd, we bound

‖ξε(v;φ)−∇2φ(θ) · v‖ ≤ L2‖v‖ε, (17)

which can be made arbitrarily small by taking a sufficiently
small ε. Note that the complexity of computing ξε(v;φ) is
twice the complexity of evaluating the gradient of ∇φ(·).
Therefore, we can approximate ∇2Φ(θ; τ) · v to arbitrary
accuracy by employing ξε(v; Φ) within time O(Hd).

4. Convergence Analysis
We prove the convergence of Algorithm 1 and analyze the
trajectory complexity to find an ε-FOSP under the following
assumptions.

Assumption 4.1 (bounded reward). The instantaneous re-
ward function is bounded, i.e., for all a ∈ A and s ∈ S,

|r(a|s)| ≤ R. (18)

Assumption 4.2 (parameterization regularity). For any
choice of parameter θ and state-action pair (s, a), we have

‖∇ log π(a|s; θ)‖ ≤ G and ‖∇2 log π(a|s; θ)‖ ≤ L.

Remark 4.1. We note that Assumptions 4.1 and 4.2 are
standard in the literature and are used in recent work like
(Papini et al., 2018).

These two assumptions imply the following technical lemma
that characterizes the properties of the stochastic approxima-
tions g(θ; {τ}) (6) and ∇̃2(θ; τ) (14) for first and second
order differential of J(θ).

Lemma 4.1 (properties of stochastic differential estimators).
Under Assumption 4.1 and 4.2, we have for all θ

‖g(θ; {τ})−∇J(θ)‖2 ≤ G2R2

(1− γ)4
:= G2

g,

‖∇̃2(θ; τ)‖2 ≤ H2G4R2 + L2R2

(1− γ)4
:= G2

H ,

(19)

where τ is a trajectory sampled according to p(τ ; θ).

Proof. Bound for stochastic first-order differential:
Recall the unbiasedness of g(θ; {τ}). Using E[(X −
E[X])2] ≤ E[X2] for all random variable X , we have

Eτ‖g(θ; {τ})−∇J(θ)‖2 ≤ Eτ‖g(θ; {τ})‖2.

Use the definition of g(θ; {τ}) to obtain

‖g(θ; τ)‖ =‖
H∑
h=1

Ψh(τ)∇ log πθ(ah|sh)‖

≤
H∑
h=1

|Ψh(τ)| · ‖∇ log πθ(ah|sh)‖,

≤G
H∑
h=1

|Ψh(τ)|,
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where we use triangle inequality in the first inequality and
Assumption 4.2 in the second one. On the other hand, using
the definition of Ψh, we derive

|Ψh| = |
H∑
i=h

γir(si, ai)| ≤
H∑
i=h

γiR ≤ Rγh

1− γ
,

where the first inequality uses Assumption 4.1 and the sec-
ond uses the summation structure of geometric sequence.
Combining these two bounds, we obtain

‖g(θ; {τ})‖ ≤ GR

(1− γ)

H∑
h=1

γh ≤ GR

(1− γ)2
.

Consequently, we have

Eτ‖g(θ; τ)−∇J(θ)‖2 ≤ G2R2

(1− γ)4
.

Bound for stochastic second-order differential:
Recall the definition of ∇̃2(θ; τ) (14). Using ‖A + B‖2 ≤
2‖A‖2 + 2‖B‖2 we bound

Eτ‖∇̃2(θ; τ)‖2 ≤2Eτ‖∇Φ(θ; τ)‖2‖∇ log p(τ ;πθ)‖2

+ 2Eτ‖∇2Φ(θ; τ)‖2.

To bound the first product, use∇Φ(θ; τ) = g(θ; {τ}) so

‖∇Φ(θ; τ)‖ = ‖g(θ; {τ})‖ ≤ GR

(1− γ)2
.

Additionally, use

‖∇ log p(τ ;πθ)‖ ≤
H∑
h=1

‖∇ log π(ah|sh; θ)‖ ≤ HG,

(20)
so that the first term is bounded by

‖∇Φ(θ; τ)‖2‖∇ log p(τ ;πθ)‖2 ≤
H2G4R2

(1− γ)4
. (21)

The second term is bounded by

‖∇2Φ(θ; τ)‖ = ‖
H∑
h=1

Ψh(τ)∇2 log πθ(ah|sh)‖

≤
H−1∑
h=0

|Ψh(τ)|‖∇2 log π(ah|sh; θ)‖.

(22)

Use the bound on |Ψh(τ)| and Assumption 4.2 to arrive at

‖∇2Φ(θ; τ)‖ ≤ LR

1− γ

H−1∑
h=0

γh ≤ LR

(1− γ)2
. (23)

Combining these two bounds, we have

Eτ‖∇̃2(θ; τ)‖2 ≤ H2G4R2 + L2R2

(1− γ)4
.

Having Lemma 4.1, we are now ready to bound the variance
of the unbiased gradient estimator gt.

Lemma 4.2 (variance bound for gradient estimator). Recall
the definition of gt from (11). By setting p =

Gg
GHε

, |Mh| =
Gg
GHε

, and |M0| =
G2
g

G2
Hε

2 , we have

E‖gt −∇J(θt)‖2 ≤ 2G2
Hε

2. (24)

Proof. For ease of presentation, we consider t < p. The
general case is a direct extension. Recall the definition of
gt and use its unbiasedness to obtain

E‖gt −∇J(θt)‖2

=E‖∇̃2(θ;M)[θt − θt−1] + gt−1 −∇J(θt)‖2

=V‖∇̃2(θ;M)[θt − θt−1]‖+ E‖gt−1 −∇J(θt−1)‖2

To bound the first term, use V[ 1
n

∑n
i=1Xi] ≤ 1

nE[X1] for
i.i.d. random variables {Xi}ni=1 to obtain

V‖∇̃2(θ;M)[θt − θt−1]‖

≤ 1

|M|
E‖∇̃2(θ(a); τ(a))[θt − θt−1]‖2

≤ 1

|M|
E‖∇̃2(θ(a); τ(a))‖2 · ‖θt − θt−1‖2 =

G2
Hε

2

|Mh|
,

where we use in the last equality ‖θt+1 − θt‖ = ε, due to
the normalized update (12) and the step-size choice ηt = ε.
Consequently we have the recursion

E‖gt −∇J(θt)‖2 ≤ G2
Hε

2

|Mh|
+ E‖gt−1 −∇J(θt−1)‖2.

By repeating the above recursion t times, we obtain

E‖gt −∇J(θt)‖2 ≤ t ·G2
Hε

2

|Mh|
+ E‖g0 −∇J(θ0)‖2

≤ p ·G2
Hε

2

|Mh|
+

G2
g

|M0|
.

By setting p =
Gg
GHε

, |Mh| = Gg
GHε

, and |M0| =
G2
g

G2
Hε

2 , the
result of the theorem folows.

Theorem 4.1. Recall the definition of smoothness parame-
ter Gg and GH in Lemma 4.1. Under Assumptions 4.1,4.2,

and by setting p =
Gg
GHε

, |Mh| =
Gg
GHε

, |M0| =
G2
g

G2
Hε

2 ,

T = 2(J(θ0)−J∗)
GH ·ε2 in Algorithm 1, we have

E‖∇J(θt̄)‖ ≤ 4GHε, (25)

where t̄ is uniformly sampled from {0, . . . , T − 1}.



Hessian Aided Policy Gradient

Proof. Lemma 4.1 implies that J(θ) is GH -smooth, i.e.

‖∇2J(θ)‖ = ‖EτH(θ; τ)‖ ≤ Eτ‖H(θ; τ)‖ ≤ GH . (26)

We can thus write

J(θt+1) ≥J(θt) + 〈∇J(θt), θt+1 − θt〉 − GH
2
‖θt+1 − θt‖2

=J(θt) + 〈gt, θt+1 − θt〉 − GH
2
‖θt+1 − θt‖2

+ 〈∇J(θt)− gt, θt+1 − θt〉.

Plug in ‖θt+1 − θt‖ = ε and θt+1 − θt = εgt

‖gt‖ to obtain

J(θt+1) ≥J(θt) + ε‖gt‖ − GHε
2

2
+ 〈∇J(θt)− gt,

εgt

‖gt‖
〉

≥J(θt) + ε‖gt‖ −GHε2 −
1

2GH
‖∇J(θt)− gt‖2,

where we use Young’s inequality in the second inequality.
Using the triangle inequality, we have

J(θt+1) ≥J(θt) + ε(‖∇J(θt)‖ − ‖∇J(θt)− gt‖)−GHε2

− 1

2GH
‖∇J(θt)− gt‖2. (27)

Take expectation on both sides of (27) and rearrange terms
to obtain:

ε · E[‖∇J(θt)‖]
≤ E[J(θt+1)]− E[J(θt)] +GHε

2

+
1

2GH
E[‖∇J(θt)− gt‖2] + ε · E[‖∇J(θt)− gt‖]

≤ E[J(θt+1)]− E[J(θt)] +GHε
2

+
1

2GH
E[‖∇J(θt)− gt‖2] + ε ·

√
E[‖∇J(θt)− gt‖2]

≤ E[J(θt+1)]− E[J(θt)] + 4GHε
2, (28)

where we use the Jensen’s inequality in the second inequality
and Lemma (4.2) in the third one. Sum (28) from t = 0 to
T − 1 and divide by Tε on both sides to arrive at

1

T

T−1∑
t=0

E‖∇J(θt)‖ ≤ E[J(θT )]− J(θ0)

Tε
+ 4GHε

≤ J∗ − J(θ0)

Tε
+ 4GHε. (29)

We have the result by taking T = 2(J∗−J(θ0))
GH ·ε2 and t̄ to be

uniformly sampled from {0, . . . , T − 1}.

Having Theorem 4.1, the following corollary translates the
convergence results to the overall trajectory complexity in
order to achieve ε-FOSP.

Corollary 4.1. Under Assumption 4.1 and 4.2, Algorithm
1 finds an ε̄-FOSP with no more than 256GgGH(J∗−J(θ0))

ε̄3

random trajectories.

Proof. Using Theorem 4.1 with ε = ε̄
4GH

, we have

|Mh| =
4Gg
ε̄ and the amortized per-iteration trajectory

complexity is 2|Mh|. Besides, T = 32GH(J∗−J(θ0))
ε̄2 , and

hence, the overall trajectory complexity is 2|Mh| · T =
256GgGH(J∗−J(θ0))

ε̄3 .

5. Related Work
5.1. MDP-Specific Variance

In the policy-based and model-free reinforcement learning,
the large variance in gradient estimation and the resulting
high trajectory complexity have for long been identified as
key challenges. This is mainly due to the term Ψh(τ) having
large variance in the policy gradient (5), due to which the
randomness grows exponentially with respect to the horizon.
Ideally, by setting Ψh(τ) to be the advantage function of the
MDP under policy πθ, i.e. the difference of the state-action
value function and the state-value function, the estimator
given in (6) achieves the minimum possible variance. How-
ever, we generally do not have direct access to the advantage
functions and can only use estimations like the discounted
cumulative reward

∑H
i=h γ

ir(si, ai) for approximation.

A notable portion of the literature has focused on deriving
better choices of Ψh(τ) in order to reduce the variance in
estimating the advantage function and can be classified into
two categories depending on whether or not bootstrapping
is used to update the state-value function (Sutton and Barto,
2018). By estimating Ψh(τ) with a critic which uses boot-
strapping, the actor-critic type methods effectively drive
down the variance at the cost of introducing bias to the gra-
dient estimator (Konda and Tsitsiklis, 2000; Mnih et al.,
2016). Alternatively, if we directly incorporate a baseline
into Ψh(τ), the estimator (6) remains unbiased but poten-
tially suffers from larger variance (Greensmith et al., 2004;
Wu et al., 2018; Duan et al., 2016). The Generalized Ad-
vantage Estimation (GAE) proposed by (Schulman et al.,
2016) incorporates the temporal-difference structure into
the advantage function approximation and allows to control
the tradeoff between bias and variance. We emphasize that
all these refined advantage estimators can be directly incor-
porated to our method by placing Ψh(τ) correspondingly.

5.2. Variance Reduced Gradient in RL

While variance reduced gradient estimators have been suc-
cessful in the oblivious supervised learning (see Section 2.1),
its development in the non-oblivious reinforcement learn-
ing setting has been limited. Most of the existing work
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only apply such techniques to solve oblivious subproblems
in RL rather than using it to estimate the gradients: (Du
et al., 2017) considers estimating the state-value function
under the current policy via minimizing the empirical mean
squared projected Bellman error. This is equivalent to a
finite-sum convex-concave saddle point problem where the
underlying distribution is the variable-independent uniform
distribution, and can be solved by existing variance reduced-
variants (Palaniappan and Bach, 2016). In another work Xu
et al. (2017) use the SVRG estimator (Johnson and Zhang,
2013) to solve the trust region subproblem of TRPO (Schul-
man et al., 2015), which again is a finite sum minimization
problem with an oblivious uniform underlying distribution.

Recently, Papini et al. (2018) propose SVRPG which is
the first method that employs the variance-reduced type
gradient estimator to directly optimize the non-oblivious
loss (3). Concretely, denoting the importance weight

w(θt, θ̃; τ) :=
p(τ |πθ̃)
p(τ |πθt)

=

H∏
h=1

πθ̃(ah|sh)

πθt(ah|sh)
, (30)

SVRPG constructs the gradient estimator by

gtvr := g̃ + g(θt;M)− 1

|M|
∑
τ∈M

w(θt, θ̃; τ)g(θ̃; {τ}),

where θ̃ and g̃ are the reference point and its corresponding
unbiased estimator respectively, andM is a mini-batch of
trajectories sampled from p(·|πθt). Note that gtvr shares the
same structure as htvr (see Eqn. (8)) except the correction
term w(θt, θ̃; τ), which ensures the unbiasedness of gtvr
under the non-oblivious setting. However, by scrutinizing
the convergence result, O( 1

ε4 ) random trajectories are still
required to achieve an ε-FOSP (4), which is the same as the
original policy-gradient type method. In the appendix, we
briefly discuss why the trajectory complexity is not reduced.

As we presented in the previous section, HAPG directly esti-
mate their difference by sampling from the Hessian integral
instead of estimating the policy gradient at two point (θt

and θ̃) separately, which is the key to our success.

6. Experiments
In this section, we evaluate the performance of the proposed
HAPG method on several standard reinforcement learning
tasks. The REINFORCE method from (Sutton et al., 2000)
is used as baseline for comparison.

The performance of HAPG and REINFORCE are tested on
six continuous reinforcement learning tasks, namely Cart-
Pole, Swimmer, 2dWalker, Reacher, Humanoid, and Hu-
manoidStandup, where the latter five are commonly used
Mujoco environments (Todorov et al., 2012). We use the
environment implementations in the garage library (Duan

et al., 2016) on which our implementation is based as well.
For all the tasks, we use deep Gaussian policy with the
mean and variance parameterized by a fully-connected neu-
ral network. The number of network layers and hidden units,
and the nonlinear activation functions follows (Papini et al.,
2018) with the details given in the appendix2. For fair com-
parison, in each run we generate a common random policy
for HAPG and REINFORCE as initialization. To limit the
influence of randomness, each task is repeated 10 times and
the performance is evaluated by averaging the minibatch
episode return with 90% bootstrap confidence interval.

In terms of the sample complexity measurement, we use the
number of system probes, i.e. the number of state transi-
tions after taking an action according to the policy, instead
of the number of trajectories. Such quantity serves a better
criterion because different trajectories might have varying
number of system probes: In many tasks, the environment
returns FAILURE flag (usually at the beginning of the train-
ing procedure) and the current episode terminates before
reaching the maximum horizon.

In our experiments, we find the hyper-parameters such as
the minibatch size (|M0| and |M|), the epoch length p,
and step-size have a large impact on the efficiency of the
algorithms. The details of the parameter choices are also
given in the appendix.

While we set the function Ψh(τ) to be the discounted cumu-
lative reward

∑H
i=h γ

ir(si, ai), we can incorporate more
sophisticated choices from the literature to obtain better
performance. For simplicity, in our experiment, we adopt
the standard linear baseline from the garage library which
predicts a state-dependent baseline function b : S → R and
then we use the GAE(γ, 1) type advantage estimation:

Ψh(τ) =

H∑
i=h

γir(si, ai)− b(sh), (31)

where b is updated with the previous empirical trajectories.
Note that under such choice of Ψh(τ) the gradient estimator
(6) remains unbiased and all of our theoretical guarantee
carries over (with different parameters Gg and GH ). In
practice, replacing the baseline with a critic from the actor-
critic type method may further improve the performance of
HAPG and will be our future work. We emphasize that both
methods use the same baseline in our implementation.

We present the results of the comparison are plotted in Fig-
ure 1. In the CartPole experiment, we see that HAPG has
only a little advantage over REINFORCE. This is because
the CartPole task is relatively easy. From hyper-parameter

2We observe that the SVRPG method from (Papini et al., 2018)
is extremely sensitive to the initialization policy. When initialized
by a random policy, SVRPG usually diverges and hence is excluded
in our comparison.
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Figure 1. Comparison of the proposed HAPG method with the REINFORCE method on six tasks

setting of REINFORCE after grid searching, we see that a
very small mini-batch of samples suffice to ensure the con-
vergence of REINFORCE even when a relatively large step
size is used. Under such circumstances, our Hessian-aided
technique does not have the biggest advantage.
The advantage of HAPG over REINFORCE gets more clear
when the task gets harder. Specifically, in the Mujoco tasks,
HAPG converges to the parameter region with a high av-
erage reward using significantly less system probes than
REINFORCE. Such observation can be explained by grid
searching over hyper-parameter space: In these three tasks,
REINFORCE requires a larger mini-batch size and its step-
size has to be properly controlled to obtain the best perfor-
mance. In contrast, with the exterior mini-batch size |M0|
set similar to REINFORCE’s choice, the interior mini-batch
size |M| can be chosen to be much smaller without com-
promising the convergence of HAPG. This is because when
the step-size is small, our Hessian-aided scheme effectively
reduce the variance with small number of extra trajectories.

Conclusion and Future Work

In this paper, we considered the problem of policy-based,
model-free reinforcement learning. By introducing novel
variance-reduced gradient estimators, we proposed a Hes-
sian Aided Policy Gradient (HAPG) method which provides
the first provable sample complexity improvement over the
REINFORCE algorithm. HAPG incorporates the curvature
information from the policy Hessian without compromis-
ing the O(d) per-iteration computation cost. Moreover, it
can readily employ the state-of-the-art techniques for more
sophisticated advantage function estimation which would
result in superior performance. While we directly use the
estimated gradient as the descent direction, methods like
nature gradient (Kakade, 2002) or TRPO (Schulman et al.,
2015) usually have better performance as they correct the
gradients using an inverse-Fisher information matrix. A pos-
sible future direction is to combine HAPG with the nature
gradient updates.
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7. Appendix
7.1. Why SVRPG does not work

While this importance sampling technique removes the bias,
the variance of estimator gtvr cannot be properly bounded
since

EM‖gt −∇J(θt)‖2

≤ 1

|M|
Eτ‖g(θt; {τ})− w(θt, θ̃; τ)g(θt; {τ})‖2

=
1

|M|

∫
τ

R(τ)

ptτ
‖ptτ log∇ptτ − p̃τ log∇p̃τ‖2dτ,

where ptτ := p(τ ;πθt), p̃τ := p(τ ;πθ̃), and the term 1
ptτ

in
the integral can be infinity large. The lack of proper variance
control deprives SVRPG of its high sample-efficiency: by
scrutinizing the convergence result, O( 1

ε4 ) random trajecto-
ries are still required to achieve an ε-FOSP (4), which is the
same as the original policy-gradient type method.

7.2. Derivation of Policy Gradient and Policy Hessian

Let τ = {s1, a1, . . . , sH , aH} be a trajectory sampled ac-
cording to p(τ ;πθ) and define τh := {s1, a1, . . . , sh, ah}
for any h ∈ [H]. For simplicity of notation we will denote

`τhθ := log p(τh;πθ), R̄τhγ := γhR̄(ah|sh)

in the following discussion. From (3) and (2), we have

J(θ) =

H∑
h=1

Eτ∼p(τ ;πθ)[R̄τhγ ] =

H∑
h=1

Eτh∼p(τh;πθ)[R̄τhγ ],

where we replace τ by τh since R̄τhγ is independent of the
randomness after ah. To compute the policy gradient

∇J(θ) =

H∑
h=1

∫
τh

R̄τhγ ∇p(τh;πθ)dτh

=

H∑
h=1

∫
τh

R̄τhγ p(τh;πθ)∇`τhθ dτh,

where we use the log-trick in the second equation

∇p(τh;πθ) = p(τh;πθ)∇ log p(τh;πθ) = p(τh;πθ)∇`τhθ .
The policy gradient can be further simplified:

∇J(θ) =

H∑
h=1

∫
τh

R̄τhγ p(τh;πθ)∇`τhθ dτh

=

H∑
h=1

Eτh∼p(τh;πθ)[R̄τhγ
h∑
i=1

∇ log πθ(ai|si)]

=

H∑
h=1

h∑
i=1

Eτh∼p(τh;πθ)[R̄τhγ ∇ log πθ(ai|si)]

=

H∑
h=1

h∑
i=1

Eτ∼p(τ ;πθ)[R̄τhγ ∇ log πθ(ai|si)],

where in the last equality we use that R̄τhγ ∇ log πθ(ai|si)
with i ≤ h is independent of the randomness after ah. Ex-
change the summation over i and h to obtain

∇J(θ) =

H∑
i=1

H∑
h=i

Eτ∼p(τ ;πθ)[R̄τhγ ∇ log πθ(ai|si)]

=

H∑
i=1

Eτ∼p(τ ;πθ)[

(
H∑
h=i

R̄τhγ

)
∇ log πθ(ai|si)]

=

H∑
i=1

Eτ∼p(τ ;πθ)[Ψi(τ)∇ log πθ(ai|si)],

where Ψi :=
∑H
h=i γ

hR̄(ah|sh) is the discounted reward
after action ai given state si. Let

Φ(θ; τ) =

H∑
i=1

Ψi(τ) log p(ai|si;πθ).

Using such notation, we have

∇J(θ) = Eτ∼p(τ ;πθ)∇Φ(θ; τ)

=

∫
τ

p(τ ;πθ)∇Φ(θ; τ)dτ.

The second order derivative can be computed by

∇2J(θ)

=

∫
τ

∇Φ(θ; τ)∇p(τ ;πθ)
>

+ p(τ ;πθ)∇2Φ(θ; τ)dτ

=

∫
τ

p(τ ;πθ)
[
∇Φ(θ; τ)∇ log p(τ ;πθ)

>
+∇2Φ(θ; τ)

]
dτ

=Eτ∼p(τ ;πθ)

[
∇Φ(θ; τ)∇ log p(τ ;πθ)

>
+∇2Φ(θ; τ)

]
.

7.3. Detail Hyper-parameter Settings

We present the Hyper-parameter settings in Table 1.
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Table 1. Hyper-parameter Settings
CartPole Swimmer Reacher Walker2d Humanoid HumanoidStandup

Horizon 100 500 500 500 500 500
Baseline No Linear Linear Linear Linear Linear
Number of timesteps 5 · 105 106 106 3 · 106 3 · 106 3 · 106

NN sizes 8 32x32 32x32 64x64 100x50x25 100x50x25
REINFORCE learning rate 0.05 0.001 0.01 0.001 0.005 0.005
REINFORCE batchsize 5000 5000 5000 5000 5000 5000
HAPG learning rate 0.05 0.01 0.05 0.01 0.01 0.01
HAPG |M0| 1000 10000 5000 5000 5000 5000
HAPG |M| 100 500 500 500 500 500
HAPG p 10 20 10 10 10 10


