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ABSTRACT
GROK-FPGA: GENERATING REAL ON-CHIP KNOWLEDGE FOR FPGA FINE-GRAIN

DELAYS USING TIMING EXTRACTION

Benjamin Gojman

André DeHon

Circuit variation is one of the biggest problems to overcome if Moore’s Law is to continue.

It is no longer possible to maintain an abstraction of identical devices without huge yield losses,

performance penalties, and energy costs. Current techniques such as margining and grade binning

are used to deal with this problem. However, they tend to be conservative, offering limited

solutions that will not scale as variation increases. Conventional circuits use limited tests and

statistical models to determine the margining and binning required to counteract variation. If the

limited tests fail, the whole chip is discarded. On the other hand, reconfigurable circuits, such as

FPGAs, can use more fine-grained, aggressive techniques that carefully choose which resources to

use in order to mitigate variation. Knowing which resources to use and avoid, however, requires

measurement of underlying variation.

We present Timing Extraction, a methodology that allows measurement of process variation

without expensive testers nor highly invasive techniques, rather, relying only on resources already

available on conventional FPGAs. It takes advantage of the fact that we can measure the delay of

logic paths between any two registers. Measuring enough paths, provides the information necessary

to decompose the delay of each path into individual components—essentially, forming a system

of linear equations. Determining which paths to measure requires simple graph transformation

algorithms applied to a representation of the FPGA circuit. Ultimately, this process decomposes

the FPGA into individual components and identifies which paths to measure for computing the

delay of individual components.

We apply Timing Extraction to 18 commercially available Altera Cyclone III (65 nm) FPGAs.

We measure 22 × 28 logic clusters and the interconnect within and between cluster. Timing Ex-

traction decomposes this region into 1,356,182 components, classified into 10 categories, requiring

2,736,556 path measurements. With an accuracy of ±3.2 ps, our measurements reveal regional

variation on the order of 50 ps, systematic variation from 30 ps to 70 ps, and random variation in

the clusters with σ = 15 ps and in the interconnect with σ = 62 ps.
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Glossary

Timing Extraction

Child DUK (C-DUK)

The difference of two short LC Node path tails. Extends and modifies paths represented

with DUKs

Current Tail

The subtrahend of a C-DUK. Representing the tail a path must match for this C-DUK to

be applicable

Desired Tail

The minuend of a C-DUK. Representing the path tail that will remain after the C-DUK is

used

Discrete Unit of Knowledge (DUK)

Small linear combination of LC Nodes

End Node

An LC Node whose last physical resources is a register. All other physical resources are

combinational

LC Node graph

A graph representing some physical resource graph using LC Nodes

Logical Component Node (LC Node)

Group of connected physical resources that cannot be independently measured. Represents

short path from a source register node, or node with fan-in greater than one, to a sink

register node, or node with fan-in greater than one

Marked Path

An annotated path from an LC Node to its closest End Node
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Marked Sibling

An LC Node whose incoming edges are all annotated or marked

Mid Node

An LC Node whose physical resources are all combinational

Mother DUK (M-DUK)

A shortest path from a Start Node to an End Node. Forms the beginning of any path

represented with DUKs

Physical Resource Graph

Graph of the physical resources of a circuit

Sibling Set

A set of LC Nodes sharing the same set of LC Node parents in an LC Node graph

Start Node

An LC Node whose first physical resources is a register. All other physical resources are

combinational

Timing Extraction on Commercial FPGAs

4-LUT

4-input lookup table. Capable of implementing any 4-input boolean function

C16 bundle

In Cyclone III, group of directed vertical routing wires spanning 16 LABs

C4 bundle

In Cyclone III, group of 24 directed vertical routing wires spanning 4 LABs

Embedded Column Neighbor C-DUK

Cyclone III C-DUK interchanging the last W4 of a path with another W4. Applicable only

to paths ending at a LAB next to an embedded column

FFD

Input of a register

FFQ

Output of a register
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General Interconnect C-DUK

Cyclone III C-DUK extending the end of a path through a W4 wire

General Interconnect Sink Select C-DUK

Cyclone III C-DUK selecting LAB sink of a W4 wire

Intra-LAB C-DUK

Cyclone III C-DUK extending the end of a path to another LE within the same LAB as the

end of the original path

Intra-LAB M-DUK
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LAB Input Track (LIT)
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LAB Local Track (LLT)
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LAB Output Buffers (LOBs)
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LAB-to-General Interconnect C-DUK

Cyclone III C-DUK changing the end of a path from a horizontally adjacent LAB to a W4

wire

LAB-to-LAB C-DUK

Cyclone III C-DUK extending the end of a path to an LE in a horizontally adjacent LAB

LAB-to-LAB M-DUK

Cyclone III M-DUK representing a path from an LE in one LAB to an LE in a horizontally

adjacent LAB

LIT Crosspoint Swap C-DUK

Cyclone III C-DUK swapping LIT crosspoint used at the end of a path

LLT Crosspoint Swap C-DUK

Cyclone III C-DUK swapping LLT crosspoint used at the end of a path

Logic Array Block (LAB)

The logic block of the Altera Cyclone III FPGA
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Logic Element (LE)

A small compute block, for the Cyclone III consisting of a 4-LUT and optional register

R24 bundle

In Cyclone III, group of directed horizontal routing wires spanning 24 LABs

R4 bundle

In Cyclone III, group of 34 directed horizontal routing wires spanning 4 LABs

Subspecies Difference (SD)

A minor morphological difference within a DUK type. For example, the LUT input SD

differentiates which LUT input a DUK uses

W4

group of directed routing wires spanning 4 LABs, applicable in vertical or horizontal direction

Variation Analysis

Random Regional Variation Regrand(x, y)

Regional variation unique to one FPGA

Random Variation Rand

The variation that cannot be explained by any correlated variation, quantifying the random

variation in a DUK

Regional Variation Reg(x, y)

A regional correlation function that explains how the DUK delay changes as a function of

its physical position (x, y)

Systematic Regional Variation Regsys(x, y)

Regional variation that is common to all FPGAs

Systematic Variation Sys(sd1, . . . , sdn)

A systematic correlation function composed of the product of a set of functions that correlate

delay changes to subspecies differences

τ0

A base delay for a given DUK type

τFPGA

The delay bias of an FPGA, relative to τ0
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Chapter 1

Introduction

1.1 Thesis

The resource graph of an FPGA is algorithmically decomposed into discrete units. Using only

resources within the FPGA, the delay of each of these units is computed by measuring and

linearly combining the delay of two or three paths within the FPGA. These unit delays reveal

the magnitude and composition of process variation within the FPGA, and provide the necessary

knowledge to perform component-specific mappings to mitigate adverse process variation effects.

1.2 Motivation

Circuit process variation is quickly becoming one of the biggest problems to overcome if Moore’s

Law is to continue. It is no longer possible to maintain an abstraction of identical devices without

incurring huge yield losses, performance penalties, and high energy costs. Current techniques

such as margining, where the circuits are rated to operate slow enough to capture the worst-case

transistor on a billion-transistor chip operating in worst-case conditions, and grade binning, which

classifies circuits into a limited set of performance classes, are used to deal with this problem.

However, they tend to be too conservative, only offering a limited solution that will not scale as

variation increases. Conventional circuits use statistical models and a limited number of expensive

tests to determine the margining and binning parameters needed to counteract variation. If

the limited tests give a negative prognosis, the whole chip is discarded. On the other hand,

reconfigurable circuits, such as FPGAs, can use more fine-grained and aggressive techniques that

carefully choose which resources to use in order to mitigate the adverse variation effects. These

require measurement of the underlying variation, which many considered too expensive to be

practical. However, we present Timing Extraction, a methodology that allows us to measure the

1



process variation due to manufacturing, without the need for expensive testers nor highly invasive

techniques, rather, relying only on resources already available on conventional FPGAs.

Modern FPGAs have billions of transistors, each with a unique set of characteristics. Some

exhibit regional variation such as differences in oxide thickness, while other effects, such as dopant

density, present themselves as stochastic variation. Beyond manufacturing process variation, cir-

cuits suffer from environmental and operational variation, such as self-heating, and aging effects.

In order to prevent these sources of variation from leading to a computational fault, manufac-

turers currently rate the performance of their circuits well below what the wires and transistors

composing them are capable of delivering. In this way, they margin against all variation sources.

Timing Extraction allows us to measure the process variation and, with that information, reclaim

the process margins added by vendors. Reducing margins leads to FPGAs with improved per-

formance and energy efficiency. Furthermore, as more and more, smaller and smaller devices are

integrated into one circuit, it is essential to fully understand the variation in the circuit if we are

to successfully utilize it and extract its full capacity, otherwise we run the future risk of variation

overwhelming circuits to the point of complete yield loss.

1.3 Timing Extraction

It is not possible to directly measure the characteristics of every transistor or wire in an FPGA.

Nevertheless, we introduce a novel technique that discovers the individual characteristics. Utilizing

only the logic available in the FPGA, we perform a careful set of tests and use the results from

those tests to discover the variation of each component.

In an FPGA, we can measure the delay of a path without the need of any extra testers by

surrounding it with two registers which are already part of the reconfigurable fabric. For conve-

nience we will label them the launch and capture registers. Starting with a low clock frequency,

we send a signal from the launch register, through the path, to the capture register. If, in the

alloted clock time we see the signal at the capture register, then we know the path is faster than

the current clock frequency. If the signal does not appear on the capture register in time, then the

path is slower. By adjusting the frequency of the clock and repeating this process it is possible to

precisely measure the path delay [93, 58].

The path is composed of multiple components, our goal is to discover the variation of each

component. By configuring the correct set of overlapping paths and measuring, we can setup a

system of equations that, when solved, gives the individual delay of each component in the paths

[30]. A simple example will give better intuition as to what the technique actually accomplishes.
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Consider we measure three paths. Path 1 composed of component A and B. Path 2, B and C.

Finally, Path 3, C and A. Suppose the delays of the paths are 5ps, 4ps and 3ps respectively. That

leads to the system of equations below:

A+B = 5ps Path 1

B + C = 4ps Path 2

C +A = 3ps Path 3

Even though we did not measure the delays directly, with little work we can solve for the delay of

A, B, and C to be 2ps, 3ps and 1ps respectively.

Timing Extraction does exactly this but at a level that allows us to characterize a full FPGA.

Timing Extraction takes as input a directed graph representation of the resources in an FPGA.

After a series of graph transformations, it decomposes the FPGA into components formed by a

small number of resources. Based on this decomposition, it extracts and measures the delay of a

set of paths, and uses the path delays to compute the delay of each component.

Once we have the component delays, we can classify the type of variation present into regional

variation, where variation is correlated to a physical region of the FPGA, systematic variation,

where unique properties of the component determine the variation, such as the direction of a

wire, and random variation brought about by the stochastic nature of some of the underlying

processes used during fabrication. Moreover, we can analyze and separate variation common

across FPGAs from variation unique to a particular FPGA. Quantifying how much variation

there is and what type it is allows FPGA CAD tools to produce improved logic mapping results,

including a component-specific mapping tailored to the FPGA being programmed [89, 33, 63].

Furthermore, this knowledge may be a requirement if we are to successfully use future technologies

[28]. Finally, understanding variation at this detailed level, over such a vast number of devices

can prove invaluable to circuit design in general.

1.4 Overview

The remainder of this dissertation is organized as follows. Chapter 2 presents the background

necessary for the rest of this work. It begins by giving a brief review of reconfigurable logic and

FPGAs in particular. Then, it sets up the relationship between physical properties, such as a

transistor’s length, and the electrical characteristics of wires and transistors. With this base, it

relates the physical effects variation has on devices to the electrical changes it induces. Finally it
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enters into a short discussion on current techniques used to manage variation.

Chapter 3, details how Timing Extraction works. It begins by developing the graph trans-

formation algorithms necessary to decompose the resource graph of an FPGA into individual

components. It then explains how to extract the set of paths necessary to compute the delay of

each component. Using the delay of the individual components, it constructs a new circuit graph

that routing algorithms can use to find shortest paths unique to that FPGA. Finally, it calculates

the expected measurement precision.

Applying Timing Extraction to an Altera Cyclone III FPGA is the subject of Chapter 4. We

first present the architecture of this FPGAs. We ground the decomposition algorithms from the

previous chapter by examining the result of applying them to this architecture. We then consider

the extra CAD steps necessary to actually measure the paths determined by the algorithm. After

explaining our experimental setup, we present the delays for the different types of measured com-

ponents. The chapter then looks at a number of results enabled by knowledge of these component

delays. It concludes by quantifying how long the measurement takes, and showing that we can

consistently measure the same component delay multiple times.

In Chapter 5 we present the techniques to separate the raw process variation into correlated

and random variation. Throughout the chapter, we apply these techniques to the results obtained

in Chapter 4, quantifying the magnitude and types of variation in the Cyclone III FPGAs.

Timing Extraction provides a complete approach to decomposing and measuring the process

variation of an FPGA; however, there is work that can improve its performance. Furthermore,

the decomposition in Chapter 5 asumes a simplifed timing model, a more precise model would

better quantify the different variation types. Chapter 6 presents future directions that address

these issues. Finally, Chapter 7 reviews the main points of this work and concludes.
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Chapter 2

Background

Reconfigurable circuits are more amenable than other circuits to reclaiming the performance and

efficiency lost to process margins. The reason for this is that reconfigurable circuits have the ca-

pability to carefully choose which transistors and wires to use post-fabrication, once their charac-

teristics have been measured. The CAD tools can then carefully select these resources, optimizing

the circuit being mapped so that it operates well beyond the conservative operating parameters

set by the manufacturer, while still maintaining logical correctness.

Before exploring how margins are reduced and how reconfigurable circuits meet these con-

straints despite the myriad sources of variations, we must first have a firm understanding of what

modern reconfigurable circuits, such as field programmable gate arrays (FPGAs), are, what their

structure is, and how they are utilized. Furthermore, a deep understanding of the different sources

of variation will clarify future discussions. Finally, a presentation of how variation is currently

dealt with, through margining and binning, gives the required context to frame the techniques

proposed later in this thesis.

In this chapter, we present the background that will form the foundations for the rest of this

work. Readers familiar with modern FPGAs may move directly to Section 2.2.

2.1 Reconfigurable Circuits

Reconfigurable circuits provide the efficiency of hardware with the flexibility of software. They

consist of small programmable elements that perform simple logic computations, embedded in a

general routing structure. The post-fabrication flexibility that reconfigurable circuits provide is

the key feature that makes them an ideal choice for dealing with the extreme variation expected in

coming technology nodes. We focus on FPGAs, as they represent the most advanced incarnation

of a reconfigurable circuit to date. A simplified model of an FPGA helps present the key aspects of
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Figure 2.1: Diagram of a simple FPGA showing the logic block (LB), switch box (SBox), connec-
tion box (CBox), and external IO. Small circles in the SBox and CBox represent programmable
switches.

this technology (Section 2.1.1). With the basics established, Section 2.1.2 introduces the advances

applied to modern FPGAs.

2.1.1 Ideal Model

The simplest FPGA model that encompasses many of the intricacies of the technology is shown

in Figure 2.1. Along with the logic blocks(LB) familiar to all reconfigurable circuits, this FPGA

introduces a connection block and a switch block. The connection block or CBox connects the LB

to the nearest routing resources, allowing it to pick its inputs and output from an arbitrary routing

track on the interconnect network. The SBox, as the switch blocks are commonly known, appears

at the intersection of horizontal and vertical routing tracks. It consist of a set of programmable

connections that allow a signal coming in to the SBox to continue on another track in one of three

possible direction, left, forward or right. Finally, the LB is composed of a programmable 4 to 6

input gate that can be configured to compute any 4 to 6 input logic function. The output can

then, optionally be registered using a flipflop before connecting to the interconnect.

Practically, logic blocks are implemented by small memories known as lookup tables (LUTs).

The input to the LUT acts as an address to a memory cell where the result is stored. Moreover,

CBoxes and SBoxes are not fully populated, i.e., not every connection between CBox and LB is
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available, nor can a signal rout from any track in an SBox to any other routing track. This depop-

ulation of switches is beneficial because it reduces area, while still allowing for rich interconnect

that can accommodate most any routing requirement [61, 73, 50].

Typically, SRAM cells are used to store the programming of each switch. For a particular

computation implemented on an FPGA, the state of these SRAM cells along with the configuration

of the LUTs form what is called a bitstream. The bitstream is the end result of the FPGA CAD

flow, a process that starts with a description of the computation, either in some high level language

such as C or Java [16], or some high level hardware description language such as VHDL or Verilog

[74]. Between the high level description and the bitstream the circuit description goes through a

set of transformations, including a technology mapping that modifies the logic to fit the target

device, placement, which distributes the logic over individual LBs, and routing, which figures out

how to use the interconnect to connect the LBs as required.

2.1.2 Modern FPGAs

Modern FPGAs have evolved from the simple model described above to include many advances

that improve performance, reduce energy and allow the FPGA to better capture the desired

computation.

The logic block has grown in complexity from a simple LUT-flipflop pair to what Altera calls

a Logic Array Block (LAB) [10] and Xilinx, a Complex Logic Block (CLB) [96]. Essentially,

they are groups of LUTs and registers with a small amount of local interconnect that allows for

more complex and localized computation. These structures also include dedicated carry chains to

implement adders and other logic that fits that compute pattern. Moreover, modern FPGAs are

no longer homogeneous arrays of LBs, rather they include a majority of LBs with a handful of

specialized or embedded blocks. These include multipliers, memories and even small processors

[36].

The interconnect has also matured. Instead of length one connections between SBoxes, FPGAs

now include segments of different lengths. What’s more, the interconnect is hierarchical, with

shorter segments connecting directly to LBs and longer segments connecting only to shorter seg-

ments. This structure allows signals to more efficiently traverse long distances. LBs can also

communicate directly with neighboring LBs via dedicated direct connections between LBs, giving

even more flexibility when routing signals. Finally, FPGAs have moved from bidirectional wires to

direct drive, where pairs of wires have a dedicated routing direction, one routing in one direction,

and the other in the opposite. This advancement simplifies the interconnect switches and has

the benefit of reducing both area and delay [52]. In addition, modern FPGAs contain a number
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Figure 2.2: Diagram of a MOS transistor highlighting the main physical parameters, W , L, and
tox.

of phase locked loops, or PLLs, that enable programmable clock frequencies. This, along with a

complex series of clock distribution networks provide Timing Extraction with the necessary tools

to measure path delays in FPGAs.

2.2 Transistor Properties

The MOS transistor is the workhorse of integrated circuits. Its miniaturization has enabled in-

novations and industries that touch almost every aspect of our lives. However, the ability to

integrate billions of transistors in one chip is not without its challenges. As we continue to push

down the dimensions of these devices, effects that previously were negligible become dominant.

With so many small transistors in the same circuit, variations between them are inevitable.

Variations lead to changes in the performance and efficiency of our circuits. In this section we

explore the physics that explain the behavior of a transistor. Figure 2.2 shows a simple diagram of

a transistor to help ground some of its parameters referenced in this section. This analysis allows

Section 2.3 to easily connect physical variations to circuit behavior.

2.2.1 Delay and Energy

Understanding how the delay and energy dissipation of a transistor relate to physical properties

such as transistor channel length, gives context as to why physical variations directly lead to

changes in circuit performance and efficiency. To start this discussion, we formally look at the

equations that govern delay and energy per operation in a transistor.
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To estimate the propagation delay through a transistor, to a first order, we can model the

channel between the source and drain as a resistance, R, and consider how long it takes to

charge or discharge the capacitive load seen by the transistor, Cl, including wires and downstream

transistors, through the channel. The delay is simply

τpd = Cl ·R

From Ohms law we know that R can be modeled as the voltage difference between the source and

drain terminals, Vds, over the current flowing through the transistor channel, Ids. Therefore, the

propagation delay of a transistor, τpd is given by

τpd = Cl ·
Vds
Ids

(2.1)

In conventional CMOS, Vds is at most equal to the supply voltage, Vdd, but varies depending

on how the transistor is used. Ids however, varies depending on the voltages difference applied

between the gate and source terminals. We will return to how Ids behaves in the next section.

To talk about the energy per operation of a transistor it is helpful to consider the transistor as

being part of a CMOS gate with a pull-up network formed by p-type transistors and a pull-down

network implemented in n-type transistors. In this frame of reference, a transistor will either be

“on”, allowing charge to flow through its channel or “off”, trying to prevent charge from flowing.

Due to a number of effects [75, 66], a transistor that is supposed to be off allows a small amount

of current to flow. We refer to this as Ids,sub and will discuss it later. Assuming that the cycle

time, determined by the frequency at which the circuit is running, is τcycle, the energy leaked by

an off transistor is expressed as

Eleak = Ids,sub ·Vds · τcycle (2.2)

To contrast, a transistor that is on will allow enough current through to charge (p-type tran-

sistor) or discharge (n-type transistor) the capacitive load Cl. The energy consumed by charging

or discharging Cl through the transistor is

Eswitch = Cl · (Vds)2 (2.3)

The total energy used by a circuit in a cycle, Etotal, is then given by the sum of the Eswitch of

all the transistors that are on, plus the sum of the Eleak for those that are not.
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Etotal =
∑
i∈on

Eswitch(i) +
∑
j∈off

Eleak(j) (2.4)

Before delving deeper into the device physics of the transistor, we can begin to see how variation

will affect operation. From Equations 2.1 through 2.3 it should be apparent that a change in Vds,

the voltage between the drain and source terminals, will lead to a proportional change in the delay

and energy utilization of a transistor. This voltage difference is supplied by the aptly named supply

voltage, Vdd. In modern integrated circuits, Vdd is distributed by a complex network of wires that

must reach every gate. Fluctuations of 10% in this distribution network are not uncommon [17].

2.2.2 Current-Voltage Characteristics

Both the delay, τpd, and leakage, Eleak, of a transistor depend on the current through the transis-

tor Ids. We can model a transistor as a voltage controlled current source. The amount of current

flowing through a transistor depends on the voltage difference between the gate and the source.

Depending on the state of this relationship, the transistor will be operating either in saturation

mode - when “on”, or sub-threshold mode - when “off”. Equations 2.5 and 2.6 show the relation-

ship between the physical properties of a transistor and the current flowing through it for the two

operating modes [70, 35].

Ids,sat = WvsatCox

(
Vgs − Vth −

Vd,sat
2

)
(2.5)

Ids,sub =
W

L
µCox(n− 1) · vT 2 · e

Vgs − Vth
n · vT

1− e
−Vds
vT

 (2.6)

W and L refer to the physical width and length of the transistor. Cox is the unit capacitance

of the gate oxide, and is related to its thickness tox and type of material εox (Figure 2.2). µ and

vsat relate to the charge mobility. vT is the thermal voltage, a function of temperature. Finally,

n is a technology specific constant.

Vgs represents the voltage difference between the gate and source, while the voltage difference

between the source and drain terminals is Vds. Vd,sat, is the velocity saturation, dictating a limit

on how much current flows between drain and source. Finally, Vth indicates the threshold voltage

of the transistor.

Together, these equations relate the physical and electrical properties of a transistor. The

following section will detail the specific ways in which almost every one of the parameters in these

equations varies. Reading the next section it is essential to keep in mind that some of these
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parameters are more important then others. In particular, observe the exponential dependence of

Ids,sub in Equation 2.6 on the voltages, Vgs, Vds and of utmost importance, due to the fact that

almost every physical effect has an affect on it, is the threshold voltage of the transistor, Vth. This

relationship indicates that even a small change in one of these parameters, will lead to a large

change in subthreshold current, which will directly impact the energy and delay of the transistors

(Equations 2.1 and 2.2), and with that, the performance and efficiency of the whole circuit.

2.3 Variation Sources

Transistors and wires in a modern CMOS integrated process will be subject to many types of

physical variation. Broadly, we can separate them into three categories: Process or manufacturing

variation, environmental and operational variation, and aging effects. These variations manifest as

physical deviations from design, such as a change in channel width, or electromagnetic fluctuations

as seen in crosstalk.

Such variation directly alter the delay and energy of a transistor or wire from the nominal design

values as defined by the equations in Section 2.2. These changes, in turn, lead to a degradation

in performance and efficiency of the chip, and eventually incite yield loss due to variation induced

failures. Though the effects of variation may lead to similar degradations, the process by which

each variation type manifests and leads to a problem is different. As such, it is beneficial to

separate variation into categories to better design solutions that can manage the changes that

variation inflicts on our devices. Since Timing Extraction focuses on process variation, this is

the only type of variation we examine here. For readers interested, Appendix A explains how

environmental, operational and aging effects affect the circuit.

2.3.1 Process Variation

As feature sizes continue to shrink, more and smaller transistors fit on one chip. The manufac-

turing process required to achieve this device density is complicated and requires many steps.

Although great effort is expended to ensure consistency and precision in these steps, deviations

from the target result inevitable occur. Manufacturing variations lead to variations in the physical

properties of a device. For example, transistor geometries will vary from the design parameters,

and dopant densities will fluctuate from transistor to transistor. These physical differences will

lead to electrical changes in the current through a transistor, and ultimate affect the delay and

energy requirements of the device.

To see how manufacturing variations impact our designs, we first briefly review the manufac-
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turing process itself. From there we can link process variation to physical changes in the transistor,

and finally to electrical properties.

2.3.1.1 Manufacturing Process

The manufacturing of an integrated circuit begins with a silicon wafer over which a number of

circuits will eventually be fabricated. Each full step of the process deposits and patterns a layer

of material on top of the silicon wafer. The layer closest to the wafer will have the active electrical

devices such as the transistors. Subsequent layers are generally used for metal interconnect.

Advanced processes commonly have 11 metal layers [83, 38], yet, for the most part, the transistor

layer and each metal layer undergo the same general set of steps.

Each layer begins with a photolithographic process that deposits a masking pattern. The

pattern allows some regions to be exposed through etching. Once the desired regions have been

revealed, a processing step appropriate for the type of layer is applied. Finally, isolating material,

deposited to prevent unwanted interactions between layers, is polished to prepare the wafer for

the next layer, at which point, the process repeats.

Photolithography is a process akin to developing film photographs. Like a photograph, where

a negative allows a specific pattern of light to shine on a chemically coated light-sensitive paper,

in photolithography, a mask allows a specific pattern of ultraviolet light to shine on a layer of

photoresist applied to the surface of the wafer. Once developed, the photoresist layer will have

the shape described by the mask.

For well over a decade, the wavelength of light used for this process has remained fixed at 193nm

[27]. Nevertheless, minimum feature size has steadily progressed towards smaller dimensions, well

below 193nm. In fact, circuits with feature sizes in the range between 22 nm and 28 nm are

regularly manufactured, and smaller features, on the order of 14 nm, are now in production. In

order to produce sub-wavelength lithography, a series of shrinking and focusing lenses, along with

a complex set of resolution enhancement techniques (RET) are used. These include phase shift

masking (PSM) [77] which takes advantage of wave properties of light to create precise interactions

to increase the resolution, optical proximity correction (OPC) which modifies the shape of the mask

to compensate for the reduced resolution, and multiple exposure systems [25] which uses two or

more masks to achieve the final desired result, reducing the resolution each individual mask must

produce.

After the photoresist is exposed to ultraviolet energy for a controlled amount of time, it is

developed and a pattern similar to the mask remains on top of the wafer. This pattern protects
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the covered regions from the next step, etching.

Etching removes unwanted material not protected by the photoresist developed during pho-

tolithography. The etch rate controls how material is removed and is dependent on the etching

processes used. This can be chemically based, where a reaction allows material to be removed, or

momentum based, where physical bombardment of the surface aims to remove atoms. The etch

process may remove material isotropically, in all directions, or anisotropically, in one direction

only. Together, etching and photolithography transfer the patterns that will define the circuit and

prepare it for processing.

Processing creates the transistors and wires of the circuit and varies depending on which is

being formed. Transistor formation requires many masking and etching steps to define each of

the features. A simplified description of the processing steps follow. First, a p-well or n-well is

defined, depending on the type of transistor, by implanting corresponding dopant atoms in the

exposed wafer region. A second processing step deposits oxide over the well to create isolation

between it and the gate. Subsequent processing steps define the polysilicon for the gate terminal

and implant dopant atoms to create the source and drain regions. Finally, an isolating layer is

deposited over the whole transistor to prevent it from interacting with the layers above.

Interconnect metal wires connecting the transistors together are formed in higher circuit layers.

Aluminum had long been the metal of choice for wires, however, due to the higher resistance

expected in the small features of modern processes, copper, with its lower resistivity, has displaced

aluminum as the preferred interconnect material. The process to deposit copper wires is known

as dual-damascene. Initially, a layer of silicon is deposited and vias connecting to the lower layer,

along with the wires for the current layer are etched on the deposited silicon. To prevent diffusion

into the surrounding silicon, a thin barrier layer of some other metal is then deposited followed by

a thin layer of copper which acts as a seed for electroplating and filling the trench with copper.

Once a layer of transistors or wires are processed, polishing is required to prepare for subsequent

layers.

Polishing is a chemical-mechanical process used to planarize the top most layer on top of which

further layers can be formed. A wafer is held upside down over a rotating polishing pad and a

chemical slurry is applied to aid in the polishing. The speed, pressure, and slurry composition

control how much material is removed from the wafer. With the leveling of the top surface

complete, the manufacturing process can begin again, forming each of the many layers of a modern

IC.
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2.3.1.2 Variation Sources and Physical Effects

The simplified glimpse into the manufacturing process above should serve to illustrate the com-

plexities a wafers undergoes during the manufacturing of an integrated circuit. Each step must

be carefully prepared and executed and each step provides variation an opportunity to infiltrate

the process. In this section, we examine how variation in the manufacturing of a circuit leads to

physical deviations from the design parameters of the transistors and wires being created. The

next section will connect these physical variations to electrical changes in the devices.

Although there are many sources of process variation, ultimately, they manifest in two physical

aspects of the devices: Geometry, and dopant concentration fluctuations. What’s more, the

variation can be random, where a stochastic model best represent the physical results, either

because it is a random process, or because the process is too complex to methodically model,

or systematic, where a clear correlation exists between a process parameter and the resulting

physical device variation [72]. Often process variation is also classified as intradie, being between

two devices within a die, interdie, two separate dies in a wafer, or wafer-to-wafer.

Device Geometry refers to the shape of the devices created through lithography. Specifically,

we are interested in the length, width, and oxide thickness of the transistor and the shape of

the interconnect wire. Given that photolithography’s primary goal is to define geometries on the

wafer, it should come as no surprise that almost every step has the potential to introduce variation

into the shape of the device.

In order to produce sub-wavelength features, the lithographic mask has to be carefully designed

to account for the many interactions of light that will occur during image transfer on to the pho-

toresist. Despite the advanced resolution enhancement techniques employed, diffraction patterns

from adjacent lines will change the line width of the feature being printed. These proximity effects

are most evident at the lower layers where smaller features are more common. Also metal wires

tend to exhibit line end shortening and corner rounding as a result of the light interactions [48].

A major source of variation in both wires and transistors is known as Line Edge Roughness

(LER) and Line Width Roughness (LWR). LER manifest as jagged edges in geometries on the

wafer and LWR is the resulting variation in width due to LER. The main sources of LER are light

interactions, etching, and defocus, where the mask image is not sharply defined on the surface of

the resist. Defocus, in turn, has several causes, these include mask misalignment and tilt, change

in the refractive index of the reduction lenses due to heat from the energy source, and variations in

the resist thickness leading from variations on the wafer surface induced by chemical-mechanical

polishing. As identified by the ITRS, while circuits continue to scale, “LER of photoresist has
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substantially sustained the same absolute value”, on the order of 5nm [76], “and therefore has

attained an even larger percentage of [the random variation]”[2].

In addition to its LER contributions, defocus has a systematic effect on line width that corre-

lates with the density of the design, where dense features have increased line width, and decreased

line widths correlate with isolated features [98]. This effect can be reduced by adding features

to the lithographic mask in order to maintain relatively constant density, however, these features

may cause undesired light interactions, further contributing to the overall geometric variation.

Finally, chemical-mechanical polishing directly affects the shape of the interconnect since every

wire layer gets polished before processing for the next layer can begin. This polishing introduces

a systematic variation in the layer thickness that is, in part, dependent on the density of the

patterns being polished [43].

Gate Oxide Thickness defines the thickness of the oxide separating the transistor’s channel

from the gate. The gate oxide is created through an iteration of the manufacturing processes

and therefore, is subject to variation induced by the process. To maintain good control, the gate

oxide thickness has kept up with transistor scaling. However, as the ITRS notes, a “particu-

larly challenging issue is the control of the thickness, including its variability, of these ultra-thin

MOSFETs” [2]. As such, a thickness variation of one or two atomic layers, now accounts for

a significant variation percent. At these dimensions, gate tunneling becomes a significant issue,

therefore, to alleviate this problem, newer technology nodes have moved to using high-κ dielectrics.

The high-κ dielectrics allow for thicker oxides, while providing an Equivalent Oxide Thickness of

approximately 1 nm or about 5 atomic layers [49, 67], maintaining the control provided by thin

SiO2 dielectrics. However, this technology comes with its own variation challenges since its poly-

crystalline structure is prone to inhomogeneities, that directly affect the electrical properties of

the device [20, 15].

Random Dopant Fluctuations represent the uncertainty of charge concentration and loca-

tion within the transistor’s doped regions. The process of ion implantation followed by thermal

annealing is inherently nondeterministic and can be modeled by a Poisson distribution [67], lead-

ing to the random nature of this variation source. Moreover, as device size scales down, the law of

large numbers no longer applies, and therefore, the magnitude of this random variation increases

[45]
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Figure 2.3: σVth as a function of technology nodes, based on predictive technology models. Con-
sidering the individual effects of random dopant fluctuations (RDF), line edge roughness (LER)
and oxide thickness (OTF) from [99]

2.3.1.3 Physical Variation and Electrical Effects

We can now connect process variation to the electrical properties of a transistor. Process variation

directly affects the threshold voltage, Vth, and both the saturation and subthreshold currents,

Ids,sat and Ids,sub. Detailed models of Vth can be found in many sources [65, 99], however, for

simplicity, we focus on how Vth variation changes as a function of process variation. Generally the

Vth distribution is modeled as Gaussian, having a nominal value µVth and a standard deviation

of σVth . Figure 2.3 shows the individual effect of RDF, LER and oxide thickness on σVth , as a

function of technology node. Although the dominant effect changes, the overall trend shows that

σVth increases as we scale. Equation 2.7 formalizes this and shows how the standard deviation of

Vth changes with oxide thickness tox, increasing dopant density Na, and channel area, LgWg. The

electrical charge on the electron is q, εox is the dielectric constant of the oxide material, and Wd,

the width of the depletion region. [45, 47].

σVth ∝
qtox
εox

√
NaWd

LgWg
(2.7)

Although saturation current, Ids,sat, and subthreshold current, Ids,sub depend on Vth and are,

therefore, already indirectly affected, they both have parameters that more directly relate process

variation to current. The full equations for Ids,sat and Ids,sub can be found on page 10, below,

instead, we only highlight how they are directly affected by process variation.

Ids,sat ∝WCoxvsat (2.8)

Ids,sub ∝
W

L
µCox (2.9)

Here, W and L come directly from the dimensions of the gate. Lithographic variations will
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impact these dimensions along with LER and LWR. Cox is the electrical unit capacitance provided

by the oxide. It is a function of the material, εox, and the oxide thickness, tox.

Cox =
εox

tox
(2.10)

Finally, the charge mobility µ is a measure of how an electron moves in the channel. It is, in part

affected by the dopant concentration, decreasing with a decreased dopant concentration [88].

Process variation also has an electrical effect on wires. The delay of a wire is roughly propor-

tional to its capacitance and its resistance. Resistance is proportional to the cross-sectional area

of the wire, As geometric variations increase in the wire, resistance will vary accordingly. Capaci-

tance on the wire is also affected by changes in its shape. Furthermore, adjacent wires can interfere

with each other, as explained in Section A.1.3. The magnitude of this interference is related to

the capacitance between the two wires, which in turn is determined by the wire geometries.

In this way we see how variation in the manufacturing process leads to variation in the delay

and energy. As we move to smaller devices, new materials, and new technologies, we expect to see

new sources of variation while some parts of the process may improve. Nevertheless, “[process]

variability is here to stay and will likely play a major role in design and manufacturing of future

ICs” [3].

2.4 Failure Model

In the best case, unmitigated, variation will only lead to a decrease in performance and an increase

in energy consumption as we are forced to use devices with more extreme parameters. This, in

itself, is enough for concern. However, as we continue towards more aggressive technology nodes,

variation increases will inevitably lead to malfunctioning chips.

To understand how variation leads to failures, consider the following simplified example. In-

creased variation leads both to transistors that leak too much current, and transistors that are

very slow to charge their downstream capacitance. Arbitrarily mapping a circuit to an FPGA runs

the risk of using both types. When variation is large enough, the time it takes a leaky transistor,

in the “off” state, to leak enough current to charge its downstream capacitance may be less than

the time it takes a slow transistor, in the “on” state, to allow enough current through to charge its

downstream capacitance. This situation leads to an inversion where a transistor that should be

off behaves as if it is on, and a transistor that should be on, appears to be off. Computationally,

this means that where we expect a 0 we actually get a 1, and vice versa. This behavior is likely

to cause the computation to fail.
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A component-specific mapping, on the other hand, carefully selects which devices to use, thus

preventing this situation. Timing Extraction provides the knowledge required to successfully

produce a component-specific mapping and avoid variation-induced failures.

2.5 Managing Variation

The goal of a manufacturer is to ship defect-free circuits as soon as possible. In light of all the

variation a chip experiences, this is a tall order. In order to achieve this, a circuit must undergo

extensive testing before it ships to the customer. However, full test coverage increases production

latency, reducing profits. Quickly producing parts and shipping only perfect parts are conflicting

objectives. As a compromise, exhaustive testing is not performed. Instead, circuit’s performance

and efficiency are derated, through guard-banding, in the hopes that any missed defect or latent

aging effects will be concealed by the operating margins guard-banding provides.

2.5.1 Testing

After manufacturing, a circuit undergoes extensive functional and parametric testing. This is a

time intensive procedure done on expensive equipment. In fact, testing can account for up to 40%

of the total circuit cost [40]. Nevertheless, it is necessary in order to guarantee that shipped parts

will be defect free with extremely high probability. Testing takes place in three general steps:

Burn-in, functional testing, and parametric testing [56].

Burn-in is intended to accelerate aging faults by exposing circuits to extreme temperatures

and varying voltage supplies well beyond the intended operating parameters [60]. Subjecting the

circuit to these harsh environments uncovers latent defects that would otherwise would appear

shortly after the customer received the product. By discarding the circuits that fail prematurely,

this process increases the average lifetime of shipped products.

Functional testing looks for broken devices in the chip, either from manufacturing errors or from

burn-in. Discovering functional failures requires exercising all devices in the circuit, confirming

whether or not they perform as expected. These tests require applying vectors to inputs, both

primary and intermediate, such as registers. Assuming there are n of these inputs, to exhaustively

test, requires 2n vectors, a time consuming proposition. Great advances have been made to reduce

this number by using automatic test pattern generation (ATPG), which analyzes the circuit to

determine the vectors that will exercise every wire and transistor in the chip. Nevertheless, it does

not always achieve full coverage of all devices.

Finally, parametric testing measures how the circuit behaves under different operational and
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Figure 2.4: Classifying a set of tested circuits into three bins, fast, medium and slow. Circuits
that fail to meet a minimum threshold are thrown out. From [54].

environmental conditions. The goal of parametric testing is twofold. First, it classifies chips

based on how they perform under different conditions, second, it discards chips that fail to meet a

minimum standard. In order to perform parametric testing, chips are exposed to different temper-

atures and voltages, however, unlike burn-in where the goal is to cause failures, the environment

is not as harsh and a range of conditions are explored. Usually this range is limited to a handful

of parameters that test under nominal as well as upper and lower extreme operating conditions.

These are known as corners, for example, the low-temperature, high-voltage corner traditionally

exposes the highest performance achievable by the circuit. Corner testing allows a manufacturer

to group circuits with similar performance together. These groups or categories make up a partic-

ular device type, ranging from high performance - sold at a premium, to low grade - targeted at

consumers that do not require the high capabilities. Figure 2.4 illustrates how this classification

takes place.

Although these tests discover a great majority of faults, with devices shrinking and circuit

size growing, it is becoming harder and more expensive to fully test a chip. Small devices are

more susceptible to temperature and other burn-in techniques, therefore, burn-in may damage

more chips than necessary, or it must be performed more gradually, leading to longer test times

[19]. Furthermore, full functional testing is no longer feasible due to the sheer number of vec-

tors necessary to test. This may not be as dire as one might think. It is often undesirable to

exhaustively test every vector disregarding intended circuit functionality [71]. It is possible that

a fault that exists in the circuit will never lead to a defect if that fault is in a path that is never

activated by the intended application of the circuit. This is especially true of FPGAs as they

have the ability to avoid faults all together [55, 90, 44]. Finally, nano-scale devices sometimes

exhibit performance inversions. For example, at low-voltage and high-temperature, some devices

show smaller delays than under a lower temperature [26, 46]. This requires testing more corners
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[83], also leading to longer test times. To reduce the amount of testing, manufactures can tradeoff

testing for margining, with the hope that the right combination minimize total cost.

Timing Extraction differs from other tests in that it can greatly reduce the need for prolonged

burn-in and functional testing. It allows the manufacturer to functionally test the FPGA both

before and after shipping, without the need for expensive testers, using only resources already

available on the FPGA. Thus, if a fault is missed by burn-in or functional testing, using Timing

Extraction the FPGA can detect this and reconfigure to avoid the detected fault.

2.5.2 Margining

Margining derates the voltage and frequency operation of a circuit so that any increase in critical

path delay due to missed faults, environmental and operational variations, or aging effects do

not lead to timing errors. In essence, it forces the circuit to operate under a worst-case scenario

assumption even when conditions are closer to normal, wasting performance, power, or both.

Typical guardbands, as margining is also known, are set to maintain correct operating conditions

for seven to ten years [87, 7], this requires margins that are 30% beyond the nominal [91]. As

circuits continue to shrink, this percent is likely to increase.

To illustrate how margins work, assume we have manufactured a circuit and need to set guard-

bands for its cycle time so that it operates without failures. Figure 2.5 shows a cartoon that will

illustrate how we add to the cycle time to cover each of the variation types. The blue region

represent the distribution of cycle times achievable by all the circuits in a particular speed-bin,

due to process variation. In order to prevent failures in all these chips, we must make sure our

cycle time is large enough to cover the slowest one. Moreover, since we do not know exactly

what the environment might be for a particular device, we estimate a worst case environment and

add enough margin to our cycle time to make sure there is never a failure regardless of what the

environment is like. This is represented by the purple region in the figure. Finally, devices in the

circuit will age and slow down. To make sure that over the entire lifetime of the circuit, we do

not experience an aging-related failure, we add to our cycle time to cover worst-case aging, as

shown by the orange region. Combining process, environment, and aging worst-case variations,

leads to the required worst-case variation margin. This margin guarantees that regardless of what

the circuit is doing, how it ages, or what the underlying process variation is, it will still function

correctly. Unfortunately, this comes at a high price, since not all chips have worst-case process

variation, nor do they run in worst-case environments, and they age over time, not immediately.

In essence, all circuits within a circuit group pay the price for a few bad cases. This need not be

the case.
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Techniques such as dynamic frequency scaling and dynamic voltage scaling [21, 51] aim to

reduce process margins by dynamically monitoring the FPGA for errors. If no errors are detected

either the frequency is increased to improve performance, or the voltage decreased to reduce

energy consumption. If an error is detected, the opposite is performed. The goal is to maintain

the frequency, the voltage, or both at levels just beyond where errors would occur, in order to

better match the performance and energy efficiency of a given FPGA.

Although these techniques no longer force us to operate at levels that account for the worst-case

over all chips, they still require that we operate at levels that account for the worst-case within a

given chip. In fact, as we will later see in Section 4.9, reducing the voltage actually increase the

variation, thus dynamic voltage scaling must be extremely careful not to reduce the voltage too

much, and therefore, must still operate with larger margins.

A different approach known as statistical static timing (SSTA) [82] analysis the timing of a

circuit but takes into account the effects of variation on delay by assumes that the delay is a

distribution of possible delays. At the conclusion of its analysis, it produce a distribution of the

overall circuit delay. Although margins may be adjusted based on SSTA, it is still necessary to

maintain a worst-case process margins.

Timing Extraction aims to go beyond this worst-case operation to a best-case scenario. With-

out knowledge of the process variation in an FPGA, when a design is mapped, there is a high

probability of selecting a slow physical resources, similarly for energy inefficient resources. Timing

Extraction fully measures the process variation in the FPGA, thus allowing us to avoid these

extreme resources. By carefully selecting which resources we use in the FPGA, we can almost

completely eliminate process margins and operate as well as the best resources in the FPGA allow.
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Figure 2.5: The cost of margins: Required worst-case variation margin shown as the sum of the
worst-case process, environmental and operational, and aging variation. Figure not to-scale, nor
meant to indicate that these three effects are completely independent
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Chapter 3

Timing Extraction

The flexibility that reconfigurable circuits support enable less expensive approaches to controlling

variation, as contrasted with conventional testing and guard-banding. By measuring the shift from

nominal of the delay of every component in the circuit, it is no longer necessary to account for

worst-case process variation through margining. Instead, the FPGA CAD tools can be tuned to

map a design to a particular FPGA based on the measured variation. Measuring every device is

a tall proposition, however. It could require hours on highly customized, expensive testers. This

need not be the case, though, as the reconfigurable nature of FPGAs allow them to self-measure

through a set of simple configurations, as this chapter will demonstrate.

The general idea behind Timing Extraction is easy to understand. It is not possible to measure

the delay of every component in an FPGA directly. Nevertheless, it is possible to measure the

delay of paths between registers. By measuring the delay of different paths in an FPGA, it is

possible to decompose the delays of these paths into their constituents. Essentially, each path

constitutes a linear sum of the delay of its parts; therefore, we can cast this problem as a linear

system of equations where each equation represents a path and equals the measured delay of the

path. If we have enough equations, we can solve for all the unknowns and directly acquire the

delays of every component used in these paths.

Taking as input the physical resource graph of the FPGA, Timing Extraction, through an

automated process, decomposes the physical resource graph into components, determines which

subset of paths to measure, measures them, and computes the delay of each component using

the measured path delays. In order to be useful, components must meet the following three

constraints:

1. First and foremost, the delay of the component must be computable using a linear combi-

nation of a set of path delays.

23



2. Second, we must be able to combine components to incrementally compute the delay of any

path in the FPGA. In this way, routing algorithms [24, 62] can easily use component delays

as they incrementally searches for shortest routing paths.

3. Finally, to analyze the variation in the FPGA, we want the components to encompass as few

physical FPGA resources as possible, this will expose fine-grain process variation. Moreover,

components should encompass the same type of physical resources, so that when we compare

the delay of component A to component B and discover A to be faster, it is not because A

has fewer of different physical resources, but rather, because of process variation.

In this chapter we formulate the theory of Timing Extraction, applicable to most any recon-

figurable circuit. Timing Extraction uses measured path delays to compute fine grain component

delays. Understanding how path delays are measured helps define some basic ideas used through-

out Timing Extraction. We then turn to the actual theory of Timing Extraction. Beginning with

the physical resource graph, we form Logical Components (LCs), representing components with

the minimal number of physical resources. LCs meet the second and third component require-

ments; however, they fail to meet the first, and are thus not suitable. We show it is relatively

easy to generate components that meet the first requirement, meeting all three proves harder. To

meet all component requirements, we reformulate components as Discrete Units of Knowledge,

or DUKs. In essence a DUK is a small linear combination of LCs. Since LCs encompass the

fewest physical resources, a small linear combination of LCs has only a small factor more physical

resources. Moreover, we can combine DUKs to incrementally compute path delays. Finally, it is

almost trivial to figure out which paths must be measured to compute the delay of the DUKs,

thus meeting all component requirements.

3.1 Path-Delay Measurement

Timing Extraction depends on measuring the delay of paths in the FPGA. An effective way is by

using a launch-capture technique. In this approach, a combinatorial circuit, known as the circuit

under test (CUT), is configured between a launch register and a capture register. Starting at a

low test frequency, a signal is sent from the launch register, through the path in question, to the

capture register. A test is preformed to determine if the signal arrived at the capture register

within the allotted test frequency. The test frequency is increased until we find the threshold at

which the signal fails to reach the capture register. This technique has been successfully used to

capture the delay of paths on FPGAs for many applications [80, 59, 79, 94, 93, 58]. Although
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Figure 3.1: Measured error rate for a path. Differentiating falling transition error rates from rising
transition error rates

this technique successfully measures path delays, simply measuring path delays is not sufficient to

understand the types of variation within the FPGA.

To mitigate operational variation such as clock jitter, we measure repeatedly at each test

frequency. If at test frequency f the number of failures is a percent of the total measurements,

the delay of the path is characterized as 1
f . Since the transition from no failures to 100% failures

is gradual, we select the 50% failure point as the representative delay (Figure 3.1). Measuring

for the 50% failure point 215 times at each test frequency, gives, with 99.98% confidence, a ±1%

error. It is worth noting that we do not use this frequency for regular operation, since at this

frequency signals fail timing 50% of the time. Knowing the variance in cycle time, we can then

select a suitable operating frequency that keeps timing errors down to an acceptable level.

Due to the nature of CMOS, there is a possible delay difference in a rising transition, as

compared to a falling transition. Figure 3.1 shows this difference for one measured path. In order

to separate the falling and rising delays, for our purposes, the CUT is composed of a series of

buffers connected one to the next. Figure 3.2 shows a diagram of the path-delay measurement

circuit used. A signal with a 50% duty cycle is provided to the launch register. The signal

propagates through the CUT and the capture register records its output. Errors are detected by

the two error detection circuits (EDC), one monitoring rising failures, the other, falling failures.

3.2 Logical Component Decomposition

It is not possible to measure the delay of a single wire or transistor in the FPGA, even indirectly.

To explain why, consider the simple example of the LUT presented in Figure 3.3. Suppose we
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Figure 3.2: Path-delay measurement circuit.

Figure 3.3: Block diagram of a 4-LUT and it’s register, along with local interconnect

would like to know the delay of the highlighted crosspoint. This is not possible since any path that

uses that crosspoint must also use the MUX, Output Wire and corresponding Local Interconnect

Wire. However, since any path that uses this crosspoint will naturally use the other components,

there is no practical reason to measure its delay independent of these components. This gives

intuition to what a Logical Component (LC) represents.

The definition of a Logical Component naturally derives from the idea that there are sets of

components where if one component is in a path, all other components in that set must be in the

path as well, as the example above illustrates. Before formally defining an LC, we introduce the

concept of the physical resource graph.

Timing Extraction takes as input the circuit description of the FPGA. Given this description we

construct its corresponding physical resource graph by letting each component that contributes to

a signal’s delay be a node in the graph. Directed edges between the nodes mimic actual connections

between components in the given circuit. Finally, since our measurement technique requires that

CUTs be surrounded by launch and capture registers, every node representing a register splits into

two nodes, a launch or source node and a capture or sink node, with no edge connection between

them. Figure 3.4 shows the physical resource graph corresponding to the circuit diagram in the

example above.
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Figure 3.4: Physical resource graph of the circuit in Figure 3.3.

An LC Node consists of a group of connected physical resources that cannot be independently

measured. Given a graph of physical resources, we form LC Nodes by identifying paths between

source register nodes, or nodes that have fan-in greater than one, and sink register nodes, or nodes

that have fan-in greater than one. Physical resources in the same path are grouped into one LC

Node. LC Nodes are then connected to form an LC Node graph that maintains the relations

between nodes, as described by the physical graph (Algorithm 1).

Algorithm 1: LC Node Decomposition

Input: Resource Graph Gr
Output: LC Node Graph Glc

/* Identify nodes with fan-in > 1 */

foreach node n ∈ Gr do
if Fanin (n) > 1 then

l.Add(n)

/* Add registers */

l.AddAll(GetRegisters(Gr))
/* Generate LC Nodes */

lcNodes← FindAllPathsBetweenNodes(l)
/* Build LC Node graph */

foreach Pair of LC nodes (x, y) from lcNodes do
if x.lastResource == y.firstResource then

x.AddChild(y)

Glc.AddAll(lcNodes)

The last loop in Algorithm 1 defines the edge relationship between LC Nodes. Notice that
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LC Nodes are formed between two nodes in the set l, and two LC Nodes have a parent-child

relationship only if the last physical resources in the parent LC Node is the same as the first

resources in the child LC Node. In order to make sure that we do not count the delay of this

shared resource twice, as a convention, we assign it to the delay of the child LC Node. Nevertheless,

the relationships created by this construction are part of the key to the main Timing Extraction

algorithms later in this chapter.

Given a circuit, the corresponding LC graph indicates the finest component granularity at

which we care to measure delays in a circuit. In other words, it naturally groups components in a

way that represents the fact that, if the first component in that LC is used in a path, all the rest

of the physical components in that LC will always have to be used in that path and therefore,

there is no reason to measure them independently.

LC Nodes represent paths through a small number of physical resources. Given their con-

struction, these paths will either begin at a register or begin at a combinatorial node with fan-in

greater than one. Similarly they will end either at a register or at a combinatorial node whose

child has fan-in greater than one. This provides a natural way to classify LC Nodes, based on

the type of the first and last nodes in their path. We separate LC Nodes that start and end at a

register from the other three combinations. This type of LC Node can be directly measured using

the path measurement technique from Section 3.1. We focus on the remaining three combinations

and give them the following names:

• Start Nodes are LC Nodes whose path begins at a register and ends at a combinatorial

node.

• Mid Nodes represent LC Nodes that both begin and end at combinatorial nodes.

• End Nodes captures those LC Nodes where the path begins at a combinatorial node and

ends at a register.

Figure 3.5 brings all these ideas together in an example. Figure 3.5(a) shows a physical resource

graph where source and sink registers are square nodes and all other resources are circular nodes.

The result of applying the LC decomposition algorithm is shown in Figure 3.5(b), where LC Nodes

are colored based on their type. LC Nodes are labeled using interval notation to indicate inclusion

or exclusion of particular physical resources. E.g., LC Node [F → G) includes physical resource F

and up to just before physical resource G . The reader is encouraged to confirm that any path

from a source register (A or B ) to a sink register (H or I ) in Figure 3.5(a) is also found in

Figure 3.5(b) by selecting the correct LC Nodes.
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(a) Physical Graph (b) LC Node Graph
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[C → F )
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[F → G)

M2

[F → I]
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[G→ H]

E2

[G→ I]

E3

Figure 3.5: Transformation of a physical resource graph, where squares highlight registers and circles
combinational resources, to an LC Node graph, where node names represent encompassed physical re-
sources. Corner labels on LC Nodes, such as S1, provide convenient shorthand reference for later use in
this chapter

The path delay measurement technique from Section 3.1 measures combinatorial paths between

two registers. Looking at the LC Node Graph we see that any path between source sink registers

has a consistent form. It begins with a Start Node, continues through zero or more Mid Nodes and

always ends at an End Node. Thus, we can easily formulate measurable paths using LC Nodes.

3.2.1 LC Nodes as Components

LC Nodes seem a natural way to decompose an FPGA into components. To confirm whether they

are suitable, however, we must ensure they meet the three component requirements presented

at the beginning of this chapter. We will come back to the first requirement later, for now we

examine the second and third.

The second component requirement states that we must be able to incrementally compose

components to get the delay of a path as the path grows in length. Growing paths in this way

allows us to easily run shortest paths algorithms. To prove that LC Nodes meet this requirement,

we first show that any path between source sink registers in the physical resource graph can be

represented by a corresponding path through the LC Node graph.

Theorem 3.2.1 Given Pphys = (r1, c2, . . . , cn−1, rn), a path that starts at a register and ends at

a register, we can construct a corresponding path, PLC = (s1,m2, . . . ,mm−1, em), in the LC Node
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graph that covers the same n physical resources with m LC Nodes.

Proof LC Nodes represent short paths between physical nodes that are either registers or physical

resources with fan-in greater than one. Thus, to construct the corresponding LC Node path, we

find nodes in the original path that are either registers or have fan-in greater than one, extract

the short paths between these special nodes, and find the corresponding LC Nodes that cover the

same short path. By doing this in the order in which these special nodes appear in the original

path, we can construct the corresponding LC Node path.

Since the original path has only two registers, one at either end, our LC Node path will have a

Start Node at the beginning, an End Node as the last Node, and all other LC Nodes will be Mid

Modes.

Corollary 3.2.2 LC Nodes can be incrementally composed to construct any measurable path in

the physical resources graph.

Proof From Theorem 3.2.1, we know that every measurable path in the physical resource graph

has a corresponding path in the LC Node graph. Therefore, by selecting, in-order, the LC Nodes

that form a given path, we can incrementally construct the measurable path at the granularity of

LC Nodes.

Assuming we have the delay of all LC Nodes, Corollary 3.2.2 shows that we can incrementally

get the delay of any path at an LC Node granularity. Since, by definition, we do not care to know

the delay of resources below the LC Node granularity, LC Nodes satisfy the second component

condition.

The third component condition requires that components be small and of similar shape. LC

Nodes, by definition, are as small as we care to measure. To show that they are of similar shape

we appeal to the regularity of FPGAs. Although modern FPGAs are heterogeneous, containing

logic blocks, embedded blocks, and advanced hierarchical interconnect, there’s only one or a few

logic block designs repeated throughout the FPGA. The same holds true for embedded blocks.

Moreover, the interconnect follows a regular repeating pattern throughout the FPGA fabric with

few to no exceptions. As such, when we construct the physical resource graph of an FPGA, we

see many identical subgraphs repeated throughout. All repeated subgraphs will decompose into

the same set of LC Nodes. Therefore, we will have many LC Nodes of the same shape, meeting

the third component condition.

Finally, the first component requirement states that we must be able to compute the delay of

components. To get the delay of a component, Timing Extraction measures the delay of a number
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of paths and takes a linear combination of these delays to get the component delay. Although LC

Nodes meet the second and third component constraints, they fail the first.

An LC Node-based solution for Timing Extraction will use the measured delay of paths to

compute a unique delay for each LC Node. It is easy, however, to construct a second solution

given a first, demonstrating that we cannot know the delay of LC Nodes. Theorem 3.2.3 formalizes

this.

Theorem 3.2.3 For a given LC Node graph, at least two different solutions for the delay of LC

Nodes exist when computed from measured path-delays.

The proof hinges on the fact that every path has exactly one Start Node and exactly one End

Node.

Proof Given a solution to the delay of all LC Nodes, we can construct a second, equally consistent

solution as follows. First, increase the delay of every Start Node by α. Since a path uses exactly

one Start Node, using the new Start Node delays to compute the delay of any one path will

result in a path-delay that is exactly α greater than the real delay of that path. Thus we need to

reduce the delay of some other node in the path by α to achieve the correct result. We do this by

subtracting α from every End Node. Doing this will reduce the new delay by α since a path uses

exactly one End Node. At this point we have a second solution for the delay of LC Nodes that is

consistent with the measured path-delay.

3.3 Alternate Basis

LC Nodes fail the first component requirement. Finding a set of components that meet this

requirement, however, is easy. This section explains how to accomplish this, for the reader versed

in linear algebra however, suffices to say that we formulate Timing Extraction as a matrix and

use a basis for the matrix as the set of components.

Timing Extraction measures the delay of multiple paths and takes linear combinations of these

path-delays to compute component delays. We can formulate this problem as a path-node matrix

where rows correspond to paths and columns to LC Nodes. An entry (i, j) is 1 if path j contains

LC Node i, otherwise it is 0. Figure 3.6 shows this matrix for all paths between Start and End

Nodes for the graph in Figure 3.5(b).

To find a set of components, we find a basis for the path-node matrix. In linear algebra, a

basis is a set of linearly independent vectors that can be linearly combined to compose any vector

in a given vector space. For example, a basis we are all familiar with comes from R3, i.e., three
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S1 S2 S3 S4 M1 M2 E1 E2 E3

1 0 0 0 1 0 1 0 0
1 0 0 0 1 1 0 1 0
1 0 0 0 1 1 0 0 1
0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1
0 0 1 0 1 0 1 0 0
0 0 1 0 1 1 0 1 0
0 0 1 0 1 1 0 0 1
0 0 0 1 0 0 1 0 0
0 0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 0 1︸ ︷︷ ︸

Start Nodes

︸ ︷︷ ︸
Mid Nodes

︸ ︷︷ ︸
End Nodes

Figure 3.6: Path-node matrix for Figure 3.5(b) with all 11 possible paths between Start and End
Nodes.

1 0 0 0 0 0 -1 -1 0 -1 -1
0 1 0 0 -1 0 1 0 0 1 0
0 0 1 0 1 0 0 1 0 0 1
0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Figure 3.7: Gaussian Elimination on the transpose path-node matrix in Figure 3.6. Highlighted
in red are the six pivots.

dimensional space. Any point in R3 can be represented by a linear combination of the vector in

the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, this set is a basis for R3. For Timing Extraction, our vector

space is the set of path. Thus, a basis of the path-node matrix gives the smallest set of components

that can be linearly combined to form any path.

The result from the previous section can be interpreted as stating that the LC Nodes do not

form a basis for the measurable paths of a circuit. Nevertheless, the path-node matrix presented

above must have a non-empty vector space which comprises its basis. Finding the set of paths

that form a basis for the paths in the circuit is as simple as performing Gaussian Elimination on

the transpose of the path-node matrix. Figure 3.7 shows the results of this applied to the matrix

from Figure 3.6.

This matrix has six pivots, columns where exactly one element is 1 and the rest are 0. These

columns are 1, 2, 3, 4, 6, and 9. This means that paths 1, 2, 3, 4, 6, and 9 are linearly independent

and together form a basis for the transpose of the path-node matrix. Therefore, if we measure
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the delay of these six paths, we can compute the delay of any other path by linear combinations

of these paths. In essence, this procedure tells us the minimum number of paths that must be

measured to calculate the delay of any path in the circuit. More than that, it tells us which paths

to measure. Finally, it even tells us which linear combination of these six paths are necessary to

compute the delay of the other five. For example, for the fifth path (column 5 in Figure 3.7) we

see the equation for path 5: p5 = −p2 + p3 + p4.

The number of paths to measure is exactly equal to the rank of the path-node matrix. When

the number of paths exceeds the rank, we can perform the algorithm suggested above and reach a

result where we measure rank number of paths and get enough information to compute the delay

of any other path in the original path-node matrix. The rank of the path-node matrix will never

be greater than the min(paths, nodes). Given the extensive connectivity available in an FPGA,

the number of paths is orders of magnitude greater than the number of nodes. Thus, using this

approach we will always be able to measure a small number of paths and recover the delay of all

the paths in the path-node matrix.

Through this construction we see it is possible to meet the first component requirement. Un-

fortunately, this construction fails both the second and third component requirements. Although

we can compute the delay of any path, we cannot do this incrementally since the delay of a path is

computed from the linear combination of the delay of other paths, not from the delay of individual

segments of the path. Second, the set of paths that we must measure may have paths of any length

or shape. As such, we cannot directly compare the delay of one to the other and conclude that

the difference is due to process variation only.

In the next section we present a solution that takes aspects from LC Node decomposition to

meet the second and third component requirements and ideas from this section to make sure the

decomposition forms a basis for the path-node matrix.

3.4 Discrete Units of Knowledge

LC Nodes represent the smallest components we care to measure. Since it is not possible to

compute their delay, we define a new component, the Discrete Unit of Knowledge (DUK), as

a small linear combination of LC Nodes. Unlike the previous solutions, DUKs meet all three

component constraints. We first present two classes of DUKs and see how these DUKs compose

to incrementally form any measurable path. Then we explain how to decompose an LC Node

graph into individual DUKs. Finally, for each DUK, we determine the two or three paths that

must be measured to compute its delay.
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Figure 3.8: Example of the shape of DUKs

3.4.1 DUK Types

The first DUK is the Mother DUK, or M-DUK. The Mother DUK is composed of a Start Node,

zero, or a small number of Mid Nodes, and an End Node. Figure 3.8(a) shows an example of

an M-DUK. As we will later see, M-DUKs are the shortest path from a Start Node to an End

Node. The second type of DUK is the Child DUK, or C-DUK. Figure 3.8(a) shows an example

of a Child DUK. A C-DUK is the difference of two sub-paths, where a sub path has zero or a

small number of Mid Nodes followed by an End Node. Throughout this discussion we refer to the

bottom path, the path subtracted, as the Current Tail. The other path is called the Desired Tail,

the next section gives the intuition for these names. Because of the regularity of FPGAs, when

we decompose an FPGA into DUKs, we will have a handful of M-DUK types and a handful of

C-DUK types. Therefore it is easy to compare DUKs of one type and directly make conclusions

about the process variation, meeting component constraint number three.

3.4.2 Incremental Path Computation

As their names imply, we build paths from DUKs beginning with a Mother DUK, followed by zero

or more Child DUKs. Figure 3.9 shows an example of how combining the correct set of DUKs

leads to an incrementally built path. A closer examination of what happens in Figure 3.9 gives

the necessary intuition to understand how DUKs work. Consider M-DUK A and C-DUK A, when

combined, C-DUK A has the effect of removing LC Node Ea and replacing it with LC Nodes Ma

and Eb . Essentially the Current Tail of the C-DUK matches the tail of the path being built. As

its name implies, the Desired Tail represents how the end of the path being built should change

by removing the Current Tail Nodes and adding the Desired Tail Nodes. In a sense, a C-DUK is

like map directions that explains how to get from a path that ends with the Current Tail, to a path

that ends with the Desired Tail.

Thus, adding a C-DUK changes the tail of the path, extending, substituting, or shrinking it

with new LC Nodes. Though a C-DUK changes the path, the result is always a path of the correct

form, having a Start Node followed by zero or more Mid Nodes, and an End Node. For M-DUKs,
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Figure 3.9: Demonstration of how an M-DUK plus two C-DUKs leads to a path with the correct form.
LC Nodes represent both a set of resources and their delay.

the intuition is simpler, an M-DUK represents the shortest possible path that maintains correct

form. It is this construction that allows us to incrementally compute the delay of paths and meet

component constraint number two.

3.4.3 DUK Decomposition

With the definition and usage of DUKs established, we turn to the problem of decomposing an LC

Node graph into individual M-DUKs and C-DUKs. The decomposition breaks into three steps.

First we annotate the LC Node graph in such a way that any LC Node can easily find the shortest

path between itself and an End Node. If more than one shortest path exist, we arbitrarily but

consistently choose one. Step two extracts an M-DUK from each Start Node in the graph. Finally,

we extract C-DUKs based on the sibling sets in the LC Node graph, a concept explained below.

3.4.3.1 LC Node Graph Annotation

To find the shortest path to an End Node for any LC Node we begin by pushing all End Nodes

into a queue. We select the LC Node at the front of the queue, and mark all edges from it to each

of its parent, unless the parent already has a marked edge. We then add to the queue all parents

that had an output marked. Iterating until the queue is empty will mark exactly one output edge

from each Start and Mid Node. The path traced from an LC Node through the marked edges, to

an End Node will be the shortest path, in number of LC Nodes, from that LC Node to an End

Node. We call this path the marked path. Marking the edges in this way allows us to remember
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and visit the same path every time, in case there was more than one shortest path. Algorithm 2

shows how edges are marked, while Algorithm 3 extracts the marked path of a given LC Node.

Algorithm 2: Mark Shortest End Node Path

Input: LC Node Graph Glc
Queue q ← GetEndNodes(Glc)
while ! Empty (q) do

node n← q.Dequeue()
foreach node p ∈ Parents(n) do

if ! HasMarkedChild (p) then
p.SetMarkedChild(n)
q.Enqueue(p)

Algorithm 3: Get Marked Path

Input: LC Node n
Output: Path p
nextNode← n
while !IsEndNode(nextNode) do

p.Add(nextNode)
nextNode← nextNode.GetMarkedChild()

p.Add(nextNode)

To illustrate this process, we apply Algorithm 2 to the example LC Node graph from Fig-

ure 3.5(b). The result is show in Figure 3.10 where bold red edge show how the graph was

annotated.

3.4.3.2 M-DUK Extraction

Once the LC Node graph is annotated, it is easy to extract M-DUKs. M-DUKs represent the

shortest paths from a Start Node to some End Node. Therefore, we need only trace the marked

path beginning at each Start Node. Algorithm 4 formalizes this, and Figure 3.11 shows the

resulting four M-DUKs extracted from the annotated LC Node graph from Figure 3.10.

Algorithm 4: Extract M-DUKs

Input: Annotated LC Node Graph Glc
Output: A set of M-DUKs MD
foreach node s ∈ GetStartNodes(Glc) do

MD.AddMDUK(GetMarkedPath(s))
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[A→ E → G)

[A→ C) [B → C)

[B → D → F )[C → F )

[F → G) [F → I]

[G→ H] [G→ I]

Figure 3.10: Result of applying Algorithm 2 to the example LC Node graph. Bold red edges show
the edges marked by the algorithm

[A→ C) [C → F ) [F → I]

[B → C) [C → F ) [F → I]

[A→ E → G) [G→ H]

[B → D → F ) [F → I]

Figure 3.11: Four M-DUKs extracted from the LC Node graph in Figure 3.10 using Algorithm 4
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3.4.3.3 C-DUK Extraction

Extracting C-DUKs requires that we first introduce the notion of a sibling set and its properties. A

sibling set is a set of LC Nodes that share the same set of parents. Sibling sets have two important

properties. First if the LC Nodes in a sibling set share any parent, they share all parents.

Theorem 3.4.1 If siblings in an LC Node sibling set share an LC Node parent, they share all LC

Node parents.

A parent-child relationship between LC Nodes is established in Algorithm 1. It states that the

last physical resources of a parent must be the same as the first physical resource of a child. As

stated before, for convention, we assign the delay of this resources to the child LC Node, but it is

the relationship this establishes that leads to the proof.

Proof If LC Nodes c1 and c2 have parent p1 in common, it means that the last physical resource

of p1 and the first physical resources of both c1 and c2 are the same. Let this resources be r. If c1

also has as a parent p2, it again, means that the last physical resources of p2 must be r. If this is

the case, then there must also be a connection from p2 to c2, because of the way the last loop in

Algorithm 1 defines the parent-child LC Node relationship.

We can this sibling property in Figure 3.10. For example, Nodes [F → G) and [F → I] have both

nodes [C → F ) and [B → D → F ) as parents.

The second property emerges after annotating the LC Node graph using Algorithm 2. It states

that exactly one LC Node in a sibling set will have all its edges to its parents marked, no other

LC Node in the sibling set will have any marked edges to their parents. Since sibling sets share

all parents, when an LC Node in a sibling set is visited by Algorithm 2, either all its parents mark

their edge to it, or all its parents already have marked edges. We refer to the LC Node in a sibling

set with marked parent edges as the marked sibling. We see this with marked sibling [F → I] in

the sibling set { [F → G) , [F → I] } of Figure 3.10.

As stated before, a C-DUK can be thought of as instructions on how to get from a path that

ends with the Current Tail, to a path that ends with the Desired Tail by removing from the end

of a path the LC Nodes in the Current Tail, and attaching the LC Nodes in the Desired Tail. In

order for this to work, both the Current Tail and the Desired Tail must have a common parent.

Sibling sets, having common parents, are the ideal candidates for the beginning of Current and

Desired Tails. For consistency, we always make the marked sibling be the beginning of the Current

Tail, and each of the other siblings, forms the beginning of a Desired Tail. Pairing each Desired

Tail with the Current Tail generates a C-DUK.
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−
[F → G) [G→ H]

[F → I]

−
[G→ I]

[G→ H]

Figure 3.12: Two C-DUKs extracted from the LC Node graph in Figure 3.10 using Algorithm 5

More formally, given a sibling set with n LC Nodes, we create n − 1 C-DUKs as follows. For

each non-marked sibling in the sibling set, we create a C-DUK by subtracting its marked path,

which will become the Desired Tail of the C-DUK, from the marked path of the marked sibling,

identified as the Current Tail. Continuing with our example LC Node graph, we see that there

are two sibling sets, { [F → G) , [F → I] } and { [G → H] , [G → I] }. Working with the first set, the

marked sibling is [F → I] , thus we trace the marked path of LC Node [F → G) and substract it

from the marked path of [F → I] . Figure 3.12 shows both this C-DUK on the left, and the C-DUK

extracted from the other sibling set. Algorithm 5 formalizes this.

Algorithm 5: Extract C-DUKs

Input: Annotated LC Node Graph Glc
Output: A set of C-DUKs CD
siblingSets← GetSiblingSets(Glc)
foreach set SS ∈ siblingSets do

ms← GetMarkedSibling(SS)
pathMS ← GetMarkedPath(ms)
foreach s ∈ {SS −ms} do

path← GetMarkedPath(s)
CD.AddCDUK(path, pathMS)

3.4.4 DUK Computation

Once we have decomposed a resource graph into DUKs, we need to measure the delay of the correct

set of paths so that we can compute the delay of the DUKs. As we will show, it is relatively straight

forward to discover what this set of paths should be given the DUKs of a resource graph.

At first sight, the paths required to compute the delay of an M-DUK are trivial to determine

since a path that begins with a Start Node, goes through zero or more Mid Nodes, and ends at

an End Node is both the definition of a launch-capture measurable path, and what an M-DUK

represents. Therefore, we just need to measure one path, the one described by the M-DUK, to

directly get the M-DUK’s delay.

In practice, it is not as simple. By design M-DUKs represent the smallest possible paths that
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go from a Start Node to an End Node. As we will later see, the length of these paths vary from

only two to four LC Nodes. To accurately measure the delay of such small paths, we would need

extremely high frequencies for the launch-capture measurement tests. Such high frequencies are

not always achievable on commercially available FPGAs, and if they are, they may cause self-

heating effects, affecting the delay measure. Therefore, in case a direct measure is not possible,

or would generate too much heat, we present an indirect approach where we measure the delay of

three longer paths (e.g., at least 6 LC Nodes long) and use their delay to compute the delay of an

M-DUK.

To best understand the relationship between the three paths, we look at an example. Suppose

the M-DUK we need to compute consists of the path from LC Node SA to ED in Figure 3.13.

Since that path is too short to directly measure, we compute the delay indirectly. As long as

we have an LC graph structure similar to that in Figure 3.13 we can measure the delay of the

following three longer paths.

A:

B:

C:

S1 M2 M3 MB MC ED

SA MB MC Mα Mβ Eγ

S1 M2 M3 MB MC Mα Mβ Eγ

Adding the delay of paths A and B, and subtracting from that the delay of C gives the desired

M-DUK delay. Computing the M-DUK delay in this way requires that the structure in Figure 3.13

exist in the LC Node graph. Because of the way LC Nodes and the LC Node graph are constructed,

Mid Nodes will always have fan-in and fan-out greater then one. Thus the graph structure around

nodes MB and MC will always exists. What we cannot say in general is that the graph structure

to extend a path to MB and from MC exist. However, both because FPGAs are large highly-

connected circuits, and based on our successful application of Timing Extraction to off-the-shelf

FPGAs (Chapter 4), we have very high expectations of being able to extend the paths as required.

Thus, we can determine the paths needed to get the delay of a given M-DUK, either directly from

one path measurement, or indirectly from three, if high enough frequencies are not available.

Tracing the paths needed to compute C-DUK delays is easier. By definition, C-DUKs consist

of the difference between two short paths stemming from two sibling LC Nodes, ending at two

End Nodes. Their structure implies that, to compute their delay, we must take the difference of

two measured paths. However, the short paths begin with either a Mid Node or an End Node,

as shown in Figure 3.8(b); therefore, we cannot measure them directly. To remedy this, we add

LC Nodes to the beginning of the paths so that they begin at Start Nodes. We take advantage of
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S1 M2 M3

SA MB MC ED

Mα Mβ Eγ

Figure 3.13: LC graph structure required to measure the delay of the M-DUK encompassing the path
between nodes SA and ED

−Sα Mβ Mγ Mδ Mε

MA EB

EC

Figure 3.14: Example of the LC graph structure required to measure the delay of the C-DUK enclosed
in the outline

the fact that the first LC Node in each short path are siblings and therefore must have a common

parent node. In this way we can extend a path from that common parent node to some Start

Node. Thus, when we measure the delay of these two complete paths, and take their difference,

we subtract these added Nodes and get only the C-DUK delay. Figure 3.14 shows an example of

this. Taking the difference between the paths delays from Sα to EB , and from Sα to EC , leads

to the delay of the C-DUK outlined in the figure.

In this way we determine which paths to measure for each DUK, and demonstrate that it is

easy to compute the delay of DUKs from measured paths. With that we satisfy the first component

requirement and have now shown that DUKs satisfy all three component requirements.

3.4.5 DUK Accounting

We have shown that it takes three path measurements to compute the delay of an M-DUK, and

two paths for C-DUKs. In this section, we calculate how many DUKs of each kind to expect from

a given resources graph. However, since we make no assumptions about the resources graph, the

results in this section remain abstract and depend on the actual shape of the resource graph.

The number of M-DUKs equals the number of Start Nodes. The number of Start Nodes

depends on both the number of registers, since a Start Node must begin at a register, and the

structure of the resource graph. The number of Start Nodes generated from a register is equal to

the fanout of that register.

C-DUKs arise from pairs of sibling LC Nodes. If n LC Nodes are siblings, forming a sibling set

of size n, we will generate n−1 C-DUKs from this sibling set. Thus, the number of C-DUKs equals
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the number of nodes in sibling sets minus the number of sibling sets. The number of sibling sets

equals the number of physical resources with fan-out greater than one. For each of these physical

resources with fan-out greater then one, the size of the sibling set they generate will equal the size

of their fanout.

Overall, we can bound the number of DUKs generated from a physical resource graph as no

greater than the sum of the fanout of physical resources with fanout greater than one. Also, since

a sibling set of size n leads to n− 1 C-DUKs, the number of DUKs will be strictly less than then

number of LC Nodes.

3.4.6 DUK Graph

Once we have extracted all DUKs, as with LC Nodes, we can construct the DUK Graph, a new

graph that represents the FPGA using DUKs. We connect an M-DUK to a C-DUK if the Current

Tail of the C-DUK is the same as the tail of the LC Node path of the M-DUK. We do this because

the C-DUK would remove these nodes from the path and add the Desired Tail nodes instead.

Similarly we connect a parent C-DUK p to a child C-DUK c if the end of the Desired Tail of p

matches the Current Tail of c. We do this for our example and show the result in Figure 3.15. The

physical resource graph had 11 paths between registers. Keeping in mind that when using DUKs

a path is formed by combining an M-DUK with zero or more C-DUKs, starting at M-DUKs, we

enumerate the following 11 paths through the DUK Graph:

1. M-DUK 1
2. M-DUK 1 → C-DUK 1
3. M-DUK 1 → C-DUK 1 → C-DUK 2
4. M-DUK 2
5. M-DUK 2 → C-DUK 1
6. M-DUK 2 → C-DUK 1 → C-DUK 2
7. M-DUK 3
8. M-DUK 3 → C-DUK 1
9. M-DUK 3 → C-DUK 1 → C-DUK 2

10. M-DUK 4
11. M-DUK 4 → C-DUK 2

3.4.7 Routing on the DUK Graph

Part of the goal of Timing Extraction is to inform routing with DUK delays, to best map logic

around the variation in an FPGA. Having the DUK Graph allows us to do this easily. Routing

algorithms incrementally search for the shortest path between resources, hence our second compo-

nent requirement. We show that with a minor modification, DUK Graphs are an ideal candidate

for the Bellman-Ford shortest path algorithm [22].
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M-DUK 1

M-DUK 2

M-DUK 3

M-DUK 4

C-DUK 1

C-DUK 2

[A→ C) [C → F ) [F → I]

[B → C) [C → F ) [F → I]

[B → D → F ) [F → I]

[A→ E → G) [G→ H] −
[F → G) [G→ H]

[F → I]

−
[G→ I]

[G→ H]

Figure 3.15: DUK Graph derived from the LC Node graph in Figure 3.10

We are interested in shortest paths between physical resources, however the nodes in the DUK

graph are DUKs, not physical resources. Nevertheless, we can modify the DUK graph to easily

find the paths between physical resources. First, we create a node for every source and sink register

with a delay value of zero. We then add an edge from a source register node to an M-DUK if the

M-DUK’s path begins with that source register. Similarly, we add an edge from an M-DUK to

a sink register node if the M-DUK’s path ends with that sink register. Finally, we add an edge

from a C-DUK to a sink register if the Desired Tail ends with that register.

Bellman-Ford looks at edge weights as it computes shortest paths. We, instead, have weights

on the DUKs, not the edges. We easily rectify this by moving the weight from a node in the DUK

Graph to all the fan-in edges of that node. Figure 3.16 shows what the final graph looks like. We

annotated edges with delays by assuming some delay for each physical resource, and calculating
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Figure 3.16: Modified DUK Graph with register nodes, ready for running Bellman-Ford. Edges
are annotated with the delay of the DUK they point to

from them the correct DUK delays.

Although all physical resources were given positive delays, C-DUK 2 has a negative delay. This

comes from the fact that C-DUKs are the difference of two sub-paths, and therefore, it is possible

that their delay will be negative. A negative C-DUK delay simply indicates that the Current Tail

is slower than the Desired Tail. Bellman-Ford can find shortest paths even with negative edge

weights. It cannot find a shortest path if there are negative weight cycles. However, since the

DUK Graph represents delays through an FPGA, it cannot have negative weight cycles, since

there cannot be negative delays in the FPGA. Thus the modified DUK Graph is well suited for

the Bellman-Ford shortest path algorithm.
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3.5 Measurement Precision

The precision of the delay computed for each DUK is limited by the granularity to which we can

adjust the clock used in the launch-capture measurement technique. In this section we quantify

the expected DUK error introduced due to this limited clock granularity. Section 4.12 demon-

strates how our empirical results match the analysis presented here. As explained in Section 3.1,

measuring the delay of a path requires adjusting the test clock to find the frequency at which

the signal first fails to reach the capture register. Assuming the finest granularity by which the

frequency can be adjusted is ∆clock seconds, then any measurement made will at worst be ∆clock

seconds slower than the actual delay of the path (Equation 3.1).

τmeasured = τpath + εpath | εpath < ∆clock (3.1)

To determine the error in DUK delays due to limited clock granularity, we refer to Section 3.4.4

which explains how to compute the delay of a DUK. A C-DUK’s delay is the difference of the

delay of two paths. Equation 3.2 expresses the delay and measurement error of a C-DUK in terms

of the delay and measurement error of two paths, A and B.

τCDUK + εCDUK = (τA + εA)− (τB + εB) (3.2)

The error of a C-DUK is thus εA − εB . Since both εA and εB are less than ∆clock, the error

will be greatest when path A’s error is nearly ∆clock and path B’s error is nearly zero, or vice

versa as formalized in Equation 3.3.

−∆clock < εCDUK < ∆clock (3.3)

A similar analysis applies for the M-DUK. The delay of an M-DUK is derived by the sum of

two paths minus a third as Equation 3.4 demonstrates.

τMDUK + εMDUK = (τA + εA) + (τB + εB)− (τC + εC) (3.4)

Therefore, the error of an M-DUK is εA + εB − εC . Since all three terms are less then ∆clock,

we can bound the error by the worst case, when either εA and εB are nearly ∆clock and εC is

nearly zero, or the other way around, as captured by Equation 3.5.

−∆clock < εMDUK < 2 ·∆clock (3.5)
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To validate that computed DUK delays accurately represent exact DUK delays to within the

expected error, it would be necessary to know the exact DUK delays. However, we are unable

to get this information. Therefore, to certify the accuracy of computed DUK delays, we must

calculate a DUK delay two or more ways and confirm that the results are within expected error.

This is easily done, since there are few requirements set on the paths used to compute DUK

delays. As Section 3.4.4 explains, given a DUK, we generate and measure two or three paths to

compute the DUK delay. Some of the LC Nodes in these paths are determined by the DUK, others,

however, can be arbitrarily selected from those that provide the required structure. Consequently,

it is possible to formulate multiple sets of paths, that compute the delay of the same DUK, by

changing the LC Nodes not constrained by the DUK. It is worth noting, however, that since

every computed DUK must obey the error bounds of Equations 3.3 or 3.5, it is possible that

one computation will be on one end of the bound and the other, on the other end of the bound.

As a result, it is necessary to consider the error not between a computed DUK and the actual

DUK delay, as was done above, but the maximum error between two computed DUKs. We look

to Equation 3.3 and determine that for a C-DUK, this error is ±2 ·∆clock. For an M-DUK,

Equation 3.5 leads us to conclude it is ±3 ·∆clock. Throughout our results in Chapter 4, where

appropriate, we highlight these bounds, and in particular, in Section 4.12 we uses these bounds

to demonstrate the accuracy of our measurements.

46



Chapter 4

Timing Extraction on Commercial
FPGAs

In this chapter we apply Timing Extraction to a commercially available FPGA, the Altera Cy-

clone III 65 nm FPGA. In order to understand the Timing Extraction results, we begin by present-

ing the architecture of the Cyclone III. With that knowledge, we introduce the structure of its LC

Node graph, and subsequently examine the ten DUK types that emerge from the LC Node graph.

Although Chapter 3 presents Timing Extraction, to implement it on the Cyclone III requires a

few more steps, which we review next. At this point, we explain our experimental setup and

present the main results, the delay distribution for the ten DUK types. The chapter continues by

presenting results that either show the power of, or the need for Timing Extraction. We conclude

with a sections on the runtime of Timing Extraction and the consistency of our measurements.

4.1 Cyclone Architecture

Section 2.1 introduced the basic architecture of an FPGA. Briefly, it is composed of logic blocks

embedded in a routing fabric. The logic blocks, in turn, are composed of small lookup tables

(LUTs), registers, and some local interconnect. The Cyclone III architecture follows this general

structure. It is fabricated in a 65 nm low-power process technology, with a design optimized to

further minimize power consumption [8]. Built on a mature, low-power process, it has a modest

amount of process variation compared to state of the art FPGAs. Nevertheless, Timing Extraction

is able to quantify this variation. We use Arrow’s BeMicro FPGA Evaluation Kit with Cyclone

III FPGAs model EP3C16F256C8N [14] (Figure 4.1). Table 4.1 gives the specific details for this

model.

Figure 4.2 shows the logic block level layout of this FPGA. It is mostly composed of LABs with
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Figure 4.1: The BeMicro FPGA Evaluation Kit with a Cyclone III FPGA.

Parameter Value Notes
Logic Blocks (LB) 963 Known as: Logic Array Block (LAB)

Dimensions (in LBs) 40 × 28 See Figure 4.2 for LB level layout
LUTs per LB 16 Configurable as carry chains

Registers per LB 16 Configurable as register chains
LUT Type 4-LUT

Embedded Block RAMs 56 9Kb each
Embedded Multipliers 56 18 × 18 bits

PLLs (Phase-Locked Loops) 4
Clock Networks 20

Speed Grade -8 Lowest Speed Grade
Max Clock Tree Performance 402 MHz

Power Supply (Vdd) 1.2 V
Segment Lengths 4, 16, 24 Hierarchical

Operating Temperature 0 ◦C to 85 ◦C
Process 65 nm TSMC low-κ dielectric

Table 4.1: Device parameters for the Cyclone III EP3C16F256C8N on the BeMicro board [8]

two columns of embedded multipliers and two columns of embedded block RAMs. Surrounding

the main blocks, are IO ports and PLLs for clock generation. Not shown is the interconnect

consisting of a hierarchal network with length 4 vertical and horizontal routing segments that

connect to both LABs and longer length 16 or 24 routing segments for quickly traversing long

vertical or horizontal distances respectively.

4.1.1 LAB Architecture

Every Cyclone III LAB has 16 Logic Elements or LEs. An LE contains a 4-LUT and a register,

as shown in the top right of Figure 4.3. Within the LAB there are also two interconnect routing

networks, LAB Input Tracks (LITs), used to bring external signals into the LAB, and LAB Local

Tracks (LLTs), that allows LEs within the LAB to communicate directly, as shown in Figure 4.3-

center. Both the LITs and LLTs consists of depopulated crossbar connecting 16 or 38 routing
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Figure 4.2: Cyclone III block-level floorplan.

tracks to the 16 LEs. Both crossbars have a 50% depopulation pattern between tracks and LEs,

and is the same for every LE. We show this pattern for LLTs in the top left of Figure 4.3 and for

LITs in the bottom. Essentially, either input A or input B can connect to a track, but not both.

The same is true for inputs C and D. Thus inputs A and B form one input set, and C and D form

the second. Finally, the output of an LE, which can be registered or not, can be programmed to

connect to two separate LAB Output Buffers (LOBs), or back to the LLTs through one output

track, as shown in the top left of Figure 4.3.

4.1.2 Interconnect Architecture

LABs in the Cyclone III live within a hierarchical interconnect. Each section of the interconnect

is composed of directed wires bundled into structures identified by their orientation, C for column

or vertical wires, and R for row or horizontal wires, and their length in units of LABs. E.g., a C4

wire bundle refers to a collection of vertical wires spanning 4 LABs. A LAB brings signals in from

the general interconnect through LITs. It outputs signals using the LOBs. LOBs in the LAB can

output directly to LITs in the two horizontally adjacent LABs, one on the left and one on the

right. LOBs also output to C4 and R4 bundles and C4 and R4 bundles connect to LITs in the
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Figure 4.3: Detailed architecture of a Cyclone III LAB.
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LAB. Figure 4.4 illustrates these connections. The hierarchal nature of the interconnect comes

from the fact that C4 and R4 bundles can connect to C16 and R24 wires. Figure 4.5 summarizes

these connections.

Figure 4.4: Interconnect Architecture of a Cyclone III. Showing connections for the central, high-
lighted LAB

Not every wire in a wire bundle can connect to every wire in the next bundle. As with LITs

and LLTs in the LAB, the connections are depopulated such that a wire in one bundle can connect

to only 2 to 3 wires in the next bundle. On average, we see 80% to 90% depopulation in these

connections. Moreover, unlike LABs which have repeating patterns of connections, the connections

between LABs and the general interconnect, and between structures in the general interconnect

follow a loose pattern. Therefore, to generate the physical resource graph of the Cyclone III, we

maintain a database that explicitly stores the unique connections between physical resources.

Connection Type

Intra LAB

LE

LAB to LAB

General Interconnect

LLT

FFQ

LUT

FFD

LIT

LOB

C4

R4

C16

R24

Figure 4.5: Connections between structures in the Cyclone III
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Connection Type

Intra LAB

LE

LAB to LAB

General Interconnect×pnti
×pntj

LLT

FFQ

LUT

FFD

LIT

×pntk
×pntl

LOB

W4x

W4y

Figure 4.6: Physical resource graph for the Cyclone III

4.2 LC Graph

The first step towards implementing Timing Extraction on the Cyclone architecture is to form the

physical resource graph from the description above. From that we can construct the LC graph.

For the results presented later in this dissertation, we construct the complete physical resource

graph using the database mentioned in the previous section, representing every physical resource

we want to measure. We then process this graph through Timing Extraction and extract the

correct DUKs and paths to measure. However, in order to make sense of the resulting DUKs,

here, and in the next section, we analyze a region of the physical resource graph representative

of a physical region akin to an FPGA tile. The regularity of the FPGA makes it so that the

conclusions we reached here are applicable to the complete resource graph later.

Figure 4.6 shows this representative graph. Although similar to Figure 4.5, since it is a physical

resource graph, we show wires as W4 nodes, instead of wire bundles, and also include nodes for

LLT and LIT crosspoints. Moreover, we capture the interconnectivity between wires using the

loops and edges between the W4 nodes. However, we limit our graph to only length 4 wires. This

simplifies the graph so that we may easily make sense of the resulting DUKs. Finally, since we

only show one or two nodes for each resource, it is useful to think of the nodes as representing a

resource type standing for potentially multiple resources.

From the graph in Figure 4.6 we construct the LC Node graph using Algorithm 1, as shown

in Figure 4.7. The result has two Start Nodes, one for starting a path that initially goes through

other resources in the LAB using LLTs, and one to leave the LAB through an LOB. Sink registers

are represented by the one End Node. Mid Nodes are classified into three categories, showing
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General Interconnect
Mid Nodes

LAB to LAB
Mid Nodes

Intra LAB
Mid Nodes

FFQ →LOB FFQ →LLT

W4x →W4x

LOB→W4x

W4x →LIT

LOB→LIT

LIT→ ×k →LUT

LUT→LOB

LLT→ ×i → LUT

LUT→LLT

LUT→ FFD

LLT→ ×j → LUT

LIT→ ×l →LUT

W4y →LIT

LOB→W4y

W4x →W4yW4y →W4xW4y →W4y

Figure 4.7: LC Node graph for the Cyclone III. LC Nodes with crosspoints or wires as physical
resources are shown overlapped to signal all versions of that node generated by substituting the
correct crosspoints or wires.

those Mid Nodes used to create routes in the general interconnect, between LABs, and within

LABs. Overlapped LC Nodes represent LC Nodes that have the same shape (i.e., cover the same

type of physical resources) but are not identlical. E.g., different versions of LIT→ × →LUT can use

different crosspoints. The same holds true for those LC Nodes that cover a W4 wire resource.

4.3 DUKs

We use the LC Node graph to extract the DUKs for the Cyclone III architecture by first marking

edges (Algorithm 2), extracting M-DUKs (Algorithm 4), and finally, extracting C-DUKs (Algo-

rithm 5). Figure 4.8 shows the result of marking the edges. This figure also tags the five sibling

sets that will be used to extract C-DUKs.

Since the LC Node graph has two Start Nodes, we extract two M-DUKs by tracing their

marked path. Figure 4.9 shows the result. The Intra-LAB M-DUK is used to begin a path that

first uses local LAB resources through the LLTs. The LAB-to-LAB M-DUK allows us to leave

the LAB and route to a horizontally adjacent LAB. With the correct C-DUK, this M-DUK will
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Sib4

Sib5

LLT→ ×j → LUT
Sib4

LIT→ ×l →LUT

Sib5

W4y →LIT

Sib3

LOB→W4y

Sib2

W4x →W4y

Sib3

W4y →W4x

Sib3

W4y →W4y

Sib3

Figure 4.8: Annotated LC Node graph for the Cyclone III. Bold red edges show marked edges by
Algorithm 2. Nodes belonging to a sibling set with more than one Node have tags Sibx, indicating
which sibling set they belong to

also initiate a route that goes directly onto the general interconnect after leaving the LAB.

Intra-LAB M-DUK

FFQ →LLT LLT→ ×→ LUT LUT→ FFD

LAB-to-LAB M-DUK

FFQ →LOB LOB→LIT LIT→ ×→LUT LUT→ FFD

Figure 4.9: M-DUKs for the Cyclone III

To extract C-DUKs, we first look for sibling sets. The LC Node graph has five:

Sib1: { LUT→ FFD , LUT→LLT , LUT→LOB }

Sib2: { LOB→LIT , LOB→W4 }

Sib3: { W4→LIT , W4→W4 }
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Intra-LAB C-DUK

LUT→LLT LLT→ ×→ LUT LUT→ FFD

LUT→ FFD

−

LAB-to-LAB C-DUK

LUT→LOB LOB→LIT LIT→ ×→LUT LUT→ FFD

LUT→ FFD

−

Figure 4.10: C-DUKs from sibling set 1 for the Cyclone III

LAB-to-General Interconnect C-DUK

LOB→W4 W4→LIT LIT→ ×→LUT LUT→ FFD

LOB→LIT LIT→ ×→LUT LUT→ FFD

−

Embedded Column Neighbor 1 C-DUK

LOB→W4 W4→LIT LIT→ ×→LUT LUT→ FFD

LOB→W4 W4→LIT LIT→ ×→LUT LUT→ FFD

−

Figure 4.11: C-DUKs from sibling set 2 for the Cyclone III

Sib4: { LLT→ ×i →LUT , LLT→ ×j →LUT , . . . }

Sib5: { LIT→ ×k →LUT , LIT→ ×l →LUT , . . . }

Figures 4.10 through 4.14 show the resulting C-DUKs for each sibling set. In this section we

are concerned with the shape of each C-DUK. I.e., understanding what resources each C-DUK

uses, and how. Thus we do not explicitly differentiate between two LC Nodes with the same

shape. For example, when both the Desired Tail and Current Tail of the C-DUK use a Mid Node

such as W4→LIT , it is meant to indicate that both Tails have a Mid Node composed of a W4 wire

followed by a LIT. The actual W4 and LIT in one Tail is likely to be different than the W4 and

LIT in the other Tail.

The name of each C-DUK gives a hint of its function. To understand them better, consider the

effects each C-DUK has on a path. Not every path can be extended with any C-DUK. To extend

a path, the end of the original path must match the Current Tail of the C-DUK. For convenience

55



General Interconnect C-DUK

W4→W4 W4→LIT LIT→ ×→LUT LUT→ FFD

W4→LIT LIT→ ×→LUT LUT→ FFD

−

General Interconnect Sink Select C-DUK

W4→LIT LIT→ ×→LUT LUT→ FFD

W4→LIT LIT→ ×→LUT LUT→ FFD

−

Figure 4.12: C-DUKs from sibling set 3 for the Cyclone III

LLT Crosspoint Swap C-DUK

LLT→ ×→LUT LUT→ FFD

LLT→ ×→LUT LUT→ FFD

−

Figure 4.13: C-DUK from sibling set 4 for the Cyclone III

LIT Crosspoint Swap C-DUK

LIT→ ×→LUT LUT→ FFD

LIT→ ×→LUT LUT→ FFD

−

Figure 4.14: C-DUK from sibling set 5 for the Cyclone III
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we call the LAB where the path ends the Last LAB.

• Intra-LAB C-DUK: This C-DUK allows us to extend the path through resources within

the Last LAB.

• LAB-to-LAB C-DUK: Similarly, this DUK extends the path to a LAB horizontally ad-

jacent to the Last LAB.

• LAB-to-General Interconnect C-DUK: If a path ends by going from one LAB to a

horizontally adjacent LAB, this DUK modifies the path so that instead of ending by going to

a horizontally adjacent LAB, the path ends by using a general interconnect routing resource

and then going to some LAB.

• Embedded Column Neighbor C-DUK: This C-DUK is similar to the LAB-to-General

Interconnect C-DUK in that both have the same Desired Tail shape. The difference is

that the Current Tail of the LAB-to-General Interconnect C-DUK is a path between two

horizontally adjacent LABs, while for this C-DUK, it is a path through one W4 resource wire

instead. The reason is that, as its name suggests, these DUKs only exist next to embedded

columns (Figure 4.2), and therefore, there is no horizontally adjacent LAB for the Current

Tail to use.

• General Interconnect C-DUK: This C-DUK works on a path that ends by using a general

interconnect routing resource, and then goes into a LAB to an End Node. It is this DUK

that allows us to expands the path through another general interconnect routing resource.

• General Interconnect Sink Select C-DUK: General interconnect resources can connect

to a number of LABs. This DUK lets us choose which of these LABs a general interconnect

resource connects to.

• LLT Crosspoint Swap C-DUK: All previous DUKs enter a LAB through one of two

resources, either a particular LLT or a particular LIT. This DUK allows us to change which

LLT resources, and consequently, which LUT and register, is used.

• LIT Crosspoint Swap C-DUK: Similarly, this DUK allows us to change which LIT, LUT,

and register is used.

Thus, with two types of M-DUKs and eight types of C-DUKs, we can represent any path

through the Cyclone III. In a later section we quantify how many DUKs of each type are created

from the complete physical resource graph of the Cyclone III. Moreover, we further classify these
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DUKs based on known systematic differences, such as the LUT input used, or whether it uses a

horizontal or vertical general interconnect wire. Nevertheless, our analysis here correctly captures

the function of these DUKs.

Having a limited number of DUK types implies that we will have many DUKs of each type.

This will allow us to compare DUKs within one type, and directly reach conclusions about the

variation in the FPGA. Chapter 5 depends on there being orders of magnitude more DUKs than

DUK types, to successfully analyze the variation in the FPGA.

4.4 CAD Flow

Timing Extraction explains how to decompose a physical resource graph into DUKs. It also

determines which paths should be measured to compute the DUK delays. However, there are

some practical consideration we must take into account when actually applying timing extraction

to a real FPGA. In this section, we examine the complete CAD flow that allows us to go from a

physical resource graph of a Cyclone III to DUK delays.

At a high level, the CAD flow consists of 8 stages:

1. LC Node Graph: Processes the physical resource graph and constructs the LC Node

graph.

2. DUK Extraction: Extracts DUKs from the LC Node graph

3. Path Extraction: Determines which paths to measure

4. Path Packing: Packs multiple paths into one bitstream

5. Constraint Generation: Generates the placement and routing constraints for each bit-

stream, based on the results of path packing.

6. Bitstream Compilation: Compiles Verilog, a hardware description language, and place-

ment and routing constraints into an executable bitstream compatible with the Cyclone

III.

7. Path Measurement: Runs each compiled bitstream through the FPGA and records the

delay of each path measured.

8. DUK Computation: Computes the delay of each DUK using the measured path delays.

We have introduced the first 3 steps as the main function of Timing Extraction. We have also

described how DUK delays are computed from path delays (last CAD step). Here, we explain the
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Figure 4.15: Placement of Path-delay measurement circuit in LABs and LUTs.

intermediate 4 steps. To do so, we first look at the circuit modules we must implement on the

FPGA to both measure path delays and manage the measurement process.

4.4.1 Path Measurement Circuit

Although we must measure multiple paths, not every path uses every LAB. Therefore, we should

be able to measure multiple paths at a time. Figure 4.15 shows how the path-measurement circuit,

explained in Figure 3.2 on page 26, is placed on LABs. For the LAB or LABs that contain the

actual path, or CUT, measured, we see how each block fits inside LEs. The number of LABs used

by the Blocks Under Test will depend on the path being measured. In practice this is between one

and two LABs. This number will be the same for the Fixed LUT Input block. Since each buffer

in the CUT uses only one out of the four LUT inputs, the Fixed LUT Input block makes sure the

unused LUT inputs are consistently set. Section 4.8 explores how changing these unused inputs

changes the delay of the path, and yields insight into the internal structure of the LUT. Finally,

the rising and falling error counter-comparator blocks keep track of how many errors have occurred

in each transition, and each reports whether that number is above a threshold. The number of

LABs these counter-comparators need depend on the size of that threshold. For example, if the

threshold is set to 50% errors, or 2n−1 out of 2n iterations, each counter-comparator will require n

LEs. As previously mentioned in Section 3.1, we set n = 15. Thus, our error counter-comparators

altogether require 30 LEs, which fit in two LABs. Therefore, each measurement circuit will use

resources in 4 to 6 LABs only. Since our FPGA has 963 LABs, we can easily measure multiple

paths at a time.

In theory, we should be able to place about 963 LABs/6 LABs per measurement circuit ≈ 160

path measurement circuits in a bitstream. In practice, this number is limited for two reasons.

First, it is not sufficient to simply measure the delay of the path, we must use the FPGA to report

the measured delay. This requires dedicated circuitry that allows the FPGA to communicate with
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Figure 4.16: Block diagram of the full Timing Extraction system used to characterize delays in
the Cyclone III FPGA.

the host computer where the FPGA is connected (Section 4.4.2). For our measurements, this

leaves a region of 22 × 28 LABs. Second, our experiments show the need to carefully control

the placement, routing and activity around the path being measured in order to get accurate,

repeatable results (Section 4.12). We do this in part by creating a conservative isolation zone

of 2 LABs around the path measurement circuit. No resources in the LABs in this region are

used. When we account for this isolation region, the minimum number of labs reserved for a

path measurement circuit is between 6 × 6 and 6 × 7. Therefore, at most, we can pack between

22×28
6×7 u 14 to 22×28

6×6 u 17 path measurement circuits. In practice we fix this number to at most

15 paths per bitstream.

4.4.2 Control and Communication Module

Although crucial, the path measurement circuit is just one part of the complete circuitry required

to measure and report the delay of paths. Figure 4.16 demonstrates the complete circuit block

diagram. Here we examine each of its sections.

In order to get the delay of the CUT, it is necessary to change the frequency on the test clock

from fmin to fmax. The way to control the clock frequency is through the use of special blocks

implementing Phase-Locked Loops (PLLs). The Cyclone III has four PLLs. The PLL works

by locking onto the phase of the source clock and adjusting its frequency by a multiple factor.

Equation 4.1 shows the parameters governing the frequency scaling produced by the PLL. M and

N pre-scale the input frequency and C post-scales the final result. All three can have values

ranging from 1 to 512 [8].
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Figure 4.17: PLL resolution showing the smallest delay increment at a particular frequency.

fout = fin ·
M

N ·C (4.1)

For finer grained frequency granularity, we cascade the output of one PLL to the input of a

second PLL, giving us greater control over the scaling of the clock. Nevertheless, the fact that

the scaling factors must be integer numbers between 1 and 512, quantizes the possible frequencies

we can generate. Moreover, due to details beyond the scope of this work, certain combinations of

these scalars cause the PLLs not to lock onto the reference frequency. Permuting over all possible

scaler combinations, we can determine the minimum step size for any frequency. Figure 4.17 shows

this result for frequencies between 50 MHz and 400 MHz. As we can see, although there are many

frequencies for which a very small step size is possible, there are some that are as large as 3.2 ps.

Therefore, we sweep the frequency at a linear rate of 3.2 ps.

Even through our step size is 3.2 ps, we actually achieve half that step size because of the way

the launch and capture registers are clocked. Notice that the capture register in Figure 4.15 is

clocked on the opposite clock edge to the launch register. This means that a signal has half the cycle

time to travel from the launch register to the capture register. Therefore, for our measurements,

the ∆clock presented in Section 3.5, is 1.6 ps.

The frequency scaling factors given to the PLLs are reconfigurable at runtime. This means

that it is not necessary to stop the FPGA, clear it and load a new configuration, or bitstream, to

change the frequency. Instead, we have a module that receives new scalar factors from the host
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machine, applies these values to the PLL and reports back to the host if the PLLs were successful

at changing the frequency as the circuit is running. To speed the operation, the host pre-computes

the set of scalars that will be necessary for the programmed run.

For our experiments, we sweep the frequency from 50 MHz to 400 MHz, since we double the

clock speed by clocking the capture register on the opposite clock edge, this translates into paths

that are between 1.25 ns and 5 ns. The maximum frequency for the Cyclon III is 402.5 MHz,

which translates into 1.24 ns. In [31] we conducted preliminary measurements and discovered that

the average delay of an IntraLAB C-DUK that uses LUT input D is 236 ps. The average delay

for a similar IntraLAB M-DUK is approximately twice that. Therefore, the shortest path we can

measure must be composed of one IntraLAB M-DUK and four IntraLAB C-DUKs, i.e., 5 DUKs

long. Since the M-DUKs generated for the Cyclone III are 3 or 4 DUKs long, we use the three

path measurement approach described in Section 3.4.4 to compute the delay of an M-DUK.

Since we can place multiple path measurement circuits in one bitstream, we add a control

unit that tells the measurement circuits to start testing at the set frequency and records in a

memory block which CUTs were too slow for that frequency. This control unit also allows us

to schedule which path is measured when. This way we can minimize the activity in the FPGA

during a measurement, which minimizes the effects of operational and environmental variation on

our measurements.

Finally, we need a module that coordinates the PLL module and the LABs module as well as

the communication with the machine hosting the FPGA. This module consists of a state machine

that controls when a new frequency should be requested from the host, when LABs should initiate

tests at the given frequency, and how information flows between the host and the FPGA. Once all

LABs fail at a high enough frequency, it reports back to the host at which frequency each tested

path failed.

4.4.3 Path Packing

Understanding the complete measurement circuit, justifies the path packing CAD step. Once

Timing Extraction determines which paths to measure, path packing creates sets with at most 15

paths. The paths are selected so that no two paths share a LAB. Moreover, we reserve an isolation

region two LABs thick around the bounding box for the path measurement circuit.

4.4.4 Constraint Generation

As Section 2.1.1 reviewed, the FPGA CAD tools process a high level description of the computation

and generates a bitstream that can be mapped on the FPGA. In order to correctly measure our
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Figure 4.18: Placement of full system on the Cyclone III for a bitstream with 5 path measurement
circuits.

paths, we must generate placement and routing constraints that force the FPGA CAD tool to use

the physical resources we want to measure. Quartus [9], the Altera CAD tool suite, uses QUIP [6]

or Quartus II University Interface Program to expose an interface allowing users to specify these

routing and placement constraints. The Constraint Generation step generates the placement and

routing constraints for each of the packed path sets from the previous step.

Figure 4.18 shows a floorplan of the Cyclone III, highlighting the placement of the path mea-

surement circuit and the overall control logic into LABs. Part of the placement constraint isolates

the control logic on the left, from the path measurement circuits on the right. The figure shows a

bitstream with five path measurement circuits.

Figure 4.19 shows the resulting routing for this bitstream. Again, as part of the constraints,

we limit the wires that can cross between the control logic and the path measurement region.

4.4.5 Bitstream Compilation and Path Measurement

Once the constraints are generated, we compile one bitstream for each packed path set. Quartus

takes a Verilog description of the path measurement circuits and the control logic. It also takes
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Figure 4.19: Routing resources of full system on the Cyclone III for a bitstream with 5 path
measurement circuits

the constraint files generated in the previous step, and compiles a bitstream. Each compiled

bitstream runs on the FPGA and, along with the host computer, records the measured path

delays in a centralized database

4.4.6 DUK Computation

Finally, using the measured path delays, we compute DUK delays as described in Section 3.4.4.

These delays are then recorded in the database.

4.5 Experimental Setup

We applied Timing Extraction to the architecture of the Altera Cyclone III, and computed DUKs

delay for 18 Cyclone III FPGAs on Arrow’s BeMicro boards. We characterize the right side of

the FPGA, starting at LAB column 19. We also constraint the control logic to columns 1 to 14.

Column 17 is used as the boundary crossing between the control logic and the path measurement

circuits. These constraints produce bitstreams like the one shown in Figure 4.18.

The region measured spans from LAB (19,1) to LAB (40,28), encompassing all 560 LABs on

the right side of the FPGA, and associated interconnect. We generated the physical resource
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M-DUK Type M-DUK Count
Intra-LAB 8,960
LAB-to-LAB 15,232
Total M-DUKs 24,192

C-DUK Type C-DUK Count
Intra-LAB 8,988
LAB-to-LAB 15,260
LAB-to-General Interconnect 78,523
Embedded Column Neighbor 17,117
General Interconnect 254,077
General Interconnect Sink Select 131,474
LLT Crosspoint Swap 259,840
LIT Crosspoint Swap 566,711
Total C-DUKs 1,331,990

Table 4.2: Number of DUKs extracted from the region spanned from LAB (19,1) to LAB (40,28).

graph of this region and processed it through Timing Extraction. Table 4.2 shows the resulting

number of DUKs extracted from this region for each type of DUK. To compute the delay of all

1,356,182 DUKs, we measure 2,736,556 paths. 3 paths × 24,192 M-DUKs = 72,576 paths for the

M-DUKs, and 2 paths × 1,331,990 C-DUKs = 2,663,980 paths for the C-DUKs. Processing these

paths through path packing produces 232,250 bitstreams.

The complete system is implemented in Java, Python, and Verilog, and automates the full

CAD-flow described in Section 4.4. The data is stored in a MySQL database.

4.6 Results

In this section we present the DUK-delay distributions for one of the 18 measured FPGAs. Chap-

ter 5 compares delays across the 18 FPGAs. To understand how we differentiate between distribu-

tions, we borrow a page from biological taxonomy. Up to this point we have identified two genera,

the M-DUK and C-DUK. Within each genus, we presented different species, two for M-DUKs and

eight for C-DUKs. Here, we introduce the concept of a subspecies as it pertains to DUKs. A DUK

subspecies uses the resources prescribed by its species, but has minor morphological differences

when compared to other subspecies.

For example, when a DUK species uses a LUT, one subspecies will use LUT input A, while

another subspecies will use LUT input B. In his seminal work, Darwin referred to these differences

as variations within a species [23]. To prevent overloading the word variation, we call these

Subspecies Differences, or SDs. For each DUK species, we introduce its SDs, and where visually

meaningful, differentiate delay distributions based on their SDs. However, for some SDs, greater
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FFQi →LLTi LLTi → ×j → LUTk LUTk → FFDk

Figure 4.20: Intra-LAB M-DUK structure annotated with three SDs identified by indices i, j, and
k

analysis is required to understand how they contribute to the delay of a DUK. We defer this

analysis to Chapter 5.

Overall, the goal of this section is first to demonstrate that we are measuring variation by

showing that groups of physical resources that are logically equivalent do not necessarily have the

same delay. However, more importantly, this section begins to demonstrate that the variation in

DUK delays is composed of a combination of correlated variation, where the delay is a function

of some parameter—for example, showing that using LUT input D tends to be faster than LUT

input C—and random variation, where for one type of DUK subspecies, we still see a large delay

distribution. Even by simply looking at delay distributions, we begin to confirm the composite

nature of the delay variation. In Chapter 5 we do a more rigorous analysis that separates the

random component from the correlated, and further classifies the correlated variation based on

different parameters. Although we mostly focus on the correlated aspects when describing the

distributions below, the reader should be mindful that the distribution comes from a combination

of correlated and random variation sources. Moreover, in many cases, although the mean distri-

bution delays indicate some correlated advantage of one resource type over another, the random

variation often leads to an inversion of this advantage.

4.6.1 Intra-LAB M-DUKs

The Intra-LAB M-DUK represents a short path from a register in one LAB, through a LUT,

ending at a register in the same LAB (Figures 4.20 and 4.21). This DUK has three SDs, the index

of the source register, the LUT input, and the index of the sink register. Since there is a one-

to-one mapping between register and LLTs, choosing the index of the source register determines

which LLT is used. For a similar reason, the sink register index determines the LUT’s index.

Furthermore, the Timing Extraction decomposition determined that only LUT inputs C and D

are necessary for this DUK. To generate the equivalent paths that use LUT Inputs A and B, we

combine this M-DUK with an LLT Crosspoint Swap C-DUK (Section 4.6.9).

Figure 4.22 shows this DUK’s delay distributions. We differentiate the two histograms based

on the LUT input SD, since by design, we expect different LUT inputs to have different nominal

delays [6] (Section 4.8). Understanding how subspecies, based on the source and sink register
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Figure 4.21: Path highlighting physical resources used by the Intra-LAB M-DUK
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Figure 4.22: Delay distributions for the Intra-LAB M-DUK. Differentiating LUT input used by
the DUK

index, differ, requires greater analysis, and is presented in Section 5.4. Therefore, in this figure

each distribution is formed by the delay of all subspecies that have the same LUT input, regardless

of source and sink used.

4.6.2 LAB-to-LAB M-DUKs

Covering a short path from a register in one lab to a register in a horizontally adjacent lab, this

DUK has four SDs (Figures 4.23 and 4.24). We can choose the LOB, which, through a simple

mapping function, uniquely determines the source register. Within the existing physical resource

connectivity, we are free to select the LIT, the LUT Input, and the sink register. As with the

previous DUK, for the LUT input, Timing Extraction only generates LAB-to-LAB M-DUKs that

use either LUT input C or D. To use inputs A and B, we combine this M-DUK with an LIT

Crosspoint Swap C-DUK (Section 4.6.9).
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FFQf(i) →LOBi LOBi →LITj LITj → ×k →LUTl LUTl → FFDl

Figure 4.23: LAB-to-LAB M-DUK structure annotated with four SDs identified by indices i, j,
k, and l

Figure 4.24: Path highlighting physical resources used by the LAB-to-LAB M-DUK

Figure 4.25 shows this DUK’s delay distributions. Again, as with the previous M-DUK, we

differentiate LUT inputs C and D. However, we also differentiate whether the sink register is in a

LAB to the right of the source register (R) or to the left (L). This is an indirect way of representing

the LIT index, as half the LITs receive signals from the left LAB, and half from the right LAB.

From this graph, we can see that, on average, sending a signal to a LAB on the left is about 20 ps

slower then sending one to a LAB on the right. In Section 5.4 we analyze the delay contribution

of this and other SDs more carefully.

4.6.3 Intra-LAB C-DUKs

Being analogous to the Intra-LAB M-DUK, this C-DUK has the same three SDs (Figures 4.26 and

4.27). However, when we look at the delay distributions (Figures 4.28), we see that these DUKs

are about 200 ps faster. This is expected as we are taking a difference, instead of just having a

path between two registers.

4.6.4 LAB-to-LAB C-DUKs

As with the similar M-DUK, this C-DUK has four SDs (Figures 4.29 and 4.30b). In Figure 4.31 we

differentiate LUT input C and D, as well as the direction of the C-DUK’s Desired Tail. The results

are consistent in that input C is slower than input D, and a path heading left is, on average, slower

than a path going right. It is worth a reminder, however, that, due in part to random variation,

there exist inversions where a path using input D is slower than input C, or a left path is faster

than a right one.
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C-DUK Delay (ps)
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Figure 4.25: Delay distributions for the LAB-to-LAB M-DUK. Differentiating LUT input used
and path direction

LUTi →LLTi LLTi → ×j → LUTk LUTk → FFDk

LUTi → FFDi

−

Figure 4.26: Intra-LAB C-DUK Structure annotated with three SDs identified by indices i, j, and
k

(a) Desired Tail (b) Current Tail

Figure 4.27: Path highlighting physical resources used by both Tails of the Intra-LAB C-DUK
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Figure 4.28: Delay distributions for the Intra-LAB C-DUK. Differentiating LUT input used by
the DUK

LUTf(i) →LOBi LOBi →LITj LITj → ×k →LUTl LUTl → FFDl

LUTf(i) → FFDf(i)

−

Figure 4.29: LAB-to-LAB C-DUK structure annotated with four SDs identified by indices i, j, k,
and l

(a) Desired Tail (b) Current Tail

Figure 4.30: Path highlighting physical resources used by both Tails of the LAB-to-LAB C-DUK
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C-DUK Delay (ps)
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Figure 4.31: Delay distributions for the LAB-to-LAB C-DUK. Differentiating LUT input used
and path direction

LOBi →W4j W4j →LITk LITk → ×l →LUTm LUTm → FFDm

LOBi →LITn LITn → ×o →LUTp LUTp → FFDp

−

Figure 4.32: LAB-to-General Interconnect C-DUK structure annotated with eight SDs identified
by indices from i to p

4.6.5 LAB-to-General Interconnect C-DUKs

The Desired Tail of this DUK begins at one LAB, goes through a horizontal or vertical routing

wire, and ends at a register in another LAB. The Current Tail is a LAB-to-LAB path, beginning

at a LAB and ending at a register in a horizontally adjacent LAB. Figures 4.32 and 4.33 show the

structure with the 8 SDs of this DUK.

For this DUK’s distributions, we differentiate first based on routing resource type, vertical or

C4, and horizontal or R4. The second SD indicates the direction of the Current Tail, a LAB-to-

LAB path going either from a LAB to another LAB to its right (R) or to another LAB to its left

(L). Finally, both paths go through a LUT and into a register, thus, we differentiate on the LUT

input used for each of the two LUTs.

For Figure 4.34 we fixed both LUT inputs to C to see how wire type and path direction affect

the delay. Consistent with Figures 4.25 and 4.31, we see that a LAB-to-LAB path going left is

slower than one going right. Unlike the past two cases, however, since in this DUK this is the
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(a) Desired Tail (b) Current Tail

Figure 4.33: Path highlighting physical resources used by both Tails of the LAB-to-General In-
terconnect C-DUK
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Figure 4.34: Delay distributions for the LAB-to-General Interconnect C-DUK. Both LUT inputs
fixed to C. Differentiating routing resource direction of the Desired Tail and LAB-to-LAB path
direction of the Current Tail

Current Tail, or path subtracted, it actually leads to DUKs with LAB-to-LAB paths going left

having a smaller delay. The second thing to note is that on average, vertical routing wires are

slower than horizontal routing wires (Section 5.4).

In contrast, for Figure 4.35, we fix the routing resource to horizontal wires and the LAB-to-

LAB path to those going right, differentiating instead on the LUT inputs. As before, the Timing

Extraction decomposition results in these DUKs only using inputs C and D. From all previous

results we have seen that the mean of input C is, on average, 114 ps slower than the mean of input

D. The delay distributions for this DUK are consistent with this. However, in this case, since we

have pairs of LUT inputs, we expect the mean delay between the two extreme distributions—a C

path minus a D path, versus a D path minus a C path—to be twice that. In the figure we see
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Figure 4.35: Delay distributions for the LAB-to-General Interconnect C-DUK. Fixed the Desired
Tail’s routing resource to a horizontal R4 and the Current Tail’s direction right. Differentiating
both LUT inputs used

this as the difference of the means between the red and yellow distributions, which is 237. The

fact that it is not exactly 2 × 114 ps difference is another indication of the existence of random

variation.

At this point, we begin to see certain systematic effects emerging. Differences between LUT in-

puts, path direction, and routing resource types. It is also clear that inversions of these systematic

differences are ample and expected.

4.6.6 Embedded Column Neighbor C-DUKs

This C-DUK is a special case of the LAB-to-General Interconnect C-DUK (Section 4.6.5). All

Embedded Column Neighbor C-DUKs have a Desired Tail, and consequently also a Current Tail,

that begin in a LAB adjacent to an embedded block. As Figure 4.2 shows, the region we measured

has embedded memories at column 25. At columns 18 and 34, it has embedded multipliers. Since

we do not model embedded blocks in the physical resource graph, the LABs in columns 19, 26, and

35 do not have a LAB horizontally adjacent to their left. This is also true for LABs in columns

24 and 33, however, in this case, there is no LAB horizontally adjacent to their right.

For LAB-to-General Interconnect C-DUKs, the Current Tail is a LAB-to-LAB path (Fig-

ure 4.33b), always going from one LAB to a horizontally adjacent LAB. However, for the LABs in

columns adjacent to embedded blocks, it is not possible to have a LAB-to-LAB Current Tail that
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LOBi →W4j W4j →LITk LITk → ×l →LUTm LUTm → FFDm

LOBi →W4n W4n →LITo LITo → ×p →LUTq LUTq → FFDq

−

Figure 4.36: Embedded Column Neighbor C-DUK structure annotated with nine SDs identified
by indices from i to q

(a) Desired Tail (b) Current Tail

Figure 4.37: Path highlighting physical resources used by both Tails of the Embedded Column
Neighbor C-DUK

goes in the direction of the embedded block. Therefore, as Figures 4.36 and 4.37 show, the Current

Tail for these DUKs begins at a LAB, goes through a routing resource and ends at a LAB. Note

that the Desired Tail of both this C-DUK and the LAB-to-General Interconnect C-DUK have the

same structure.

This is a complex DUK, having 9 SDs. Therefore, it is difficult to fully understand the sys-

tematic contribution of a subspecies with a particular combination of the 9 SDs by simply looking

at delay distributions. We have seen how fixing an SD to a particular value allows us to separate

out its effect on the DUK delay. In Figure 4.38 we similarly fix the SD that determining the type

of the routing resources for both the Desired Tail and the Current Tail to a vertical C4 wire, and

let the two LUT inputs vary. At first glance, the distributions look similar to those in Figure 4.35.

However, in this case when we use different LUT inputs, the resulting delay distribution appears

to be bimodal. The reason for this comes from the fact that although in this graph we fix the

routing resource types to C4 wires, the direction of the wires, either up or down, matter.

In Figure 4.39 we decompose the red bimodal distribution from Figure 4.38 based on the wire

direction. At this point, all but one of the distributions is not bimodal, the distribution where both

wires go up still has a bimodal component. The difference in this bimodal distribution correlates

directly to the Y coordinate of the DUK. This demonstrates systematic differences between DUKs,

Section 5.4 automates the discovery process of these types of variations.
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Figure 4.38: Delay distributions for the Embedded Column Neighbor C-DUK. Fixed routing
resource type from C4 to C4. Differentiating both LUT inputs used

C-DUK Delay (ps)

0
4

8
16

2
4

3
2

4
0

4
8

F
re
q
u
en
cy

C.T. Wire Dir. U D.T. Wire Dir. U µ − 90 σ 83.1
C.T. Wire Dir. U D.T. Wire Dir. D µ 102 σ 25.8
C.T. Wire Dir. D D.T. Wire Dir. U µ − 156 σ 32.3
C.T. Wire Dir. D D.T. Wire Dir. D µ 131 σ 16.4

-230 -200 -170 -140 -110 -80 -50 -20 0 20 50 80 110 140 170

Figure 4.39: Delay distributions for the Embedded Column Neighbor C-DUK. Fixed routing
resource type from C4 to C4 and LUT inputs to D for the Desired Tail and C for the Current
Tail. Differentiating direction routing resource wires
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W4i →W4j W4j →LITk LITk → ×l →LUTm LUTm → FFDm

W4i →LITn LITn → ×o →LUTp LUTp → FFDp

−

Figure 4.40: General Interconnect C-DUK structure annotated with eight SDs identified by indices
from i to p

(a) Desired Tail (b) Current Tail

Figure 4.41: Path highlighting physical resources used by both Tails of the General Interconnect
C-DUK

4.6.7 General Interconnect C-DUKs

This C-DUK will give us the best indication of the delay of a general routing resources. Its

structure is shown in Figures 4.40 and 4.41, highlighting its eight SDs. When we subtract the

Current Tail from the Desired Tail, the structure of the DUK is such that the delay that remains

can be characterized as the delay of the W4j routing resources plus the differences between two

paths of similar shape. It is this fact that gives the DUK its name.

As with all C-DUKs, both the Current Tail and the Desired Tail end by going through a LUT,

thus we differentiate the distributions in Figure 4.42 based on the LUT input. This DUK also uses

two routing resources, W4i and W4j . For this figure, we fix both to vertical, C4, wires. Going

through a similar analysis to that of Figure 4.35 in the previous section, confirms that LUT input

C is slower than LUT input D.

More interesting is the result presented in Figure 4.43 where we fix the LUT inputs both

to C and allow the routing resources W4i and W4j to vary. We mentioned that W4j is the

dominant delay of this DUK, and Figure 4.43 confirms this. The primary difference for the means

of the distributions is whether W4j is a horizontal, R4, wire, or a vertical, C4, wire. As with

Figure 4.34 we again see that horizontal wires are faster than vertical, a fact confirmed in the

analysis of Section 5.4. Another similarity to the distributions in Figure 4.34 is the large tails of

both distributions with W4j=C4. This long tail corresponds to a systematic slowdown of the C4

routing resources in columns 20 and 29 of the Cyclone III FPGA. Section 5.4 better quantifies
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Figure 4.42: Delay distributions for the General Interconnect C-DUK. Fixed both routing resource
type to C4. Differentiating both LUT inputs used

this fact.

4.6.8 General Interconnect Sink Select C-DUKs

Routing resource wires connect to multiple LABs along their length. This C-DUK allows us to

change which LAB the routing resource connects to (Figure 4.45). As shown in Figure 4.44, this

C-DUK has seven SDs. For our distribution plots we differentiate based on the LUT inputs of

both the Desired and Current Tails, and fix the wire W4i to vertical wires. The distributions in

Figure 4.46 are consistent with all previous distributions differentiated in this way, except for the

fact that the two distributions with different LUT inputs are bimodal. This bimodal distribution

is explained by the distance between the LAB of the Current Tail, and the LAB of the Desired

Tail. The sign of this difference is responsible for the bimodal nature, and is purely the result of

an arbitrary but consistent decision made by the decomposition algorithm of which sibling in a

given sibling set is the marked sibling.

4.6.9 LLT and LIT Crosspoint Swap C-DUKs

In all previous DUKs, either LUT input C or LUT input D is used to go into a LUT. More than

that, for most other DUKs the LUT used is always the very first LUT in the LAB, the other 15

LUTs are not used. It is these two C-DUK that allow us to change both which LUT and which

LUT input is used in a path. The reason why there are two types of C-DUKs is that we can
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Figure 4.43: Delay distributions for the General Interconnect C-DUK. Both LUT inputs fixed to
C. Differentiating routing resource type combinations

W4i →LITj LITj → ×k →LUTl LUTl → FFDl

W4i →LITm LITm → ×n →LUTo LUTo → FFDo

−

Figure 4.44: General Interconnect Sink Select C-DUK structure annotated with seven SDs iden-
tified by indices from i to o

(a) Desired Tail (b) Current Tail

Figure 4.45: Path highlighting physical resources used by both Tails of the Sink Select C-DUK
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Figure 4.46: Delay distributions for the General Interconnect Sink Select C-DUK. Fixed routing
resource type to C4. Differentiating both LUT inputs used

go into a LUT either from within the LAB using an LLT, or from the general interconnect or

an adjacent LAB using an LIT. Thus, how a signal enters a LUT determines whether we require

an LLT Crosspoint Swap C-DUK or an LIT Crosspoint Swap C-DUK to change the LUT and

LUT input used. The structure for the LLT based C-DUK is shown in Figures 4.47 and 4.48.

Figures 4.49 and 4.50 show the LIT based C-DUK structure. Each has five SDs determining either

the LLT or LIT used, the LUT input of both the Current Tail and Desired Tail, and similarly for

the LUT and register used for each part of the C-DUK.

Figures 4.51 and 4.52 show the delay distributions for both C-DUKs. In them we differentiate

the LUT input used for the Current Tail and Desired Tail. Although for the LLT based C-DUKs

the Current Tail only uses LUT inputs C and D, and for the LIT based DUK it is LUT inputs A

and B, both provide the necessary combinations to change the selection when we consider that C-

DUKs are reversible in the following sense. The Current Tail of a C-DUK represents the resources

we remove from the end of a path, while the Desired Tail represents the resources we add to the

end of a path. The delay of a C-DUK indicates how the path delay changes once we remove the

Current Tail and add the Desired Tail. However, we can always use a C-DUK in the opposite

way, where the Desired Tail is the part we remove from the end of a path, and the Current Tail

the part we add. To get the delay of the C-DUK used in this way, we simply change the sign of

the original C-DUK. Thus, if we use the LIT Crosspoint Swap C-DUKs in reverse, we gain the

ability to change from paths that use inputs C and D, to paths that use inputs A and B.
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LLTi → ×j →LUTk LUTk → FFDk

LLTi → ×l →LUTm LUTm → FFDm

−

Figure 4.47: LLT Crosspoint Swap C-DUK structure annotated with five SDs identified by indices
i, j, k, l, and m

(a) Desired Tail (b) Current Tail

Figure 4.48: Path highlighting physical resources used by both Tails of the LLT Crosspoint Swap
C-DUK

LITi → ×j →LUTk LUTk → FFDk

LITi → ×l →LUTm LUTm → FFDm

−

Figure 4.49: LIT Crosspoint Swap C-DUK structure annotated with five SDs identified by indices
i, j, k, l, and m

(a) Desired Tail (b) Current Tail

Figure 4.50: Path highlighting physical resources used by both Tails of the LIT Crosspoint Swap
C-DUK
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Figure 4.51: Delay distributions for the LLT Crosspoint Swap C-DUK. Differentiating both LUT
inputs used
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Figure 4.52: Delay distributions for the LIT Crosspoint Swap C-DUK. Differentiating both LUT
inputs used
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In Section 4.6.1 we mentioned that we expect LUT inputs to have different nominal delays.

Up to this point we had only confirmed this for inputs C and D. Now we can see how inputs A

and B relate as well. First, notice that when the LUT input of both parts of the C-DUK match,

the distributions are practically centered at zero. This gives us a frame of reference from which to

compare the other combinations. In Figure 4.51 the mean for the dark blue distribution, where

inputs C and A are used, has a mean delay of 80 ps. Similarly in Figure 4.52 the corresponding

distribution, the red one in this case, has a mean delay of −83 ps. Since the order in which

the two distributions use inputs C and A is mirrored, both graphs consistently indicate that the

systematic delay contribution of using input A versus using input C is about 80 ps. Looking at the

correct distributions, we can come up with an ordering of LUT input delays where the systematic

contribution of one LUT input, relative to another, is as follows. Input A is, on average, 12 ps

slower than input B. In turn, input B is, on average, 67 ps slower than input C. Finally, on average,

input C is 109 ps slower than input D. Of course, these numbers are not exact differences between

LUT inputs, since random variation also contributes to the delay. Nevertheless, there is strong

evidence that these values are close to the average delay difference between LUT inputs.

4.7 Falling Vs. Rising Transitions

As Section 3.1 presents, FPGAs have different falling and rising transition delays. In part this

is due to the behavior of CMOS logic, where there are differences between the pull-up and pull-

down networks. Also, some of the circuit structures use pass-transistors which have a harder time

propagating a rising transition as compared to a falling transition. In theory, we can compute the

delay difference between rising and falling transitions by examine the circuit and adjusting based

on the properties of the different physical resources. Nevertheless, our path-delay measurement

circuit (Section 4.4.1) separately tracks the delay of a rising transition and the delay of a falling

transition. We track both because random variation greatly reduces the correlation between a

falling and a rising transition, making it nearly impossible to extrapolate one from the other. In

this section we examine the difference between rising and falling transitions, and confirm that the

magnitude of the random variation requires that we record both rising and falling transitions.

Except for the results presented in this section, the results we show in this work are for rising

transitions only.

In our DUKs, we clearly detect a difference between falling and rising transitions. For example,

Figure 4.53 plots the same distributions as Figure 4.25 expect that here we show both rising delay

distributions (in darker shades) and falling delay distributions (in lighter shades). From this graph,
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Figure 4.53: Delay distributions for the LAB-to-LAB M-DUK. Differentiating LUT input used
and path direction

it appears as though the main difference between rising and falling delays is that rising delays are

systematically slower than falling delays by an average of 4% to 5%. However, to really understand

the difference between falling and rising, for each combination of LUT input and path direction,

it is necessary to look at a correlation plot.

If the difference between falling and rising was purely systematic, a correlation plot, where

the X-axis shows the falling delays, and the Y-axis shows the rising delays, would show all points

on the diagonal that represents rising transitions 5% slower than falling transitions. Figures 4.54

and 4.55 show the corresponding four correlation plots. Although all four plots show a diagonal

trend, it is clear that all points are not on the same diagonal. In fact, for some DUKs, we see up

to 12% delay difference between rising and falling. Moreover, for input D, in Figure 4.55, we even

see inversions where the falling delay of a DUK is slower than its rising delay.

When we examine all our DUK measurements, we observe that, on average, rising transitions

are slower than falling transitions. However, due to the presence of random variation, the corre-

lation between rising and falling delays is not sufficiently strong to allow us to only measure one

and extrapolate the other. Therefore, for all our measurements, we maintain a separate entry for

a DUK’s rising and falling delays.
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(a) LAB-to-LAB path direction: Left
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Figure 4.54: Correlation between falling and rising LAB-to-LAB M-DUK delays. Figure a shows
the result when LUT input is fixed at C and the path direction is left, while Figure b shows
the results for the same LUT input, C, but path direction is right. Diagonal lines indicate the
difference between the two results in terms of d∆ = 1.6 ps. Thicker lines indicate 10d∆. Red
dashed lines indicate error boundaries as computed in Section 3.5.
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Figure 4.55: Correlation between falling and rising LAB-to-LAB M-DUK delays. Figure a shows
the result when LUT input is fixed at D and the path direction is left, while Figure b shows
the results for the same LUT input, D, but path direction is right. Diagonal lines indicate the
difference between the two results in terms of d∆ = 1.6 ps. Thicker lines indicate 10d∆. Red
dashed lines indicate error boundaries as computed in Section 3.5.
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Intra-LUT C-DUK

× →LUT CELLxxx LUT CELLxxx → FFD

× →LUT CELLyyy LUT CELLyyy → FFD

−

Figure 4.56: C-DUK for internal LUT structures

4.8 Intra-LUT C-DUK

Up to this point we have modeled LUTs in the FPGA as black boxes. However, to demonstrate

that Timing Extraction can adapt when given a more detailed resources graph, in this section

we consider what happens when we explore the structure of the LUTs. Currently, we represent

a LUT as one node in the physical resource graph. Understanding how we use the LUT explains

how to modify the physical resource graph to represent the internals of the LUT.

A LUT with k inputs contains 2k memory cells, usually implemented as SRAM cells. As shown

in Figure 4.15, LUTs in a measured path, which form part of the circuit under test (CUT), are

logically configured as simple buffers. For a k-LUT, this means that only 1 out of k inputs is used,

and only 2 SRAM cells in the LUT will be read. For a given used input, which two SRAM cells

are read depends on how the unused k − 1 inputs are configured. For example, in the Cyclone

III 4-LUT, when the LUT is programmed as a buffer on input A and the other 3 inputs are fixed

low, we use the SRAM cells addressed by input bit-vectors 0000 and 1000. If, instead, the unused

inputs are fixed high, the SRAM cells will be those read by bit-vectors 0111 and 1111. Altogether

there are 8 pairs of SRAM cells that can be used to implement a buffer on input A. We can label

the 8 pairs as A000 through A111. A similar labeling for inputs B, C, and D leads to 32 pairs of

SRAM cells, and each one of these 32 pairs is represented as a node in the physical resource graph,

replacing the LUT node. To modify the graph, we look at any parent of the original LUT that

connected through input A, and replace its connection to nodes A000 through A111. A similar

replacement occurs for the other three LUT inputs. Finally, any node that was a child of the

original LUT node is now a child of all 32 SRAM cell nodes.

Once the graph is modified, LC Nodes and DUKs are formed using the same algorithms.

However, in this case, we have a new C-DUK representing the substitution of one pair of SRAM

cells for another. We call this the Intra-LUT C-DUK and is represented in Figure 4.56
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Figure 4.57: Intra-LUT C-DUK delays. Each scatter plot shows the delay of Intra-LUT C-DUKs
with the same controlling and fixed LUT inputs. The region between red dashed lines is shown
as a reference of the range of the expected error as computed in Section 3.5

4.8.1 Results

For all results presented in this work, except for those in this section, when a LUT input is not

used to implement the buffer, it is fixed to the vector 0011 for inputs A through D respectively.

We do this through the Fixed LUT Input blocks shown in Figure 4.15. The Intra-LUT C-DUK

allow us to take these results and adjust them for other vectors. Figure 4.57 shows the Intra-LUT

C-DUK delays as a scatter plot for each vector, differentiating which input is controlling by the

color of the distribution. For example, for the column labeled 0, 1, 1, when A is the controlling

input, B, C, and D are fixed at 0, 1, and 1 respectively. While, when C is the controlling input,

A, B, and D are fixed at 0, 1, and 1.

The main thing to notice is that when inputs A or B are controlling, the value of the other

inputs greatly matters, whereas the value of the unused inputs does not matter when C or D are

controlling. This is consistent with the architecture of the LUT as shown in Figure 4.58. When

A or B are controlling, the critical path incurs the full delay of going through the internal LUTs

followed by the muxes. In this case, the value of inputs C and D determine the path through the

LUT. When inputs C is controlling, the critical path is determined only by input D. Looking at

Figure 4.57, when input D is 1, input C’s delay is more controlled. Whereas, when D is 0, input

C’s delay has a slightly wider distribution. Finally, when input D is controlling, it does not depend

on any of the other inputs to determine its critical path, thus its delay never changes, regardless

of the value of the fixed LUT inputs.

4.9 Effects of VDD on Variation

Lowering the supply voltage, VDD, is a common and important way to save power and energy.

In this section we use DUK delays to examine the effect that reducing VDD has on variation. In
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Figure 4.58: Architecture of the Cyclone-III 4-LUT [6]

particular we ask whether scaling VDD has a purely systematic effect on the variation distributions

or is there a random component as well.

The primary adverse effect of reducing VDD is a reduction in performance. We see this directly

in the equation for the propagation delay of a transistor reproduced here.

τpd = Cl ·
Vds
Ids

(2.1)

Lowering VDD also has an effect on the current through the transistor. In Section 2.2.2 we present

the saturation and subthreshold current equations, reproduced below.

Ids,sat = WvsatCox

(
Vgs − Vth −

Vd,sat
2

)
(2.5)

Ids,sub =
W

L
µCox(n− 1) · vT 2 · e

Vgs − Vth
n · vT

1− e
−Vds
vT

 (2.6)

Lowering VDD has a direct effect on Vgs, and subsequently reduces the magnitude of the

difference (Vgs−Vth). As the delay is inversely proportional to the current, the smaller magnitude

of this difference also increases the delay through the transistor.

However, lowering VDD also has an effect on the spread of the delay distribution, that is, the

difference between the fastest and slowest resource increases as we decrease VDD. We know that

τpd is proportional to 1
(Vgs−Vth) . Therefore, as Equation 4.2 shows, the difference between the

slowest and fastest transistor is proportional to 1
V 2
gs

, which increases as VDD, and consequently

Vgs, decrease.
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Figure 4.59: Intra-LAB delays when varying Vdd. Differentiating Vdd value, Cyclone IV

τpd max − τpd min ∝
1

(Vgs − Vth max)
− 1

(Vgs − Vth min)
∝ 1

V 2
gs

(4.2)

By extracting DUK delay at different VDDs, we can empirically observe these effects. To do

this, we take advantage of the fact that the DE0-Nano [86] board, containing a Cyclone IV FPGA

[12], is easier to modify than the BeMicro Arrow board, and perform the necessary changes to it

so that we can control its internal VDD [85]. Fortunately, four our purposes, the only difference

between the Cyclone IV and Cyclone III is that the Cyclone IV is fabricated in 60 nm technology,

as opposed to 65 nm technology. Aside from this, the architecture of the resources we measure

are the same.

Nominally, the board provides a 1.2 V VDD. For our tests, we scale at 100 mV increments. At

VDD = 0.8 V, a large percent of our measurements fail, and due to safeguards on the board, at

0.7 V the board fails to power up.

Figure 4.59 shows, for the same set of DUKs, what happens to their delay distribution as we

reduce VDD. As expected, we clearly see both effects discussed. Lowering VDD both shifts the

mean delay to larger delays, and increases the standard deviation. Thus, although lowering VDD

is useful, lowering it too far will negate its effects, since variation will increase, reducing the energy

savings, and potentially leading to defects. However, when combined with a component-specific

mapping that takes into account the variation in the FPGA, this approach can lead to almost 2×
energy savings[63].
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4.10 CAD Vs. Measured Delays

Timing extraction computes DUK delays from real on-chip measurements. However, the CAD

tools provided by the FPGA vendors contain a complex timing analysis tool, backed by a detailed

delay model of the FPGA, from which we could potentially get the same delay information as we

do from our DUKs. To get the DUK delays as computed by the CAD tools, for every path we

measure, we also ask the CAD tools for what it thinks is its delay. With that information, we

can calculate both DUK delays based on our measurements, and CAD DUK delays based on the

delays reported by the tools. In this section we compare the distributions from these two types of

DUK delays.

Figure 4.60a shows the DUK delay distribution for LAB-to-LAB C-DUKs, using LUT input C,

going left. This is the exact same distribution as the blue distribution in Figure 4.31. Figure 4.60b

plots the delay distribution for the same DUKs, however, it is based on the delays computed from

the CAD tools instead. The two distributions are strikingly different.

The measured distribution spans 187 ps, while the CAD distribution spans half, 93 ps. Also,

on average, the CAD DUKs are 54% slower than the measured DUKs. This last fact is hardly

surprising, however, since the CAD tools model more than just process variation, they also take

into account environmental and operational variation, as well as aging effects. In contrast, our

measurements are done in highly controlled environments. What is surprising is that the shape

of the two distributions is completely different. To better compare them, Figure 4.60c shows a

correlation plot between the two distributions. From this figure it is clear that there is little

correlation between the two distributions. Nevertheless the fact that the CAD distribution has

a spread indicates that the CAD tools are aware of some amount of variation between logically

equivalent resources.

To understand what the CAD tools use to compute this variation, we need to understand which

properties of the DUK the CAD tools depend on to extract their delay. Figure 4.61a shows the

correlation between CAD DUK delays and the LUT index for the beginning of this DUK. From

this figure, we see that different indices tend to have different CAD delays. Similarly, Figure 4.61b

shows the correlation of the CAD DUK delay to the X coordinate of that LUT. Here we can

separate the DUKs into three groupings. Those DUKs that have a LUT with X coordinate 21,

those that use coordinate 30, and those in neither 21 nor 30.

Separating DUKs by both LUT index, and the three X coordinate groups almost perfectly

explains the sources of variation known to the CAD tools. Figure 4.62 shows the delay distributions

and correlation when we isolate based on a LUT index of 7. Our measurements indicate that these

DUKs span a range of 141 ps in a Gaussian-like distribution from 469 ps to 610 ps (Figure 4.62a).
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Figure 4.60: Correlation between measured DUK delays and CAD DUK delays for LAB-to-LAB
C-DUKs on LUT input C going left. Diagonal lines in Figure c, spaced at 10 ps intervals, show
the angle where perfect correlation would occur.

740 760 780 800 820 840
CAD DUK Delay (ps)

0
2

4
6

8
1
0

1
2

1
4

S
ou

rc
e
L
U
T

In
d
ex

(a) Correlation to LUT Index

740 760 780 800 820 840
CAD DUK Delay (ps)

20
23

26
29

3
2

3
5

3
8

X
C
o
or
d
in
at
e
fo
r
S
ou

rc
e
L
A
B

(b) Correlation to X Coordinate

Figure 4.61: Correlation of CAD DUK delays to different DUK parameters.
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Figure 4.62: Correlation between measured DUK delays and CAD DUK delays for LAB-to-LAB
C-DUKs on LUT input C, going left, using LUT number 7. Diagonal lines in Figure c, spaced at
10 ps intervals, show the angle where perfect correlation would occur.

On the other hand, the CAD DUKs belive these DUKs to have one of three possible delays: 773

ps, 814 ps, or 828 ps (Figure 4.62b). When we compare the two distributions, in Figure 4.62c, and

account for the three X coordinate groupings, we fully explain the variation known to the CAD

tools. However, it is clear that our measurements capture significantly more variation. In fact,

when isolated by X coordinate grouping, for a resource the CAD tools claim to have no variation,

we see spreads of 90 ps, 46 ps, and 78 ps. Although, the majority of this spread is probably

explained by random variation, our measurments are aware of a systematic difference between the

three X coordinate groupings. This is a strong indication that the CAD tools are not aware of all

the variation in the FPGA, and Timing Extraction is essential to understand process variation in

FPGAs.

4.11 Measurement Runtime

To undestand the time it takes to measure all paths, we develop the following formulas. We begin

by determining the time it takes one bitstream to run. We divide it into three components, the

time to load, or configure the bitstream on the FPGA, the time to run the bitstream, and the

time to read back the results.

Tbiststream = Tconfigure + Trun + TreadResults
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The time to run breaks down into a sum over frequencies of the time to reconfigure the PLL

for the current frequency, the time to give the start signal, and time to measure the path at the

current frequency.

Trun =

fmax∑
f=fmin

TPLLReconfig + Tstart + Tmeasure

For each frequency, the host initiates a PLL reconfiguration, and then issues a start command,

the time for these two events are tracked by TPLLReconfig and Tstart. Tmeasure, represents the

time it takes all the paths under test to measure their individual path at the current frequency

and can be decomposed as follows:

Tmeasure = #paths in bitstream · #cycles at f

f

It accounts for the fact that we run multiple cycles at the set frequency. The total number

of frequencies also varies since the control logic stops incrementing the frequency once all path

measurement circuits report having failed at least a threshold number of times.

For each of the 232,250 bitstream, we tracked how long it takes to run, broken into the individ-

ual delays described before. Figure 4.63 shows the runtime breakdown for each bitstream in one

FPGA. Table 4.3 shows the averages over all bitstreams on all 18 FPGAs measured. On average

we see that it takes almost 3 seconds to configure the bitstream. We believe this is a function of

the board, programmed over a serial interface, and less dependent on the size of the logic being

mapped to the FPGA. Trun also takes just under 3 seconds. The majority of this delay comes

from the fact that we do a linear sweep over frequencies, on average testing 200 frequencies. A

number already reduced by the fact that we perform an initial binary search to find the lowest

frequency where we should begin our linear sweep. For each frequency, we test a path 215 times

and then, sequentially move on to test the next path in the bitstream. On average it takes 6.76

seconds to completely processes a bitstream. This means that to complete all our measurements

required 6.76 × 232, 250 = 1, 570, 010 seconds, or 18 days. The large runtime is not a function

of the fundamentals of Timing Extraction, rather, it is due, in part, to the extremely careful

measurements we take. Section 6.1 explores future approaches to greatly reduce this runtime by

up to four orders of magnitude.

92



Figure 4.63: Breakdown of how long each bitstream takes to run for a given FPGA. Left side shows
the breakdown for each bitstream ordered by total runtime. Right side shows the distribution for
each time breakdown and the total time.

Component Mean
Tconfigure 2.85 s
TPLLReconfig 4.63 ms
Tstart 46.5 µs
Tmeasure 9.81 ms
# frequencies 199
TreadResults 0.95 s
Tbiststream 6.76 s

Table 4.3: Average delay and frequency count breakdown over all bitstreams and measured FPGAs
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(a) Limited constraints (b) Extensive constraints

Figure 4.64: Floor plan of two bitstreams measuring the same paths, but having different place-
ment constraints.

4.12 Measurement Consistency

Timing Extraction aims to measure process variation while minimizing the effects of environmental

and operational variation. To achieve this, we highly constrain the placement and routing of the

measurement and control circuits. Moreover, we measure paths sequentially so that the activity

produced by measuring one path, does not affect the measurement of other paths. In this section

we justify the need for this extreme control, and demonstrate that we can successfully measure

process variation by consistently measuring DUK delays.

To understand the need for isolation between the measurement logic and the control logic, we

perform the following simple experiment. We generated two sets of bitstreams, both sets have a

4× 5 array of measurement circuits on the right side of the FPGA, each measuring the same path

in a different LAB. However, for one set we only constrained the placement and routing of the

launch register, CUT, and capture register, while the second completely constrains the placement

and routing of all the logic, as described in Section 4.4.4. Figure 4.64 shows the placement for

a bitstream in each set. We expect the order in which we measure each of the 20 paths to be

independent of the path delays. To test this, we instruct the bitstreams to measure the paths first

in row-major order, where every path on the same row in the array is measured before measuring

paths in the next row. We then instructed the bitstreams to measure in column-major order.

If we are measuring process variation, we expect that the order in which we measure the LABs

should have almost no impact on the results. We compare the results of row-major and column-

major measurements by plotting the delays of the column-major run against the row-major results.

Since we expect path measurement order not to affect path-delays, we expect to see all points lie
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Figure 4.65: Correlation between row-major and column-major delay measurement results. Fig-
ure a shows the result when limited constraints are imposed as opposed to Figure b where place-
ment and routing were heavily constrained. Diagonal lines indicate the difference between the
two results in terms of d∆ = 1.6 ps. Thicker lines indicate 10d∆. Red dashed lines indicate error
boundaries as computed in Section 3.5.

on a diagonal, within the measurement error expected (Section 3.5). Figure 4.65 shows the results

for the two sets of bitstreams. Immediately, we see that placement and routing constraints have a

huge effect on measurement consistency. Figure 4.65a reveals a difference of up to 72 ps, between

paths that should have the same delay. Figure 4.65b shows that controlling placement and routing

is a necessity if we are to measure process variation and not other sources of variation.

A second test to confirming that Timing Extraction is measuring process variation comes from

the fact that we can compute the same DUK delay using many different paths. Recall that DUK

delays are computed by taking linear combinations of a few paths. As explained in Section 3.4.4,

we are free to choose most of the components that compose these paths, as long as we meet certain

requirements. For example, for the two paths needed for a C-DUKs, there is a stated relationship

that must exist between the ends of the two paths. We are, however, free to choose the beginning

of the paths, as long as they match in both paths. This observation leads to a simple way to test

our measurement results.

We generated two separate sets of paths for both M-DUKs and C-DUKs. These path sets

differ in the LC Nodes unrelated to the DUK. After measuring the paths and computing the DUK

delays, we compare the DUK-delays from both sets in Figure 4.66. The figure demonstrates that

we can consistently compute DUK-delays regardless of what other resources are used in the paths

we measure.
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Figure 4.66: Correlation between DUKs when measuring different path sets yielding the same
DUKs. Diagonal lines indicate difference between results in terms of ∆clock = 1.6 ps. Thicker
lines indicate 10 ·∆clock. Red dashed lines indicate error boundaries as computed in Section 3.5.
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Figure 4.67: Delay of a C-DUK from LE 6 to LE 11 in LAB (27,22) using input D, computed
using 150 different pairs of paths. The distance between horizontal gray lines is ∆clock = 1.6 ps.
The region between red dashed lines shows expected error bounds as computed in Section 3.5. All
150 C-DUKs are within these bounds. Cyclone III

To gain even more confidence of our measurements, we repeat the experiment but instead of

using two different sets of paths, we use 150 different sets that all yield the same DUK. Figure 4.67

shows the resulting delay for one C-DUK. All 150 results lie within the expected error. Together

these figures show that we can trust our technique to correctly and consistently compute the delay

of DUKs.

4.13 Scaling

Section 3.4.5 explains how the number of DUKs is bounded by the fanout of the physical resources

graph. The number of edges in a physical resource graph of a circuit is linear in the number of
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physical resources. This fact places a bound on the fanout of a circuit. As such, the number of

DUKs is also linear in the number of physical resources. Therefore, the work required to compute

all DUKs is linear in the number of resources. Also, since the number of paths that must be

measured to compute the delay of a DUK is constant, either two or three, the number of paths

that we must measure, and the time to measure these paths, is also linear in the number of physical

resources in the FPGA.

Finally, we consider the number of bitstreams we must generate to measure all paths. Although

the number of DUKs is linear in the number of physical resources, the number of bitstream is

asymptotically constant, regardless of the size of the FPGA. The reason for this stems from the

regularity of FPGAs. In an FPGA we can identify a small region of physical resources that is

repeated to create the complete FPGA. For the resources we characterized on the Cyclone III,

this repeating region is approximately a 6× 6 LAB region. As previously explained (Section 4.4),

we can pack multiple path measurement circuits in each bitstream. Thus, although the DUKs

within the repeating region need to be measured sequentially—requiring a separate bitstream for

each path measured in the repeating region—we can pack multiple path measurement circuits

within one bitstream, as long as each comes from a different repeating region. Therefore, the total

number of bitstreams is only determined by the number of paths that we must measure in one

repeating region, not by the total number of physical resources we want to characterize. The total

number of paths within one bitstream will be on the order of the number of repeating regions. In

general, we may need twice as many paths since any time we measure paths, we reserve a portion

of the FPGA for the control logic (Section 4.4.2).

4.14 Chapter Summary

Applying Timing Extraction to a commercially available FPGA reveals a vast amount of infor-

mation about the FPGA. Given the physical resource graph of the FPGA, Timing Extraction

decomposes the graph into a small number of M-DUKs and a large number of C-DUKs. Each

C-DUK type allows us to transform a different aspect of the path, such as which LUT input to use,

or to which LAB a general interconnect wire should connect. Once the physical resource graph

is decomposed into DUKs, and we have determined which paths to measure, we pack multiple

paths into one bitstream, along with the logic to control and report back the measurement results.

Placement and routing constraints are generated for each bitstream, that is then complied and

run on the FPGA. Computing DUK delays from these measurements reveals significant process

variation. Separating this variation based on known systematic design differences, we begin to

97



understand the sources of variation. However, a detailed analysis of this variation is still neces-

sary to grok [37] the contributions from different variation types. The next chapter presents this

analysis.

Beyond revealing raw variation, Timing Extraction gives insight into other aspects of the

FPGA. We observe a systematic difference between transitions, where rising transitions are, on

average, slower than falling transitions. By exploring the internal structure of the LUTs, we

see how Timing Extraction naturally adjusts based on what the physical resource graph exposes.

Giving Timing Extraction a physical resource graph that exposes the internals of the LUT, Timing

Extraction can provide detailed insight into the behavior of the LUTs. Using DUKs, we can also

understand how variation is affected by the different properties of the FPGA. We adjust the

supply voltage and empirically observe that variation significantly increases as the supply voltage

decreases. Finally, a comparison between our measured delays and the delays reported by the

CAD tools reveals that the CAD tools are unable to model the full spread of process variation.

We conclude the chapter by exploring properties of Timing Extraction, including its runtime,

consistency, and scalability. In order to achieve repeatable, consistent measurements, we measure

each path in isolation, many many times. This leads to a long runtime. However, as Section 6.1

explains, it is likely that we are being overly cautious and, after some experimentation, we can

potentially greatly reduce the runtime. Our cautious measurements lead to repeatable results,

giving high confidence that we are cleanly measuring the delay of physical resources, and not

other effects such as environmental or operational variation. Finally, we explain that the number

of DUKs extracted by Timing Extraction is linear in the number of physical resources. Moreover,

the amount of work required to extract these DUKs is also linear, as is the time to measure and

compute their delays. We also note that due to the regular structure of FPGAs, the number

bitstreams is asymptotically constant, regardless of the FPGA size, since we can pack more path

measurement circuits into one bitstream as the FPGA grows.
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Chapter 5

Variation Analysis

Timing Extraction provides the fine grain delay of individual DUKs. Simply using DUKs to

perform a component-specific mapping leads to significant energy savings [63]. However, using

DUKs to understand how much variation is correlated to a process or design parameter, and

how much is random variation, can inform and improve the manufacturing process as well as

the CAD algorithms. Using the correlations discovered, we can adjust both to mitigate this

variation. Moreover, by understanding the magnitudes of both random and correlated variation,

we can determine if random variation dominates, and instead decide that the best approach to

mitigate the variation, is a component-specific mapping. For example, if we detect that variation

correlated to a particular region of the FPGA is high, our mitigation technique would involve

changing the placement of our logic to a better region. On the other hand, if random variation

dominates, moving from one location on the FPGA to another will not help. Simply selecting a

better resources from the locally available resources, however, will.

In this chapter we present an analysis that decomposes the variation of the DUK delays. It

determines how the delays are correlated to different parameters, and how much delay is due to

random processes. We use the simple delay model from Section 2.2.1, as well as our understanding

of the architecture of the FPGA (Section 4.1) to build our analysis. Since both models are limited,

our analysis is only an initial attempt at understanding the variation. Building detailed architec-

tural and delay models is beyond the scope of this work, and is left as future work. Nevertheless,

these simple models illuminate our understanding of variation, and provide a structure on which

to demonstrate how this kind of analysis works.
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5.1 Variation Model

We model delay as the time it takes to charge a capacitive load through a resistance, as Equa-

tion 2.1, reproduced below, shows.

τpd = Cl ·
Vds
Ids

(2.1)

Section 2.3 explains that the primary source of variation of the current, Ids, is due to threshold

voltage, Vth, variation, which, in turn, varies due to both random and correlated physical vari-

ations. The capacitive load, Cl, comes from both charging the transistors and the wires in the

FPGA. Both of which also suffer from physical variations.

There are three sources for these variations. First, as Section 2.3.1.1 describes, the complex

manufacturing process has many avenues through which variation can manifest. The second source

is design variation, that is, the variation introduced, purposefully or not, through the architectural

design of the FPGA. We have already seen proof of this variation source in Section 4.8, where we

clearly see that the LUT inputs have different delays by design. The third source comes from the

fact that we have different types of DUKs, where each type has a different number of physical

resources, used in a particular configuration. Since we only have a limited model of what the

architecture looks like, we are unable to cleanly separate design variation from process variation.

We do, however, know exactly how DUKs differ. Thus, our results will show the combined effect

of design and process variation, while isolating DUK type.

Since variation affects both the resistance and capacitance of our circuit, and in the simple

delay model, these terms are multiplicative, our variation decomposition is multiplicative, as shown

in Equation 5.1. A more complex delay model would decompose variation accordingly.

τDUK = τ0 · τFPGA · Reg(x, y) · Sys(sd1, . . . , sdn) · Rand (5.1)

Our decomposition has five components:

• τ0: A base delay

• τFPGA: The delay bias of an FPGA, relative to τ0.

• Reg(x, y): A regional correlation function that explains how the DUK delay changes as a

function of its physical position (x, y).

• Sys(sd1, . . . , sdn): This term represents systematic variation, and is composed of a set

of functions that correlate delay changes to subspecies differences (SDs Section 4.6). For
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DUK Type τ0 (ps)
Intra-LAB M-DUK 475
LAB-to-LAB M-DUK 620
Intra-LAB C-DUK 265
LAB-to-LAB C-DUK 411
LAB-to-General Interconnect C-DUK 213
Embedded Column Neighbor C-DUK −32
General Interconnect C-DUK 218
General Interconnect Sink Select C-DUK −11
LLT Crosspoint Swap C-DUK 63
LIT Crosspoint Swap C-DUK −60

Table 5.1: τ0 for each of the 10 DUK types

example, SysLUTin(lutin) correlates the delay to the LUT input used by the DUK.

• Rand: This term captures the variation that cannot be explained by the other terms, and

is what quantifies the random variation in the DUK.

To extract the contribution of the first four terms, we capitalize on the vast number of DUKs we

extract, and depend on the central limit theorem to correctly compute their value. The remainder

is assigned to Rand.

5.2 Computing τ0 and τFPGA

To calculate τ0, for each DUK type, we compute the mean delay from all DUKs, from all FPGAs

measured. Similarly, we compute τFPGA by performing the same computation, but using only the

DUKs from one FPGA on either the rising transitions or falling transitions. In this way we can

see how FPGAs differ and how rising versus falling transitions differ.

Table 5.1 shows the value of τ0 for each DUK. Figure 5.1 shows τFPGA for LAB-to-LAB

MDUKs. To get a more meaningful sense of how different FPGAs compare, the figure actually

shows τ0 · τFPGA scaled by the slowest τFPGA. For LAB-to-LAB MDUKs, τ0 = 620 ps. As we

also saw in Section 4.7 rising transitions are slower than falling transitions. From τFPGA we see

that, on average, rising transitions are systematically 4% slower than falling transitions.

5.3 Regional Variation

Regional variation consists of delay changes that correlate to the physical location of the DUK.

There are many manufacturing processes that may cause one region of the FPGA to be faster
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Figure 5.1: τFPGA for LAB-to-LAB MDUKs from the 18 measured FPGAs, showing the difference
between falling and rising transition

than another (Section 2.3.1.1). By averaging all resources in a given region, we can discover these

regional changes.

To understand the process, we begin by considering what τFPGA represents. When we average

all DUK delays of one kind from one FPGA, we essentially reduces the contribution from other

sources of variation, including random variation. This allows us to separate the DUK delays into

τFPGA times a remainder. τFPGA describes the delay contribution for the region consisting of the

whole FPGA, while the remainder includes all other variation. Taking this idea, we consider what

happens when, instead of taking the mean over the whole FPGA, we do so over a moving window

as described by Equation 5.2.

Reg(x, y) =

i=x+z∑
i=x−z

j=y+z∑
j=y−z

τDUK(i, j)

τ0 · τFPGA
(2z + 1)2

(5.2)

When z is large enough, Reg(x, y) considers the whole FPGA, and equals 1
τ0

, since we scale

τDUK by τ0 · τFPGA. As we reduce the size of z, we begin to consider individual regions. However,

a smaller window does not reduce the contribution form other variation sources as well as a larger

window. z = 2 is a good compromise [89].

Computing Reg(x, y) for each FPGA coordinate gives us a good sense of the regional variation

in the FPGA. However, to get a better idea of how regional variation behaves, we further break

down regional variation into systematic regional within-die variation Regsys(x, y), and random
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regional within-die variation Regrand(x, y). Equation 5.3 shows the relationship between the three

regional measures.

Reg(x, y) = Regsys(x, y) · Regrand(x, y) (5.3)

Regsys(x, y) represents the regional variation that is common to all FPGAs, while Regrand(x, y)

is the regional variation unique to one FPGA. We easily compute Regsys(x, y) as the mean of

Reg(x, y) over all FPGAs (Equation 5.4).

Regsys(x, y) =

∑
FPGAsReg(x, y)

|FPGAs| (5.4)

Finally, having both Reg(x, y) and Regsys(x, y) we compute Regrand(x, y) using Equation 5.3.

5.3.1 Systematic Regional Variation

Figure 5.2 shows the Regsys(x, y) for each DUK type, except for Embedded Column Neighbor

C-DUK, since this DUK only exists next to embedded columns, and the windowed average

does not behave as required to compute regional variation. We scale Regsys(x, y) and center

it so that it is easy and meaningful to compare across DUK types. From this figure, we see

that only LAB-to-General Interconnect C-DUKs (Figure 5.2g) and General Interconnect C-DUKs

(Figure 5.2h), both of which use general interconnect resources, exhibit meaningful systematic re-

gional variation. There appears to be a gradient, where slower DUKs, on the top left, give way

to faster DUKs towards the bottom right. Although General Interconnect Sink Select C-DUKs

(Figure 5.2i) also use routing resources, the structure of its two paths is the same, which cancels

out any regional variation effects. As for DUKs that do not use general interconnect resources, it

is worth noting that for both LAB-to-LAB M-DUKs and C-DUKs, it appears as though DUKs

next to embedded column have a slightly lower delay. The reality, however, is that there is a

systematic correlation to the X LAB coordinate, where columns 20, 21, 29 and 30 actually have a

higher DUK delay, as we will see in Section 5.4. The windowed averaging has the effect of blurring

and spreading this delay among adjacent DUKs. Nevertheless, the window size is of sufficient di-

mension to make the magnitude of this blurring so small, it is almost negligible in the systematic

regional variation.
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(a) IntraLAB M-DUK
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(b) LAB-to-LABM-DUK
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(c) IntraLAB C-DUK

X LAB Coordinate

Y
L
A
B

C
o
or
d
in
at
e

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

(d) LAB-to-LAB C-DUK
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(e) LLT Xpt C-DUK
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(f) LIT Xpt C-DUK
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(g) LAB-to-GI C-DUK
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(h) GI C-DUK

X LAB Coordinate

Y
L
A
B

C
o
or
d
in
at
e

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

(i) GI Sink Select C-DUK

ps

-20 -10 0 10 20 30

Figure 5.2: Regional Systematic Variation shown on a floor plan of the Cyclone III FPGA

104



5.3.2 Random Regional Variation

We perform a similar plot for Regrand(x, y). In contrast to Figure 5.2, in Figure 5.3 we only show

the plots for one FPGA, since random regional variation is FPGA specific. From this figure, we

see that M-DUKs have a larger random regional variation range than C-DUKs, also aside from

IntraLAB and LAB-to-LAB C-DUKs, other C-DUKs have almost no random regional variation.

This is a direct result of the different structures of the DUKs. M-DUKs represent small paths,

while C-DUKs represent the difference of two small paths. It is this difference that reduces the

magnitude of Regrand(x, y). The structure of a C-DUK is such that all its LC Nodes come from

the same, or close to the same region in the FPGA. When a C-DUK subtracts two LC Nodes that

use exactly the same type of physical resources, any regional variation cancels out. Both IntraLAB

and LAB-to-LAB C-DUKs have a Current Tail consisting of only an End Node, as such, most of

their LC Nodes in the Desired Tail do not have a corresponding LC Node in the Current Tail,

which explains why they manifest the largest random regional variation range among C-DUKs.

The other C-DUKs have almost no random regional variation either because most of their regional

variation is systematic, or their structure hides any regional variation.

Since it is M-DUKs that best demonstrate the magnitude of Regrand(x, y) for all other FPGAs,

we simply show the random regional variation for their LAB-to-LAB M-DUK in Figures 5.4 and 5.5.

Although the overall magnitude range is only 30 ps, it is clear that each FPGA has a unique ran-

dom regional variation pattern, almost akin to a fingerprint.

5.4 Systematic Variation

Having τ0, τFPGA, and Reg(x, y), we turn to the systematic variation, Sys(sd1, . . . , sdn). In

Section 4.6 we present the idea of a DUK subspecies. Each DUK has a number of subspecies

differences, or SDs, such as the wire index used, or the LUT input used. A subspecies has a

unique combination of SDs. sys(sd1, . . . , sdn) aims to identify differences between subspecies by

indentation how each SD contributes to the delay of the DUK. For clarity, capitalized SDi refers

to the type of subspecies difference, while lower case sdi refers to a particular value for this type

of subspecies differences. For example, SDLUTIn differentiates DUKs by the LUT input used.

While sdLUTin can take the values A, B, C, or D, for the different LUT inputs.

A shortfall of this systematic decomposition is that it only considers systematic correlations

based on given SDs, and thus, is based solely on a priory assumptions of possible systematic

effects. It cannot discover new correlations based on the given DUK delays. Nevertheless, if a

different effect is suspected of leading to systematic variation, we can easily test that hypothesis
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(a) IntraLAB M-DUK
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(b) LAB-to-LABM-DUK
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(c) IntraLAB C-DUK
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(d) LAB-to-LAB C-DUK
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(e) LLT Xpt C-DUK
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(f) LIT Xpt C-DUK
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(g) LAB-to-GI C-DUK
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(h) GI C-DUK
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Figure 5.3: Regional Random Variation of FPGA 4RE75, shown on a floor plan of the Cyclone
III FPGA
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(a) 4R5JZ
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(b) 4RENT
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(c) 4RM9J
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(d) 4RG4I
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(e) 4RICW
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(h) 4RGMV
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Figure 5.4: Regional Random Variation of the LAB-to-LAB M-DUK for first 9 Measured FPGAs,
shown on a floor plan of the Cyclone III FPGA
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(b) 4RGYT
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Figure 5.5: Regional Random Variation of the LAB-to-LAB M-DUK for second 9 Measured
FPGAs, shown on a floor plan of the Cyclone III FPGA
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using this decomposition.

To compute Sys(sd1, . . . , sdn), we begin by scaling τDUK by τ0, τFPGA, and Reg(x, y) in order

to remove the effect of these variation sources from the DUK delay. What remains is the product

of systematic variation times random variation. For convenience, we refer to this as τSysRand

(Equation 5.5).

τSysRand =
τDUK

τ0 · τFPGA · Reg(x, y)
= Sys(sd1, . . . , sdn) · Rand (5.5)

Assuming that a DUK type has n SDs, Sys(sd1, . . . , sdn) is the product of n functions, each

identifying the contribution of a particular SD (Equation 5.6).

Sys(sd1, . . . , sdn) =

n∏
i=1

SysSDi(sdi) (5.6)

To compute SysSD1
(sd1) we group the DUKs by the characteristic described by SD1, and take

the mean of each group. This give us the contribution of SD1 to τSysRand. In order to extract

SysSD2(sd2), we first scale τSysRand by SysSD1(sd1), and then repeat the process using SD2 as

the grouping factor (Equation 5.7). Continuing until we compute SysSDn(sdn) gives us the value

of Sys(sd1, . . . , sdn).

SysSDi(sdi) =

∑
DUKSDi=sdi

τSysRand(DUK)∏i−1
j=1 SysSDj (sdj)

|DUKSDi = sdi|
(5.7)

The value of Sys(sd1, . . . , sdn) is independent of the order in which we compute the SysSDi(sdi)

functions. However, in order to understand how a particular SD affects the DUK delays, it is de-

sirable to look at SysSDi(sdi) itself. Unfortunately, the order in which SDs are evaluated will

affect the value of this function.

Our process requires that we compute SysSDi(sdi) before computing SysSDi+1(sdi+1). What

this means is that SysSDi+(sdi+1) quantifies the systematic contribution of SDi+1 after removing

the contributions of SD1 through SDi, but before considering the contributions of SDi+2 through

SDn. If all SDs were independent, the order in which we evaluate them, would not affect the

value of SysSDi(sdi). However, subspecies differences are not always independent. For example,

in Section 4.8 we saw that LUT input C is slower than LUT input D because of the structure of the

LUT. However, since LUT input C and D can take a signal from a mutually exclusive set of LLTs

(Figure 4.3 top left), the order in which we compute SysSDLLT (sdLLT ) and SysSDLUTin(sdLUTin),

will determine whether the difference between inputs C and D is quantified by SysSDLLT (sdLLT )
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or by SysSDLUTin(sdLUTin). In this case, we know that the difference is due to the structure of

the LUT, and therefore, would make more sense to attribute to SysSDLUTin(sdLUTin); however,

lacking intimate knowledge of the FPGA, and even with this knowledge, it may not always be

clear which SD should be examined first. As such, in our results, when we look at a particular

SysSDi(sdi), we always show what its value would be if this SD was the first SD computed, and

what its value would be if it was the last SD computed, giving an upper and lower bounds on the

magnitude of the SD’s contribution to the DUK delay. A large difference between these values

indicates that this SD correlates with other SDs, and therefore other SDs would capture the delay

contribution if they were computed first. On the other hand, zero, or a minimal difference is

strong indication that this SD is exclusively responsible for the contribution to the delay.

5.4.1 Systematic Delay Contributions

The first set of results we look at are the LLT versus LUT input example from above. Figure 5.6a

shows the systematic contribution of LUT input C and D. Next to it, Figure 5.6b shows the LLT

systematic contribution. Consistent with the results in Sections 4.6 and 4.8, we find that input

C is slower than input D if we compute SysSDLUTin(sdLUTin) first (red bars). However, if it is

computed last (blue bars), Figure 5.6a claims there is no delay contribution from different LUT

inputs. The reason lies in Figure 5.6b. If SysSDLLT (sdLLT ) is computed first, we see that indices

2, 4, 7, 11, 13, and 15 have a delay contribution comparable to that expected of input C, and these

indices are the only LLTs from which input C can take a signal (Figure 4.3 top left). Similarly

for the other LLTs and input D. Regardless of when SysSDLLT (sdLLT ) is computed, however,

this figure clearly shows a difference between LLTs, where LLTs 10, 12, and 14 are systematically

faster than the rest.

Using the LAB-to-LAB M-DUK, we turn our attention to the connections between LABs.

Figure 5.7a shows how the direction of this connection affects the DUK delay. Measured first, this

SD shows that left connections are approximately 30 ps slower than right connections. On the

right side, Figure 5.7b tracks how the X coordinate of the beginning of the connection contributes

different systematic delays. Looking at the delays when this SD is measured last reveals two

things. First, coordinates 20, 21, 29 and 30 are significantly slower than the other columns. This

delay correlates directly with the long slow distribution tails in Figure 4.25 and 4.31. The second

thing to note is the wave-like pattern in the delay of the other columns.

For the most part, there is very little difference when measuring this SD first or last, however,

columns 19, 24, 26, 33, 35, and 40 show a difference. This difference is easily explained when we

look at the delay contribution from the direction of the path (Figure 5.7a), and notice that these
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(b) LAB Local Track (LLT) Index

Figure 5.6: Systematic variation internal to the LAB
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(b) Source LAB X Coordinate

Figure 5.7: Systematic variation of LAB-to-LAB connections

columns are all adjacent to either embedded block columns or the edge of the FPGA (Figure 4.2).

For all other columns, we measure DUKs that go to adjacent LABs to the left and right; however,

DUKs in these columns only have adjacent LABs in one direction, and thus paths that go in only

one direction. Columns 19, 26, and 35 only go right, while 24, 35 and 40 only go left. As such, if

this SD is measured first, we see that these columns combine the contribution of their delay with

that of the path direction.

Finally, we analyze the systematic delays of general interconnect wires. Figure 5.8 demonstrates

the difference between horizontal, R4, wires and vertical, C4, wires. Clearly vertical wires are

slower than horizontal wires. Since both vertical and horizontal wires are 4 LAB units long, their

delay difference is a strong indication that physically, LABs are taller than they are wide. This is
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consistent with other Altera designs [92].
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Figure 5.8: Systematic variation of general interconnect wire type

Horizontal and vertical wires differ not only in their delay, but also, horizontal wires come

in bundles of 34 wires, with half going left and half going right. Vertical wires, in contrast, are

bundled into groups of 24, with a similar split up and down. As such, we separate the systematic

contributions of horizontal wires from those of vertical wires.

Figure 5.9 shows SysSD(sd) for the X and Y coordinate of the wire, as well as the wire index,

for both horizontal wires on the left and vertical wires on the right. For both wire types, the Y

coordinate has almost no systematic contribution to the DUK delay, as Figures 5.9c and 5.9d show

for when this SD is measured last. When measured first, the extremes seem to have significant

contribution. The fact that the contribution is non-existent when measured last, however, is

indicative that an explanation of this extreme requires deeper understanding of how this SD

correlates to others.

SysSDXwire(sdXwire) is perhaps a more interesting function. By convention, wires coordinates

refer to the left bottom side of the wire, regardless of the direction of the wire. For horizontal

wires, in Figure 5.9a we see that columns 22 through 25 appear to be slower than the rest. Wires

that have 22 through 25 as their X coordinate cross over the embedded column of memories at

coordinate 25. This increase in delay likely indicates that the embedded memories are physically

wider than LABs [92]. Column 33 is also an embedded column, however, it is multipliers instead

of memories. For the wires near this coordinate, we do not see as clear a slowdown as with

the memories. Better knowledge of the architecture of the FPGA would help explain the effects

seen in Figure 5.9a. The systematic contribution of the X coordinate for vertical wires is more

easily analyzed (Figure 5.9b). Regardless of when this SD is measured, columns 20 and 29 are

systematically slower than the rest.
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(a) Horizontal (R4) Wire X Left Coordinate

S
y
st

em
at

ic
D

el
ay

C
on

tr
ib

u
ti

on
(p

s)

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

0
50

10
0

0

99.8

-8.7

2.4
-1.7

10.4
4.9

-1 -0.5
-5.6

87.1

-9.9

-1.5
1.5

7.6

-1.9
5.1

9.8
6.3

1.6 0.1

-33.8

7.7

-18.5
-14.5

-10.2

2

-25.8

-4.2

-15.7
-10.1

14.7

-14.1 -13.3

0.8 0

-39.9

1.9 -0.4 -0.9 0.4

-7.2

33
.8

9
2
.1

9.
8 16

.9

8.
5

8
.4

30
.7

15
.2

7
2
.4

11
.8

38

1
0
.2

First

Last

D
iff

er
en

ce

(b) Vertical (C4) Wire X Left Coordinate
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(c) Horizontal (R4) Wire Y Bottom Coordinate
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(d) Vertical (C4) Wire Y Bottom Coordinate
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(e) Horizontal (R4) Wire Index
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(f) Vertical (C4) Wire Index

Figure 5.9: Systematic variation of the General Interconnect
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To conclude this section, we look at how the wire index contributes to the DUK delay (Fig-

ures 5.9e and 5.9f). As Section 4.1 explained, connections between wires and between wires and

LABs are depopulated. This means that a given wire index can only connect to a small number

of other physical resources. As with the internal LAB connections, where LLTs and LITs can

only connect to two out of the four LUT inputs (Figure 4.3), the limited connectivity of the wire

ultimately leads to similarly only being able to reach two out of the four LUT inputs. Since DUKs

always end by going through a LUT to a register, the systematic delay contribution of the wire

index will similarly mask the contribution of the LUT input, as we saw in Figure 5.6. Therefore,

we focus instead on the contribution when measured last. For horizontal wires, indices 0 through

16 are wires that go right, while the rest go left. For vertical wires, indices 0 through 11 go up,

the rest, down. Looking at the two figures, we see that lower index wires, i.e., wires that go right

or up, are, on average, 20 ps faster than higher index wires, those that go left or down.

5.5 Random Variation

Once we have Sys(sd1, . . . , sdn), we can now solve for Rand, the random variation, as Equation 5.8

demonstrates. We expect Rand to have a mean at or extremely close to 1, since any other value

would indicate a mean systematic shift in the DUK delay. This mean shift would be correlated

variation, and should have been captured by one of the previous four variation decomposition

terms.

Rand =
τDUK

τ0 · τFPGA · Reg(x, y) · Sys(sd1, . . . , sdn)
(5.8)

Figure 5.10 shows the random variation for three representative DUKs. The Intra-LAB M-

DUK, internal to the LAB (Figure 5.10a), the LAB-to-LAB M-DUK, using connections between

LABs (Figure 5.10b), and the General Interconnect C-DUK, representing general interconnect

resources (Figure 5.10c). In order to move it from a multiplier to a more meaningful delay, we

multiply the variation by τ0 × τFPGA and center it by subtracting the same value, τ0 × τFPGA.

All three are centered close to 0, as expected. More interesting is the standard deviation of

the three figures, showing that the general interconnect resources experience the most random

variation, followed by LAB-to-LAB connections. The LABs themselves appear to be less affected

by random variation. This observation is consistent with the standard deviations from the raw

DUK delays in Section 4.6.

A powerful approach to mitigate random variation is to perform a component-specific mapping

[63]. The fact that the general interconnect is most affected by random variation indicates that a
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Figure 5.10: Random Variation

component-specific mapping solution will see more benefit if it first focuses on routing by carefully

selecting the general interconnect routing resources, and worries less about the internals of the

logic clusters.
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Chapter 6

Future Work

6.1 Measurement Control and Runtime

When measuring a path on the FPGA, we are very careful to isolate each path measurement

circuit from others, and from the control circuitry. We also make sure to minimize the activity

on the FPGA during a measurement. This leads to consistent measurements (Section 4.12) which

primarily capture process variation and not environmental or operational variation. From the

tests in Section 4.12, it is clear that control is necessary for consistency, however, when in use,

FPGAs have multiple signals, in close proximity, activating at the same time. To make Timing

Extraction even more relevant, it is necessary to understand how activity near a measured path

affects its delay. Activity near signals will also generate heat. As Section A.1.1 explains, heat will

change the delay of the path. Thus, it is also necessary to understand how environmental effects,

such as heat, affect the path delays.

In order to explore these effects, controlled circuitry, placed near and around a path measure-

ment circuit, can simulate both activity and self-heating effects. Changing the proximity and

activity of these circuits will reveal how these effects affect circuit delay.

Related to the measurement control is the time it takes to measure a path. Currently, we do a

linear sweep of the frequency, incrementing by 1.6 ps each step. At each frequency we measure 215,

and only enable one of the measurement circuits in the bitstream at a time. The reason for this

is to get correct, consistent measurements. As Section 4.11 indicates, it takes, on average, three

seconds to run through the measurement process. Currently, the measurement circuit explores,

on average, 200 frequencies per bitstream. This can be significantly reduced by incrementing the

frequency following a multiple value binary search algorithm instead. Furthermore, understand-

ing how activity near measurement circuits affects the measured delay would potentially allow

multiple path measurement circuits to run at the same time. Finally, testing how the number
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of measurements at each frequency affects the quality of the results, may reveal that measuring

215 times is more than what is necessary for actuate measurements. Thus, instead of measuring

200 frequencies 215 times for each of the 10 measurement circuits per bitstreams, for a total of

98,304,000 measurements per bitstream, Timing Extraction could potentially reduce that by si-

multaneously enabling all 10 measurement circuits, measuring 10× log2(200) frequencies 28 times,

for a total of 20,480 measurements per bitstream, or more than four orders of magnitude speedup.

This speedup only affects the time it takes to measure paths, it does not change how long

it takes to program a bitstream or read the results. There are potential improvements here as

well. The BeMicro FPGA board we use connects to the host computer through USB. A faster

connection can be achieved if the FPGA sits on a faster bus, such as the PCIe bus [69], or even, on

a processor socket. This is bound to have an improvement on both the time it takes to program the

FPGA, as well as the time it takes to read out results. However, it is possible that through partial

reconfiguration [53], where one part of the FPGA is being reconfigured while another part runs,

both bitstream loading and reading time can be improved by pipelining loading new measurement

circuits with measuring paths, and reading results. This, again, requires detailed understanding of

how significantly more activity on the FPGA affects the measurements themselves. Regardless of

which of these approaches is used, it is clear that the time it takes Timing Extraction to measure

a path is not an inherent limitation of Timing Extraction, but rather, a function of the FPGA

board being measured.

6.2 Beyond Logic Blocks and General Interconnect

Modern FPGAs are highly complex heterogeneous circuits. Logic blocks and the general inter-

connect, though a significant part of the FPGA, represent only a subset of the circuits in the

FPGA. Logic blocks contain carry chains, connecting LUTs together through circuitry that aptly

allow us to implement carry-based operation, such as adders. Registers are also connected to

each other in a register chain, enabling logic such as shift registers or other designs fitting this

structure. Moreover, the General interconnect is a hierarchical routing network, where logic blocks

connect to short wires, which in turn, connect to longer wires. Beyond logic blocks and general

interconnect, FPGAs have embedded memories and digital signal processing (DSP) blocks; some

even have full processors embedded within them [13, 97]. Finally, a significant portion of the

FPGA real estate is dedicated to complex input and output (I/O) ports implementing multiple

communication specifications [11].

Although we did not characterize these structures, as Section 4.8 aims to demonstrate, given
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the appropriate physical resource graph, Timing Extraction can decompose the circuit into DUKs,

and decide which paths should be measured to compute the DUK delays. Some of these structures

may require external support. For example, in order to characterize the I/O, it would be necessary

to connect another circuit, such as a second FPGA, to the I/O ports, and include portions of

this second circuit in the physical resources graph. Multi-FPGA circuits are not uncommon.

For example, Microsoft’s BEE3 platform [64] consists of 4 FPGAs communicating through ring

interconnect. Timing Extraction can easily measure the connections between these FPGAs if it

is given a physical resources graph that models these external connections. Essentially, growing

the physical resource graph to include components beyond one FPGA. Also, due to the analog

nature of some of the I/O ports, it may be necessary to treat certain regions of the circuit as a

black box in the physical resources graph. Nevertheless, if the FPGA CAD tools allow for detailed

placement and routing of path measurement circuits that encompass these structures, we believe

it is possible to characterize many, if not all structures inside the FPGA.

6.3 Beyond the Cyclone III and Cyclone IV FPGAs

The Cyclone III and Cyclone IV FPGAs are low power FPGAs, built on well established, older 65

nm or 60 nm technology. Both these aspects imply that the variation in the FPGA, especially the

random variation, is small. Newer, high performance FPGAs, built on cutting-edge technology

such as 22 nm or even 14 nm nodes, are bound to exhibit greater variation. This is both because

of the increased variation expected with technology scaling (Figure 2.3), and because a high

performance process has a lower threshold voltage, Vth. Applying Timing Extraction to these

FPGAs should be very revealing, quantifying greater random variation, and better demonstrating

the necessity for a component-specific mapping CAD approach.

As long as we have a physical resources graph of the FPGA, the general algorithms in Timing

Extraction are agnostic to the FPGA being measured. They can directly extract DUKs, and

determine which paths to measure. Having the physical resource graph also lets us determine

which paths to pack together. However, generating placement and routing constraints is FPGA

model specific. Different vendors provide different ways to specify these constraints, and even the

syntax to specify these constraints varies from one FPGA model to another, for a given vendor.

Compiling and running the bitstreams will also be FPGA specific, since different vendors use

different CAD tools. Also, different FPGAs and FPGA boards provide different clocks, requiring

that we compute a unique set of PLL control values for each FPGA model. These requirements

place a barrier of entry to measuring an arbitrary FPGA. Nevertheless, the knowledge gained from
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measuring newer FPGAs, both from Altera and other vendors, would be highly valuable.

6.4 Improved Variation Analysis

Chapter 5 presents an approach to decompose the measured DUK variation into regional, system-

atic, and random variation. It uses a simple model of the delay to perform this decomposition.

Even with this simple model, it is able to do a meaningful decomposition, discovering several

aspects of the variation within the Cyclone III FPGA. Nevertheless, this is just the beginning

of the type of analysis that will yield very useful information for both FPGA manufacturers and

users. Several aspects will improve the decomposition.

Primarily, a better understanding of the FPGA architecture will allow the separation of design

variation from process variation. As a simple example, knowing that a particular wire index in

the FPGA is slower due to design variation or process variation has very different implications.

As a user, in both cases we may choose to avoid that wire. As a manufacturer, if it is slow by

design, it is likely the CAD tools know of this and adjust accordingly. Moreover, the decomposition

analysis can take this into account and adjust the wire delay to find the true process variation of

the wire. On the other hand, if it is previously unknown process variation, it is possible that a

design adjustment may mitigate this. Otherwise, the CAD tool timing models could be modified

to account for the delay difference [89].

Another improvement lies in the delay model. DUKs are composed of multiple physical re-

sources, the delay model we use is only an approximation of the delay. Better matching the delay

model to the individual structure of the different DUKs would allow for a delay decomposition

below the DUK level. For example, if the delay of a DUK is modeled as the addition of the delay

of a resources wire and a LUT, it may be possible to better separate the variation from the two

components.

Finally, as we point out in Section 5.4, the decomposition is only as smart as the parameters

we feed it. That is to say, if we fail to consider correlation to some parameter, it is unlikely that

our decomposition will discover this correlation on its own. For example, as wires traverse the

FPGA, it is possible that their physical position in the wire bundle may shift, while its logical

wire index remains fixed. Thus a wire with index 9 in one region of the FPGA may share more

characteristics with a wire with index 4 in another region of the FPGA, instead of the one with

index 9. Our current decomposition is unable to detect this kind of correlation. A more complex

decomposition that discovers new correlations would be required. Machine learning algorithms

may be appropriate for these kinds of discoveries.
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Chapter 7

Conclusions

Timing Extraction decomposes an FPGA into individual Discrete Units of Knowledge (DUKs).

Using only resources within the FPGA, it measures the delay of a minimal set of paths, and uses

their delays to compute the delay of each DUK. DUKs can then be composed to compute the

delay of any path in the FPGA between two registers. A simple modification to the circuit graph

allows conventional routing algorithms to perform component-specific mappings, where logic is

custom mapped to best fit a given FPGA, using the computed DUK delays. It also provides the

measurements needed to analyze the variation in the FPGA, and decompose it into correlated

variation and random variation.

We implemented Timing Extraction for the Altera Cyclone III 65 nm FPGA, and applied it to

18 FPGAs. For each, decomposing logic blocks and the general interconnect network into 1,356,182

individual DUKs. This required running 232,250 bitstreams on each FPGA, to measure the

2,736,556 necessary paths. Our decomposition revealed ten different DUK types, each representing

a different structure of the FPGA. Together these DUKs allow us to compose any path between

two registers.

We demonstrate how Timing Extraction is agnostic to the structure being decomposed, and

can well handle large resources as black boxes, or given their structure, can decompose the circuit

further. We explore the effects of lowering the supply voltage, a common approach for energy re-

duction. Our results confirm the modeling equations by showing that delay and variation increase

as supply voltage decreases. We also compare our measured results to the timing models shipped

with the manufacturers CAD tools. Though aware of some variation between resources, our mea-

surements reveal variations not modeled by the CAD tools. This is due, in part, to the existence

of random variation in the FPGA. Lastly, we demonstrate that we can repeatedly measure and

compute DUK delays, and consistently reach the same results.

We conclude this work by decomposing the DUK delays into regional variation, correlated to
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the physical coordinates of a DUK, systematic variation, correlated to a descriptive parameter

of the DUK, and uncorrelated random variation. Our analysis reveals a distinct regional delay

gradient where, over a range of 50 ps, slow resources on the top left give way to faster resources

on the bottom right. The systematic correlations demonstrate differences such as horizontal wires

being, on average, at least 30 ps faster than vertical wires. It also reveals a directional preference

where wires going right or up are, on average, 20 ps faster, compared to wires going left or down.

Finally, our random variation analysis clearly demonstrates that general interconnect resources

encounter grater random variation than logic blocks. With general interconnect experiencing

random variation on the order of σ = 62 ps, while logic blocks only have a σ = 15 ps.
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Appendix A

Operational, Environmental, and
Aging Effects

A.1 Operational and Environmental Variation

Process variation, in a sense, can be thought of as static variation. By that we mean that once

the device is manufactured, the parameters that define the device will not change.1 To contrast

this, environmental and operational variation is dynamic, shifting the performance and energy

requirement of a device depending on how and where the device is used. For example, the delay

of a transistor will be larger when operating under high temperatures.

It is crucial to understand how a circuit will change as it is running if we are to develop

solutions that can deal with more than just process variation. In particular, we focus on three

types of dynamic variation: temperature variation, crosstalk and power supply variation.

A.1.1 Temperature

During the operation of a circuit, wires and transistors will experience fluctuations in temperature.

The temperature of a device is the sum of the ambient temperature and the temperature rise caused

by power dissipation in the package, known as self-heating.

T = Tenv + Top

Ambient temperature affects a whole chip and can range from 0 ◦C to 85 ◦C for commercial

applications and even more extreme, from −40 ◦C to 125 ◦C for military or industrial applications,

depending on where the circuit is deployed. Self-heating occurs when current flows through a

1This ignores the effects of aging on device, aging is covered in Section A.2.
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device, dissipating some of its energy as heat. It is a function of the computation being done

and, therefore, the temperature change caused by it will vary from device to device as well as over

time. Moreover, due to the poor heat conductivity of the electrical insulator used, heat dissipation

occurs over milliseconds, affecting an area on the order of millimeters.

Temperature has a significant impact on the electronic properties of a wire. Although the

capacitance is independent of temperature, the wire resistance at temperature T , R(T ), increases

linearly from the reference resistance R(T0)

R(T ) = R(T0)(1 + α · (T − T0)) (A.1)

The temperature coefficient, α, of copper is about 0.004/K [91]. The reference temperature, T0, is

often 300 K. Furthermore, since the material surrounding the interconnect is not only an electrical

insulator but also a thermal insulator, the heat does not quickly dissipate.

The transistor current also suffers from temperature changes. Both threshold voltage, Vth, and

carrier mobility, µ, decrease with temperature as defined by Equations A.4 and A.3 respectively.

Vth(T ) = Vth(T0)− kVth · (T − T0) (A.2)

µ(T ) = µ(T0)

(
T

T0

)−kµ
(A.3)

The fitting parameters have been found to be 0.8 mV/K for kVth and 1.5 for kµ[95]. Moreover,

vsat also decreases with temperature, dropping 20% from 300 K to 400 K [91]. Finally vT , the

thermal voltage, as defined in thermodynamics, is proportional to temperature and is written in

terms of Boltzmann’s constant, k, and the electron charge, q.

vT =
kT

q
(A.4)

As with wires, the insulator surrounding transistors is a poor heat conductor, trapping the

heat on the transistor. This is significantly worse for silicon on insulator (SOI) transistors where

an extra insulating layer increases the temperature by 10% to 15% [41].

Taking these temperature effects together, it is possible to see from Equation 2.6 that the

subthreshold current increases exponentially with a rise in temperature since Vth decreases with

temperature and the subthreshold slope is directly proportional to temperature.

This is not the case for the saturation current Ids,sat. In general, Ids,sat decreases with tem-

perature, however, since the ratio of supply voltage to threshold voltage is decreasing with scaling,
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[46] shows that an inversion occurs where the saturation current increases with temperature.

These sustained high temperatures have an immediate effect on the characteristics of a circuit.

Moreover, the common silicon substrate causes heat generated at one point to spread and cause

a temperature rise at nearby points within the chip, further affecting other wires and transistors.

Finally, temperature has a long-term fatal effect on devices, causing increased aging, which leads

to shorter circuit lifetimes, as explained in Section A.2.

A.1.2 Power Supply

Standard CMOS design requires that both power (Vdd) and ground (GND) be routed to every

single gate. The increase in active devices, drawing current from the power supply at different

points in space and time, lead to deviations of Vdd and GND from their nominal values. In fact,

it is not uncommon for the power supply to fluctuate by ±10% [17] and variations as high as

18% have been recorded [68]. Furthermore, clock-gating and power-gating techniques drastically

change how many devices draw current from the power supply at one time. The consequence of a

drop in voltage supplied to the transistor is a similar drop in performance. Two dominant sources

of power supply variation exist, IR-Drop, due to parasitic impedance of the power distribution

network, and L
dI

dt
, from inductive coupling.

IR-Drop has both an instantaneous and an average effect. Circuits will draw current based on

the computation being performed. Close to the clock edge, the current drawn can locally spike due

to the many devices switching simultaneously. This spike can be partially managed by well placed

bypass capacitors that provide the extra current necessary. Nevertheless, the average current will

vary over time, and with it, the voltage supplied to each gate.

Inductance noise occurs across the power supply as the current rapidly changes. Components

that are idle for some cycles and then begin to switch are especially susceptible to this noise.

Although power supply variations are deterministic, subject to the activity on the circuit, the

sheer number of variables needed to model this variation makes the problem intractable. Therefore,

it is usually considered to be a source of random operational variation.

A.1.3 Crosstalk

Continued scaling leading to denser interconnect has elevated crosstalk from an insignificant phe-

nomena to a serious source of variation. Wires in modern ICs experience capacitive, and to a lesser

extent, inductive coupling to adjacent wires as well as to the layer above and below. Therefore,

a transitioning wire will affect its neighbors. This influence is known as crosstalk. Crosstalk can

induce a pulse on an adjacent wire with an otherwise fixed signal, or, if the adjacent wire is also
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transitioning, it can delay or speed up that transition, depending on the direction of the transition

[34].

Crosstalk happens on the time frame of a cycle and is dependent on the activity in the circuit.

As with power supply variation, though it is theoretically possible to model and account for all

crosstalk effects, this is only practical for small circuits. It is, however, possible to ameliorate the

effects of crosstalk by laying out interconnect in such a way that no two long wires run parallel

for their full length, or, interleaving signal wires with power and ground wires [39]. Nevertheless,

crosstalk effects induce a high frequency random variation on modern chips that directly affects

the delay of the circuit.

A.2 Aging Effects

Over the lifetime of a circuit, individual devices will wear out. In transistors, this leads to a

shift in threshold voltage. An increase in resistance is the deterioration for wires. For both, it

translates into slower and less efficient devices. The end result, however, is a fault which can lead

to a defective circuit. The mean time to failure is, in part, determined by process variation and,

in part, by the environment and activity factor [84].

Aging effects are different for wires and for transistors. Electromigration is the predominant

failure mechanism for wires. Transistors degrade in a more complex way, through hot carrier

injection, negative bias temperature instability (NBTI) and time dependent dielectric breakdown

(TDDB).

A.2.1 Electromigration

Electromigration is the displacement of atoms due to the movement of electrons through a con-

ductor under an electric field. Current flowing through a wire creates a flow of electrons in the

opposite direction. In turn, this causes the atoms to be displaced. If enough atoms are displaced,

a void in the wire appears, increasing the resistance of the wire. Eventually, the void grows

large enough to cause an open fault on the wire. What’s more, the atoms that migrated, pile

on one end of the void and can form bridging faults with neighboring wires. To make matters

worse, as voids appear, self-heating in the wire increases, which, in turn, accelerates the process

of electromigration. Also, the geometry of the wire determines the rate at which electromigration

occurs. In particular, line edge roughness (Section 2.3.1.2) increases the susceptibility of a wire

to electronmigration. Formally, Black [18] shows how the mean time to failure (MTTF) due to

electromigration relates to the temperature, T , current density, J , and geometric properties, A of
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a wire as well as the activation energy Ea.

MTTFEM =
A · e

 Ea
kb ·T


J1.2

(A.5)

Current technologies use strict design rules to reduce the effects of electromigration, neverthe-

less functional and parametric failures due to electromigration are expected to get worse as wire

cross-sections shrink [81].

A.2.2 Hot carrier injection

In the presence of a strong electric field, electrons and holes in the channel region of a transistor

gain kinetic energy. When the energy reaches a critical level, they can overcome the barrier between

the oxide and the channel region and lodge in the oxide. These hot carriers form interface traps

which degrade the performance of the transistor.

Although both p-type and n-type transistors are affected by hot carriers, p-type devices suffer

less from this aging effect because the voltage required for hot carriers to become interface traps

is higher than for n-type devices.

Interface traps corrupt a transistor in two ways [78]. First, the threshold voltage, Vth is affected.

Second, carrier mobility is reduced. Together, these effects debase the transistor. However, the

effect is not abrupt, rather, it happens over a period of time. Nevertheless, once enough traps

exist, the transistor will fail to operate correct. In general, the mean time to failure (MTTF) due

to hot carriers can be modeled as in [1]:

MTTFHC =
A · e

 Ea
kb ·T


Isubstrate

(A.6)

Where A is a function of the transistor parameters, such as dimensions and dopant concentration,

Isubstrate is the substrate current induced by the hot carriers, T is temperature, Ea, the activation

energy, and kb, Boltzmann’s constant.

A.2.3 Time-Dependant Dielectric Breakdown

Time-dependent dielectric breakdown (TDDB) results when the oxide separating the gate from

the channel in a transistor breaks down, creating a path from the gate to the channel. Similarly, it

applies to the breakdown of oxide separating two metal layers. TDDB occurs when a high voltage

difference exist across the oxide. Over time, charge carriers get trapped in the oxide, as is the case
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with hot carriers explained above. Eventually, when enough carriers are trapped, a conductive

path through the oxide will be created leading to shorts between interconnect wires and failures

in transistors.

Once a small conductive path exists, self-heating will exacerbate the creation of trapped charge,

leading to a positive feedback look where the oxide breakdown accelerates. For a thin dielectric

(≤ 4 nm) separating two metal layers, or the gate and channel in a transistor (tox), [1] models

MTTF as:

MTTFTDDB = A · e

 Ea
kb ·T

−BoxV


(A.7)

Where, again, A is a function of the transistor parameters, Box is a voltage acceleration constant

that depends on oxide characteristics, V is the voltage applied, T is temperature, Ea, the activation

energy, and kb, Boltzmann’s constant.

A.2.4 Negative Bias Temperature Instability

Negative bias temperature instability (NBTI) is an aging effect that affects p-type devices. As

the name implies, the negative effects of NBTI develop when the transistor is negatively biased,

i.e. the gate-source voltage Vgs = −Vdd and the source-drain voltage Vsd = 0. The effect is highly

dependent on temperature, worsening as temperature increases.

As with the previous two aging effects, NBTI’s failure model involves interface traps, in par-

ticular, at the silicon-oxide barrier. Due to the mismatch between Si and SiO2 crystal lattice,

many free Si bonds exist on the boundary. Hydrogen is bonded to these free atoms to prevent

electrical interference. However, in the presence of hole carriers, the Si-H bond is broken, gen-

erating interface traps. The reaction-diffusion model [42, 4] explains the process as occurring in

two phases. First, holes in the channel dislodge hydrogen atoms during the reaction phase. In the

diffusion stage the hydrogen atoms diffuse through the oxide, leaving free Si bonds at the barrier.

The rate at which this process produces interface traps is explained in [4]. Of note is the fact that

the reaction rate increases significantly at higher temperatures since it allows holes to more easily

break the hydrogen silicon bond.

The increase in interface traps changes the threshold voltage of the transistor. Equation A.8

shows how Vth changes over time as a function of the rate of trap generation, Nit [47].

∆Vth(t) = (µ+ 1)
q ·∆Nit(t)

Cox
(A.8)
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Where q is the charge in the channel, Cox is the oxide capacitance as previously defined, and µ,

the charge mobility. It is worth noting that NBTI also has an effect on µ.

Threshold voltage degradation due to NBTI is similar to hot carrier injection, however whereas

hot carrier injection occurs when a devices is switching, NBTI happens when it is not switching.

This is particularly damaging for designs that use power gating to reduce power consumption.

Moreover, unlike other aging failure modes, NBTI is reversible to an extent. When the negative

bias is removed from the device, the free hydrogen atoms can anneal with the free silicon atom

reducing the total number of free silicon bonds [57]. As with other sources of aging variation,

NBTI is more easily modeled as a random source.
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