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Abstract—To address slow FPGA compilation, researchers
have proposed to run separate compilations for smaller design
components in parallel. This approach provides small pages
on the FPGA, allowing users to separately generate partial
designs on the pages and load them together. However, this
method either forces users to manually decompose a design
into small components that fit in small, fixed-sized pages or to
use large, fixed-sized pages, reducing the potential compilation
speedup benefits. This restriction often results in suboptimal
decomposition of a design or diminishes productivity. To
overcome these limitations, we utilize the recently supported
Hierarchical Partial Reconfiguration technology from Xilinx to
generate a more flexible framework. Depending on the size
of user designs, our framework provides larger pages that
are hierarchically recombined from multiple smaller pages.
This flexibility relieves users of the burden to decompose the
original design and offers more opportunities for design-space
exploration. When tested on the ZCU102 embedded platform
with the Rosetta HLS benchmarks, our system achieves 1.4–4.9×
mapped application performance improvement compared to the
system with fixed-sized pages while still compiling in 2–5 minutes
(2.2–5.3× faster than the vendor tool).

Index Terms—FPGA, Compilation, Streams, Dataflow, Latency
Insensitive, Hierarchical Partial Reconfiguration, Incremental
Refinement

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) are deployed in a

wide range of applications, including machine learning [1],

[2] pattern matching [3], [4], and genomics [5]. While

FPGAs excel in many applications, the long edit-compile-

debug cycle has remained a known bottleneck. Hours or days

of compilation time often discourages software engineers who

expect seconds or minutes of compilation time on CPUs and

GPUs. Vendor tools run a monolithic placement and routing

on a design with limited parallelism, meaning that the FPGAs

compilation does not fully exploit multi-core CPUs or high

computing power in the cloud.

Recently, several works have tried to solve the time-

consuming monolithic compilation with separate compilations

in parallel. RapidStream provides a mesh of disjoint islands,

and user designs are placed and routed on each island [6].

RapidStream achieves about 2 hours of compilation time for

the designs that take about 10–14 hours with the vendor tool.

Xiao et al. [7]–[9] use Partial Reconfiguration (PR)

to support separate compilation to reduce compile time.

PR is a powerful technique that partially reconfigures the

portion of the reconfigurable device while other parts of

the design continue to operate [10], [11]. Conventional uses

RapidStream [6]PR with NoC [7,9] Hierarchical PR with NoC

(This work)

IslandPR page Single, Double, Quad PR pageAnchor

Fig. 1. Comparison between related work

of PR include dynamic system adaptation [12], [13], area

reduction [14], [15], and CGRA/FPGA virtualization [16]–

[19]. [7]–[9] employ PR to decouple each operator, a logical

streaming computational block, from each other, mapping each

on its own PR page, a physical partition of the reconfigurable

fabric [20], [21]. PLD provides different compile options like

-O0, -O1, and -O3 for FPGA compilation [9]. In -O1 option

where the pre-implemented Network-on-Chip (NoC) along

with PR is used, PLD achieves 9–19 minutes of compile time

for the designs that take 65–110 minutes with the commercial

tool.

A common challenge from the previous literatures is that the

operators are mapped on the fixed-sized islands or pages. If

the size of such region is too large, it reduces the speedup

benefit of separate compilation as we see in RapidStream

where independent page compilation still takes on the order

of an hour. On the other hand, if the size of the region is

too small, users need to manually divide an application into

small operators, and some applications suffer in suboptimal

performance because of unnatural decomposition as we see

in [8].

In this work, we create an overlay with hierarchical PR

pages for separately compiled regions (Fig. 1), utilizing

Xilinx’s Nested Dynamic Function eXchange (DFX) [11]. Our

framework consists of PR pages and a pre-built NoC similar

to [9]. The difference is that PR pages in this work can be

recombined to create double-sized pages or quad-sized pages

depending on the size of operators. With a new framework,

users can enjoy the benefit of fine-grained separate compilation

with single-sized pages so that they can achieve high speedup

in compilation. Yet, the users are not forced to decompose

a design into small operators because large operators can
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be mapped to double-sized pages or quad-sized pages. The

compilation time is determined by the slowest among all

separate compilations, and the users get to control the degree

of acceleration in compilation. Our key contributions include:

• We provide a practical open-source framework1 for the

separate compilation that is the first to exploit variable-

sized PR pages using Xilinx’s Nested DFX technology.

Unlike prior works, the users do not need to decompose

a design to fit in fixed-sized pages. The users can

incrementally increase or decrease the size of an operator,

and the system automatically assigns the appropriate size

of PR pages, mapping as fast as the operators allow.

• We demonstrate that the use of these variable-sized PR

pages improves application performance by 1.4–4.9×

compared to a fixed-sized pages system on some Rosetta

HLS benchmarks [22] while still compiling 2.2–5.3×

faster than Xilinx Vitis. Our framework achieves 2–5

minutes of compilations while Vitis takes 7–22 minutes.

• We illustrate typical use cases for variable-sized

PR pages by presenting an incremental development

scenario that exploits natural decomposition, inter-

operator optimization, and intra-operator optimization.

The rest of the paper is organized as follows: in Sec. II,

we introduce hierarchical PR technology and related work

on separate compilation on FPGA. Sec. III outlines our idea

and engineering considerations. Sec. IV presents a sample

incremental refinement scenario and experiment results. Sec. V

provides more discussion on results and future directions.

II. BACKGROUND

A. Hierarchical Partial Reconfiguration

PR design consists of two elements: static design and

reconfigurable modules. The static design is the part of the

design that does not change during partial reconfiguration.

A reconfigurable module is a part of the design that is

reconfigured during operation. Hierarchical PR is a technology

that allows PR’s reconfigurable modules to contain one

or more reconfigurable modules inside. GoAhead is an

academic PR framework that first supports hierarchical

PR [23]. Reconfigurable computing researchers have reduced

the memory for bitstream storage and accelerated bitstream

loading time using hierarchical PR in GoAhead [24].

Xilinx has recently supported hierarchical PR with the name

of Nested DFX [11]. In the Xilinx Vivado PR technology,

the user first defines PR regions with pblocks and assigns

a reconfigurable module to each pblock. After running the

placement and routing, the user carves out the reconfigurable

modules and locks the left-over logic and routing to create the

static design. Partition pins, the interfaces between the static

logic and the reconfigurable logic, are defined, too. Vivado

allows the static design to use resources of the reconfigurable

pblocks to enhance routability.

To generate hierarchical PR regions, given the initial

routed design, the user subdivides the pblock, assigns new

1https://github.com/icgrp/prflow nested dfx

reconfigurable modules, and goes through the conventional PR

process to generate partition pins to the lower level. Then,

the user recombines subdivided regions to generate the upper

level context bitstream. In order to load the subdivided smaller

bitstream, the user first needs to load the upper level bitstreams

to set up the context and load the lower level bitstreams.

One use case of the hierarchical PR is the use of PR in

the Xilinx DFX platform [25]. DFX platforms consist of the

dynamic region where the user designs are mapped and the

static shell region where the basic infrastructure logic resides.

The users get to use PR by default with the DFX platforms.

If the users want more granular reconfiguration, they need to

subdivide the dynamic region that is already reconfigurable,

utilizing hierarchical PR [9], [26].

B. Separate Compilation on FPGA

Guo et al. have suggested RapidStream [6], a separate

compilation framework using RapidWright [27]. They provide

islands where the processing elements (PEs) of the user design

are compiled in parallel. However, in the experiments, the

granularity of the islands is 2×2 clock regions on Xilinx U250

FPGA. The size of an island is more than 50K LUTs, and the

large area reduces the benefit of separate compilation.

Moreover, after PEs are placed and routed in separate

islands, the tool needs to go through a top level stitching

operation. This requirement is detrimental, especially in an

incremental development scenario where users want to quickly

iterate each design point. Even with the fast open-source

router [28], the inter-island routing takes about half of an hour.

If the size of island decreases, the global stitching time is

expected to increase.

Thomas et al. [29] accelerate FPGA compilation by

replicating processing units (PUs) alongside pre-implemented

connectivity logic. For designs that take 80–120 minutes to

compile, they achieve about 10 minutes of total compilation

time for 960 LUT pages including a minute of replication

processing by RapidWright [27]. But the applications of this

work are inherently limited to those with the identical PUs.

Xiao et al. [7]–[9] have utilized PR to separately compile

user design components. Because the size of PR page can be

smaller or larger than the clock region, this approach can offer

more speedup or flexibility in compilation. Authors use a pre-

routed NoC [7], [9] or switchboxes, [8], so that, even if the

interconnections between the operators change, the users do

not need a sequential inter-page stitching process.

Nevertheless, in this approach, the size of PR page is

fixed, so it is the user’s responsibility to decompose a design

into small operators. It is not only an additional burden but

also sometimes limits the performance of the design. If an

operator is unnaturally decomposed into smaller operators,

the bandwidth of the NoC that connects PR pages becomes

a bottleneck [8]. Furthermore, the fixed-sized page limits the

design-space exploration. For instance, if the users want to

accelerate a data-independent loop by unrolling it, the degree

of unrolling is determined by the page size because the

operator should not exceed the size of the page.

https://github.com/icgrp/prflow_nested_dfx


Page

Assign

A.cpp

1) HLS, Synthesis

in parallel

2) Assign Hierarchical 

PR Page

3) Place/Route/Bit-gen

in parallel

4) Load bits,

Configure NoC

NoC

Fig. 2. Separate Compilation with Hierarchical PR Pages Overview

One option to avoid unnatural decompositions is to create

a custom PR design that pre-defines a large enough PR page

for each operator [30]. The developer can then incrementally

improve operators. However, if too large an area for an

operator is reserved, a design with large number of operators

cannot be mapped in the available device area. If too

small an area for an operator is reserved, it limits the

design space exploration. Additionally, unless a pre-built NoC

like [7] and [9] is used, when the user wants to change the

interconnections between the operators, the user needs a slow

compile to regenerate the static design, giving up the benefit

of fast compilation.

III. IDEA: OVERLAY USING HIERARCHICAL PR

Our approach uses PR, offers smaller pages and avoids a

global stitching phase. Our approach uses hierarchical PR so

that the users do not need to decompose a design into small

operators. Instead, our system recombines multiple pages,

hierarchically to hold large operators. In this section, we

explain our separate compilation flow and highlight important

details in engineering a practical implementation.

A. Separate Compilation Framework using Hierarchical PR

We build upon PLD [9], an open-source framework2

using PR for separate compilation. PLD offers Xilinx Vitis

compatible tool flow for the data streaming compute model

where operators communicate through the NoC with streaming

links. PLD uses a single-flit, deflection-routed Butterfly-Fat-

Tree (BFT) network [31] for the NoC. The inputs to the

framework are the C source files for each operator and the

2https://github.com/icgrp/pld2022
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Fig. 3. Example Overlay on the Xilinx ZU9EG FPGA

top-level source file for the operator composition and software

simulation.

PLD parses the top-level source file and configures the NoC

to link operators together. The NoC is configured for linking

by configuration packets sent to the network interface for each

page. Using Vitis HLS and Vivado, PLD separately compiles

each operator in parallel and generates individual partial

bitstream. When running an application, the NoC configuration

packets and input data for the application are sent from the

host to a DMA operator first. The DMA page operator then

sends the configuration packets and input data to appropriate

page through the NoC.

In PLD, the overlay contains the fixed-sized PR pages

connected by the NoC. The size of each operator must be

small enough to fit in the fixed-sized pages. We propose

to subdivide PR pages to create hierarchical PR pages and

recombine smaller pages to create larger pages (Fig. 2). The

inputs to our framework are the same as the inputs to PLD.

HLS and synthesis for each operator runs in parallel. Unlike

PLD, however, we synchronize compile runs after synthesis

to assign a PR page to each operator. The tool finds the PR

pages of appropriate sizes based on the utilization reports after

the synthesis, and then, separate jobs for implementation are

launched. After all compile jobs are done, partial bitstreams

are loaded together. Fig. 3 shows the screenshot of the example

overlay with the hierarchical PR pages on the Xilinx ZU9EG

FPGA.

We build the NoC with an input and output port for each

of the smallest, single pages. If an operator is assigned to a

larger recombined page, the leaf interface for the recombined

page uses interface pins to a single page only, for simplicity.

The bottom right figures in Fig. 3 show three different cases to

use four single pages. A recombined page (a double page or a

quad page) uses the bandwidth of single page’s leaf interface,

and the NoC is oblivious of the page size.

https://github.com/icgrp/pld2022


B. Overlay generation using Hierarchical PR

The Xilinx DFX platform initially consists of a single

dynamic region. First, we subdivide the dynamic region into

the highest level PR pages, p2, p4, p8, p12, p16, p20,

and p_NoC in the Fig. 3 example. Xilinx’s Nested DFX

technology does not allow more than one pblock to be

subdivided until the first pblock has a placed and routed

design [11]. This means that we subdivide p2, and after

the top-level implementation is finished for p2, p4 can be

subdivided. Creating the final routed design for Fig. 3 requires

a total of 18 implementations. Abstract Shells for all the

pblocks are generated from this final routed design.

C. Abstract Shell and p NoC

In Xilinx Vivado, when compiling a reconfigurable module

on a PR region, we first load a static design to set up the

context and compile the module to the designated pblock. One

known issue is that even if the module is compiled on the small

pblock, Vivado still loads the entire static design to compile a

module to the small pblock. This in-context flow slows down

the compilation when the static design is large [7]. To resolve

this issue, Vivado supports Abstract Shell [11], which is the

minimal logical and physical database for a reconfigurable

pblock.

Our framework produces abstract shells for all the PR pages

available. We notice that sometimes, the sizes of the static

design in the abstract shells are largely unbalanced. This is

because the abstract shell contains some placement and all

the routing information in the expanded region [11]. Vivado

relaxes routing requirement for the reconfigurable modules by

allowing reconfigurable modules to utilize routing resources

outside the pblock in the expanded region (Fig. 4). Because

the size of expanded region of each PR page differs, the size

of abstract shell differs as well.

We indirectly control the size of the expanded region in the

abstract shell by instantiating a pblock for the NoC (p_NoC,

as shown by the blue highlighted part in Fig. 3), a similar

technique that was used in [7], [32] to accelerate mapping

before abstract shells were supported by Xilinx. Because

other pblocks cannot route over p_NoC, the expanded regions

are limited, resulting in more balanced sizes of abstract

shells throughout all pblocks. p_NoC also relieves routing

congestion by restricting the NoC logic and distributing the

design’s routing. Before subdivision, Vivado does not know

whether a large pblock will be subdivided or not, so the routing

could be unnecessarily congested near the PR pages. In our

example overlay, without p_NoC, we encountered a routing

failure while subdividing PR pages.

Tab. I compares the sizes of the static design in quad pages,

both the case with p_NoC and the case without p_NoC. In the

case without p_NoC, we could not process all the subdivisions

because of a routing failure, so we create abstract shells from

the initial routed design with the highest level user PR pages

(p2, p4, p8, p12, p16 and p20) only. In the case with

p_NoC, the abstract shells are generated from the routed

design after the final subdivision. We can see that p_NoC

(a) p20 with p_NoC (b) p20 without p_NoC

Fig. 4. Abstract shells for p20 comparison. Orange elements are the static
resources showing the extent of the expanded regions.

TABLE I
SIZE OF STATIC DESIGN OF ABSTRACT SHELLS (NUM OF LUTS)

Quad-sized page with p NoC without p NoC

p4 1745 8459

p8 2817 129

p12 1946 2138

p16 3465 5613

p20 3007 15508

Notes: The numbers on the table are the number of LUTs remaining in the
static design (orange elements in Fig. 4) of the abstract shell, not the size of
quad pages.

balances the sizes of static designs in abstract shells. Fig. 4

shows the difference in the sizes of static design in one of the

quad pages. When compiling a sample design (an operator

of Digit Recognition benchmark in Sec.IV) on p20, the time

for place, route, and bitstream generation is 93 seconds for

Fig. 4 (a) with p_NoC while it is 157 seconds for Fig. 4 (b)

without p_NoC. The sizes of generated bitstreams are 2.0 MB

and 3.2 MB respectively.

D. Blocked Resources in PR Pages

Previous works regarding separate compilation

using PR [7]–[9] did not fully address the blocked

resources in PR regions. Xilinx PR technology blocks

some resources in reconfigurable pblocks to allow

better routing. blockedBelsOutputs.tcl and

blockedSiteInputs.tcl are created while generating

the overlay and contain the information on blocked

resources [11]. We parse these files to exclude blocked

resources from the available resources in each pblock.

Tab. II shows the available resources in the highest level

user PR pages in our example overlay. Tab. II compares the

available resources after the first subdivision and the available

resources after the last subdivision for the example overlay.

As the pblocks are subdivided deeper, the number of blocked

resources generally increases because of the additional routing

from the static design and upper level hierarchy.



TABLE II
AVAILABLE RESOURCES IN PR REGIONS AFTER SUBDIVISION (%)

First Subdivision Last Subdivision
LUTs BRAM18s DSPs LUTs BRAM18s DSPs

p2 99.9 100 95.0 99.6 96.7 100

p4 99.7 100 100 99.1 91.7 97.1

p8 99.9 100 100 99.6 95.0 99.2

p12 99.9 100 98.8 99.5 89.2 97.5

p16 99.9 89.2 100 99.7 90.0 97.9

p20 99.9 89.2 99.7 99.8 93.3 96.9

When generating an overlay, it is possible to reduce the

number of blocked resources by instantiating modules that

tightly fit in the pblocks. Because the tight modules push out

static logic and routing, the reconfigurable part and the static

part become more separated, thereby reducing the number of

blocked resources. A blocker module that blocks static routing

in a reconfigurable pblock is also an alternative [23], [33]. But

such modules make the routing in the overlay generation more

challenging. In this work, we give Vivado freedom in routing

and take the blocked resources into account when calculating

PR pages capacity. We leave it as the future work to reduce

the number of blocked resources while reserving more area

for the PR pages from the total device area.

E. Margin in PR Pages

Resource utilization in PR pages close to 100% could

lead to routing congestion or routing failure, so we added a

conservative MARGIN value for each page. If LUTop ∗ (1 +
LUT MARGIN) < LUTpage, we consider the page has

enough LUTs, when LUTpage refers to the number of LUTs in

a designated page after excluding blocked resources. We have

the same rules for BRAMs and DSPs. If the page has enough

LUTs, BRAMs, and DSPS, we consider the page is large

enough to accommodate the operator. We set most margins

at 10–15% but increase the margins up to 20% for specific

pages where Vivado has borrowed a large number of routing

resources.

F. Greedy Page Assignment Algorithm

We developed a page assignment algorithm to automatically

assigns operators to the pages of proper sizes. This automatic

page assignment makes the framework accessible to a wider

set of developers include HLS developers, because they do not

need to be aware of the details of the PR regions and page

mapping. Furthermore, if a user must intervene and manually

assign the pages after the synthesis runs, it requires minutes

of the human time, which could undermine the benefits of fast

compilation.

Our greedy algorithm aims (a) to reduce both internal

and external fragmentation of the pages and (b) to reduce

the number of unnecessary incremental compile jobs. The

algorithm starts when the framework generates post-synthesis

utilization reports for all the operators (Fig. 2, Step 2).

If it is the first compilation, the algorithm sorts the

operators in the descending order of their sizes. We

define the size of an operator as LUTop/LUTtotal +
BRAMop/BRAMtotal+DSPop/DSPtotal, when LUTtotal,

BRAMtotal, and DSPtotal refer to the total each resource

available in the device. In this way, the algorithm takes all

three resources into account. We start from the largest operator

because if small operators are assigned first to single pages

that are scattered, it causes external fragmentation, leaving no

quad pages available for a large operator.

First, we look for single pages to check whether the

specific operator can fit in a single page. We create

possible_pblock_list that contains all the single pages

that are large enough to accommodate the operator. To

determine whether the operator fits in a specific page, we

use the MARGIN value discussed in Sec. III-E. Among the

possible pblocks, we choose the smallest pblock to reduce

internal fragmentation, leaving as much area as possible to

other operators. If there is no possible single page, we move

to double pages, and perform the same process. If there is no

possible double page, we move to quad pages.

If the user has previously compiled the application with our

system, edited some operators and incrementally compiled the

design, the algorithm first checks whether the previous pblock

assignment works for the new operators. If all the operators

fit in the previously assigned pages, we keep the assignment

and launch compile jobs for place and route immediately. In

this way, only operators that are modified by the user are

recompiled.

If there exist operators that do not fit in the previously

assigned page, we try to assign these operators only on

the remaining unused pages. If we successfully find the

possible pages, we launch new compile jobs for the modified

operators. If we cannot find the possible pages, we start

a new page assignment for all the operators. We sort the

operators in descending order and check from the single

pages again. But this time, instead of choosing the tightest

pblock from possible_pblock_list, if the previously

assigned page is in the possible_pblock_list, we

choose the previous assignment. With this approach, we can

avoid unnecessary recompilations for the unchanged operators.

The page assignment algorithm finishes in less than a second

for designs with up to 22 operators and 22 pages.

IV. EXPERIMENTAL EVALUATIONS

We create an overlay for the Xilinx ZCU102 evaluation

board which uses an UltraScale+ ZU9EG FPGA. We use the

officially released Xilinx ZCU102 DFX platform [34] with the

dynamic region modified to include more area. The dynamic

region available to the users consists of 264,464 LUTs, 1,752

18Kb BRAMs, and 2,448 DSPs. Our framework uses Xilinx

Vitis 2021.1 including Vitis HLS and Vivado. We evaluate our

framework on a workstation equipped with the 3.7GHz AMD

Ryzen 9 5900X 12 Core CPU with 24 processing threads and

128 GB of RAM.
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TABLE III
OPTICAL FLOW INCREMENTAL DEVELOPMENT WITH HIERARCHICAL PR PAGES

Steps Largest Operator Page Size Compile Jobs
Largest Operator Resource Usage Incremental

Compile Time
App

LatencyLUTs B18s† DSPs

1) Natural Compute flow Quad 9 16829 7 24 261s 18.7ms
2) Merge Tensor x Compute flow Quad 1 17560 7 54 245s 18.1ms
3) Merge Tensor y Compute flow Quad 1 18473 33 68 274s 16.0ms
4) Merge Outer prod. Compute flow Quad 1 20357 39 74 288s 14.7ms
5) Split Weight x Weight x1 Single 3 1690 6 10 94s 14.7ms
6) Split Weight y Weight y1 Single 3 1791 18 10 107s 14.7ms
7) Optimize Compute flow Compute flow Quad 1 20307 45 78 291s 8.7ms
8) Change data type Compute flow Quad 1 12471 49 192 274s 8.7ms

† B18s: BRAM18s “App Latency” – application execution time per input

A. New Overlay with Hierarchical PR Pages

Our hierarchical overlay consists of 22 single pages, (6933–

8409 LUTs, 38–72 18Kb BRAMs, 47–72 DSPs). As shown

in Fig. 3, 22 single pages can be recombined to create 11

double pages, (14632–16001 LUTs, 102–116 18Kb BRAMs,

116–143 DSPs). They can also be recombined to create 5 quad

pages, (29899–31750 LUTs, 214–228 18Kb BRAMs, 233–282

DSPs).3 The total available resources on PR pages are (64%

LUTs, 70% BRAMs, 57% DSPs) of the device’s dynamic

region. We use a deflection-routed BFT network [31] with

Rent exponent of p=0.5 as our NoC. The size of p_NoC is

25,920 LUTs, and the BFT consumes 11,799 LUTs. The clock

frequency for the NoC and the user operators is 200MHz.

B. Incremental Development Scenario for the Optical Flow

The Rosetta Benchmark Suite [22] offers a variety

of realistic HLS benchmarks. We use Optical Flow, 3-

D Rendering, Digit Recognition and Spam Filter in the Rosetta

Benchmark for the demonstration as these are the applications

whose decompositions by [9] can be mapped on the ZU9EG

FPGA. We compare the performance against the fixed-sized

PR pages system. We first present an incremental development

scenario for the Optical Flow benchmark to illustrate different

use cases.

1) Natural Decomposition: The Optical Flow Rosetta

Benchmark is already decomposed into a set of stream-

connected operators and offers both a fixed-point version and

a floating-point version. However, in the Rosetta Benchmark

Optical Flow, there is Compute flow operator that contains

3Available resources after excluding blocked resources in Sec. III-D

about 60% of the total LUTs of the design. In [7]–[9], the

users cannot map Compute flow in the small, fixed-sized PR

page, so the authors refine the code with a mix of fixed-point

computations and floating-point computations to reduce LUT

usage. Compute flow is also divided into two operators because

of the limited DSPs available in the page.

We, however, can start from the natural decomposition of

Optical Flow using only fixed-point computations. This is

possible because our framework can map the large operator

to a double or quad page. The flexibility helps the users to

quickly run an application on the device and incrementally

refine it. The natural decomposition shown in Fig. 5 (a) is

almost identical to the original diagram from [22]. The post-

synthesis resource estimate for Compute flow is 16K LUTs,

and it is mapped to a quad page. All 8 other operators

are mapped to single pages. The compilation time and the

application runtime latency per input are shown in the last

two columns of Tab. III. Tab. III shows the page size and

resource usage of the largest operator only. Even with a large

operator, compile time never gets much larger than 4 minutes.

2) Inter-operator Optimization: One issue in the natural

decomposition (Fig. 5 (a)) of Optical Flow is the 192 bits

of datawidth between Outer product, Tensor y, Tensor x, and

Compute flow. Our NoC supports only 32 bits of data inputs

and outputs in a cycle, so these operators would suffer from

an IO bottleneck. [8] resolves this issue by replacing the NoC

with switchboxes that directly link neighboring PR pages. This

solution, however, forgoes the simple linking of the NoC and

requires more parallel compile jobs for the switchboxes.

With our solution, users can merge different operators that

suffer from the limited NoC bandwidth since a large operator



can be mapped in a large PR page. For instance, the users can

merge Outer product, Tensor y and Tensor x to Compute flow

so that these operators do not need to communicate through

the NoC. These merge steps are shown in the steps 2–4 in

Tab. III. The resource consumption of Compute flow increases,

but the quad page is large enough to accommodate the merged

operator. Because we only need to recompile Compute flow,

the number of compile jobs is 1. The application latency

decreases from 18.7ms to 14.7ms.

We can also split Weight x and Weight y, exploiting data

parallelism. These changes are shown in the step 5 and 6 in

Tab. III. Because we recompile only small operators this time,

incremental compile times are far less (1–2 minutes) than the

compile time for Compute flow (4–5 minutes).

3) Intra-operator Optimization: The users can also further

optimize within an operator. The users can unroll some loops

to enhance data parallelism, or pipeline some loops to improve

pipeline parallelism. With the fixed-sized PR pages, the users

need to consider the optimization before they decompose a

design because if the size of an operator increases, it may

not fit in a fixed-sized page. But the hierarchical PR page

lets the users quickly map a design with the straight-forward

dataflow graph and perform such optimizations later. As one

of these optimizations, in the step 7, we unroll a loop in

Tensor y with a factor of 2 and perform the same optimization

for Tensor x. Because these optimizations all occur inside the

merged Compute flow, we categorize them as intra-operator

optimizations.

In the step 8, we change the datawidths of variables

used in the merged Compute flow’s pixel computations. We

change the datawidth of calc_pixel_t from 64 to 96

to reduce the error rate of the application. In doing so,

we partially use a floating-point computation because using

solely the fixed-point results in a 62K LUTs of Compute flow

operator that even a quad page cannot accommodate. We

refer to the 64 bits of calc_pixel_t with only fixed-point

computations as Optical, (64,fixed pt). We refer to the 96 bits

of calc_pixel_t with a mix of fixed point computations

and floating point computations as Optical, (96,mix). The final

dataflow graph after the step 8 is shown in Fig. 5 (b).

C. Experiment Results for Rosetta Benchmarks

Experiment results on Rosetta Benchmarks with Vitis

monolithic compilation are illustrated in Tab. IV. The clock

frequency of the designs for the Vitis’s monolithic compilation

is 200MHz, and the resource usage represents the application

only, excluding the interconnect resources between the host

and the kernel. The compile time in Tab. IV does not include

time in the packaging step in the Vitis flow. Experiment

results on Rosetta Benchmarks with both the fixed PR

pages and the hierarchical PR pages are shown in Tab. V.

Compared to the resource usage in Tab. IV, our approach

uses more resources as it adds an interface for each operator to

communicate with the NoC. In Fig. 6, we show the benchmark

page mappings with the hierarchical pages. In the following

sections, we demonstrate how hierarchical PR pages allow

TABLE IV
ROSETTA BENCHMARK WITH MONOLITHIC VITIS FLOW (200MHZ)

Benchmarks
Resource Usage Compile

Time
App

LatencyLUTs B18s DSPs

Optical, (64,fixed pt) 26807 164 174 711s 19.1ms
Optical, (96,mix) 19213 187 300 695s 19.4ms

Rendering, Par=1† 4113 65 13 427s 2.5ms

Digit Rec, Par=40† 30650 411 1 919s 12.2ms

Digit Rec, Par=80† 54194 731 1 1340s 11.5ms

Spam, Par=32† 10296 38 224 742s 35.7ms

Spam, Par=64† 16284 38 448 848s 30.4ms

† Par: Parallelization Factor

simple incremental changes to improve the application latency

per input compared to the fixed-sized pages and compile faster

than Vitis monolithic compilation.

1) Optical Flow with Fixed-Sized PR Pages: The first

two rows in Tab. V are the experiment results of the

decompositions for the fixed-sized PR pages. As stated

in Sec. IV-B, the users need to use a mix of fixed-

point computations and floating-point computations to shrink

the size of operators. We refer these decompositions as

Optical, (64,mix) and Optical, (96,mix) when 64 and 96 are

the datawidths of calc_pixel_t. All 17 operators can be

mapped on single pages, but the application latency is worse

than the monolithic Vitis flow (Tab. IV) because of the limited

NoC bandwidth.

2) Optical Flow with Hierarchical Pages: The third and

fourth rows in Tab. V represent Optical Flow versions

(Optical, (64,fixed pt) and Optical, (96,mix)) for the

hierarchical pages. They are the incrementally developed

versions from Sec. IV-B (Tab. III’s step 7 and step 8). The

application latencies of 8.8ms and 8.8ms are slightly different

from 8.7ms and 8.7ms in Tab. III’s step 7 and step 8. This is

because the page assignment is different for the incremental

development case and compilation from the scratch. As the

new Compute flow mitigates the limited NoC bandwidth issue,

we achieve 3.6× and 4.9× reduction in the application latency

compared to the fixed-sized pages system. The compilations

are still 2.2× and 2.3× faster than the monolithic Vitis flow.

3) 3-D Rendering: We increase the data parallelism by

splitting computationally heavy operators into data parallel

operators, and one operator in Rendering, PAR=2 is mapped

to a double page. Our framework achieves 1.4× reduction in

the application latency compared to the framework with only

single pages and compiles 2.5× faster than the monolithic

Vitis flow.

4) Digit Recognition: We have 10 operators that

compute K-Nearest-Neighbors (KNN) in parallel. In

Digit Rec, PAR=80, we increase the unroll factor in these

operators. All the operators that were previously mapped in

single pages are then mapped in double pages because of

the increased BRAM usage. This optimization leads to 1.5×

reduction in the application latency and compiles 5.3× faster

than the monolithic Vitis flow.



TABLE V
ROSETTA BENCHMARK WITH PR PAGES

Benchmarks
Resource Usage Usage by Page Size Compile

Time

Compile
Speedup

over Mono.

App
Latency

App Latency
Improvement
over Mono.

App Latency
Improvement over
Fixed-Sized PageLUTs B18s DSPs Sngl. Dbl. Qd.

Optical, (64,mix)∗ 35953 218 168 17 0 0 276s N/A 32.1ms 0.6 1.0∗

Optical, (96,mix)∗ 40765 222 330 17 0 0 329s 2.2 43.4ms 0.4 1.0∗

Optical, (64,fixed pt) 36336 160 148 9 0 1 322s 2.2 8.8ms 2.2 3.6

Optical, (96,mix) 28500 164 262 9 0 1 305s 2.3 8.8ms 2.2 4.9

Rendering, Par=1∗ 8605 94 9 5 0 0 151s 2.8 2.6ms 1.0 1.0∗

Rendering, Par=2 22435 106 18 6 1 0 169s 2.5 1.8ms 1.4 1.4

Digit Rec, Par=40∗ 44774 381 2 10 0 0 212s 4.3 7.0ms 1.7 1.0∗

Digit Rec, Par=80 70638 701 2 0 10 0 251s 5.3 4.7ms 2.4 1.5

Spam, Par=32∗ 51461 204 256 15 0 0 287s 2.6 72.5ms 0.5 1.0∗

Spam, Par=64 57263 198 512 7 7 0 307s 2.8 72.4ms 0.4 1.0

* Decompositions that can also be mapped to the Fixed-Sized PR Pages.

(a) Optical, (64,fixed pt) (b) Optical, (96,mix) (c) Rendering, Par=2

(d) Digit Rec, Par=80 (e) Spam, Par=64

Single Page

Double Page

Quad Page

NoC

Empty Page

Fig. 6. Rosetta Benchmarks with Hierarchical PR Pages Mappings

While Digit Rec, PAR=80 achieves 1.5× the performance

improvement with the hierarchical PR pages (Tab. V),

the performance improvement in the monolithic Vitis flow

is only 1.1× (Tab. IV). KNN algorithm consists of the

Hamming distance computation and KNN vote computation.

While increasing the unroll factor accelerates the Hamming

distance computation, the workload for KNN vote computation

increases, too, becoming a new bottleneck for the monolithic

flow. In the hierarchical PR pages decomposition, KNN vote

computation is distributed in 10 operators along with the

Hamming distance computation, and KNN vote computation

does not become a bottleneck.

5) Spam Filter: We increase the unroll factor from 32 to

64 in Spam Filter application, and 7 operators are mapped

to double pages because of the increased DSP usage. But

we do not achieve speedup in the application latency. This

is because we transfer data from host to DMA operator

first, and the DMA operator sends data to another operator

through the NoC. We can resolve the limited NoC bandwidth

between operators by merging those operators as we do in

Optical Flow. But because the DMA operator is static in the

framework, we cannot merge it with other operators. We leave

the optimization as the future work.

TABLE VI
BITSTREAM LOADING TIMES FOR FULL APPLICATIONS

Benchmarks Mono. Vitis
Hierarchical PR pages

Dynamic Region Total

Optical, (64,fixed pt) 147.6ms 165.9ms 496.7ms
Optical, (96,mix) 147.6ms 166.1ms 334.8ms

Rendering, Par=1 153.1ms 167.1ms 319.2ms

Digit Rec, Par=40 176.9ms 166.2ms 463.2ms
Digit Rec, Par=80 211.6ms 166.4ms 522.5ms

Spam, Par=32 300.1ms 166.8ms 612.6ms
Spam, Par=64 466.0ms 165.5ms 619.6ms

D. Bitstream Loading Time Overhead

One advantage of PR in many traditional uses is the short

loading time of the partial bitstream compared to that of the

full bitstream. But in our framework, the bitstream loading

time is often larger than the monolithic bitstream loading time.

A downside of the hierarchical PR is that to load a lower level

bitstream, we need to load the upper level context bitstreams

first. Tab. VI shows the bitstream loading time for both the

monolithic Vitis flow and our framework using hierarchical

PR. “Dynamic Region” column refers to the first level partial

bitstream that contains some peripheral logic for Vitis flow,

the NoC, and the context information all the way down to the

single pages. “Total” column refers to the loading time for the

first level partial bitstream and all the operator bits.

We observe that there exists a significant overhead in

bitstream loading time due to the upper level context bitstream,

but we can accept the hundreds of milliseconds of overhead to

save minutes or hours of compilation time. In an incremental

development scenario, it is possible to only load the changed

partial bitstreams and related upper level bitstreams, and the

overhead is not as large as that of the full application in

Tab. VI.

V. DISCUSSION AND FUTURE WORK

In Sec. IV-B, we have seen that a single page takes less

than 2 minutes to compile and even a quad page takes only

4–5 minutes to compile. The benefit of separate compilation

is that the tool only needs to compile for the portion that is

changed, not the entire design.



Although the maximum size of a recombined page is a quad

page in our experiments, there is no limit in the maximum

size of pages, and larger pages such as octal and beyond

are possible. With a deeper hierarchy, smaller base pages are

possible as well. But the deeper the PR level gets, the more

difficult it is to generate the overlay in the first place since

the routing is more difficult. Some resources in the pblock are

blocked to accommodate interface pin routing, and blocked

resources make the routing of the user module implementation

more difficult. Having a pblock for the NoC (p_NoC) is one

way to provide a hint to Vivado regarding placement and

routing. We can also set the range for the partition pin locations

to guide Vivado how to route. It is clear there is a rich area

for the overlay design and optimization here.

The page assignment algorithm does not consider the effect

of PR page’s tightness on compilation time. It is challenging to

formulate the problem because the compile time is a function

of the operator size, PR page size, wiring complexity of the

operator, available wiring resources of PR page and others. It

will be valuable to develop models that quickly classify fast

and slow compile problems based on characteristics such as

the ones listed above. Algorithms such as [35], [36] might

serve as good starting points.

We saw some cases of performance drops due to NoC

congestion from the page assignments during development and

will likely need an option to directly target congestion effects

as part of an improved page assignment algorithm.

We evaluate our idea of the hierarchical PR pages on a

modest embedded platform, but we can extend to the larger

data center devices and expect to achieve higher speedup in

compilation time.

VI. CONCLUSIONS

FPGA compilation is notoriously longer than software

compilation. Recent works on separate compilation

demonstrate the feasibility of software-like FPGA compilation.

We advance the state-of-the-art in separate compilation by

supporiting variable-sized pages that provide more flexibility

to the users. Our experiment results show that the variable-

sized pages give 1.4–4.9× performance improvement

compared to the framework with the fixed-sized pages

while compiling 2.2–5.3× faster than the commercial tool.

Especially in the incremental development scenario, a single

page takes less than 2 minutes and a quad page takes 4–5

minutes to compile for the design that the vendor tool takes

11–12 minutes to compile.
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