
REFINE: Runtime Execution Feedback
for INcremental Evolution on FPGA Designs

Dongjoon Park
University of Pennsylvania

Philadelphia, PA, USA
dopark@seas.upenn.edu

André DeHon
University of Pennsylvania

Philadelphia, PA, USA
andre@acm.org

ABSTRACT

FPGA design optimization is challenging for developers for two

main reasons. First, developers cannot easily identify a bottleneck

of the design to know where to focus optimization effort to improve

the application execution time. Second, slow, monolithic FPGA com-

pilation makes evaluation of each design change costly. Together,

these make FPGA development different and more challenging

than traditional software development where software engineers

are accustomed to using rich profiling tools to improve their de-

signs through a series of quick, incremental refinements. To address

these issues, we propose a fast bottleneck identification scheme us-

ing runtime feedback and separate FPGA compilation. Our scheme

systematically identifies bottlenecks in streaming computations

based on FIFO event counters extracted from hardware execution

and guides developers to the operations that limit performance. We

showcase our support for bottleneck identification with the fast,

automatic design space exploration, iterating initial design points

quickly with a separate, incremental compilation strategy. When

the design reaches the point that latency cannot improve with the

separate compilation approach, we migrate to the monolithic de-

sign flow that does not have the area overhead and communication

bandwidth limit of separate compilation approach. Then, the re-

maining design space, if any, is explored with a monolithic flow.

When tested on the AMD ZCU102 embedded platform with realistic

HLS dataflow designs, our approach correctly identifies bottlenecks

improving application latency 2.2ś12.7× while reducing tuning

time by 1.3ś2.7× compared to monolithic flow.
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Figure 1: Fast incremental refinement strategywith runtime

bottleneck identification

1 INTRODUCTION

FPGAs excel in many applications with massive parallelism and

flexibility. The recent advancement of High-Level-Synthesis (HLS)

lowers the entrance barrier of FPGA design so that software engi-

neers without hardware expertise can program FPGA applications.

Yet, designing an optimized FPGA design has never been an easy

task even for experts.

Software engineers are used to profiling their code to identify

where time is going in their applications, allowing them to identify

bottleneck functions that can be revised to accelerate performance.

Furthermore, when they make a change, incremental compilation

allows them to quickly recompile only the functions that have

changed and re-profile their designs. This allows the software engi-

neering to quickly iterate and refine their applications to improve

performance. In contrast, when the components of an FPGA appli-

cation are concurrently resident on the FPGA, there is less visibility

into which operators are limiting application performance. In ad-

dition, when the programmer makes a change, the entire FPGA

designmust be recompiledmonolithically, an operation that can typ-

ically take hours. This prevents the FPGA developer from quickly

identifying bottlenecks and iterating to improve the design.

https://doi.org/10.1145/3626202.3637560
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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To narrow the gap between FPGA development and software de-

velopment, several works have recently proposed to utilize a packet-

switched Network-on-Chip (NoC) and Partial Reconfiguration (PR),

compiling each section of the device in parallel [28, 29, 37, 38]. Dif-

ferent operators, compute blocks in the dataflow graph, are mapped

to different partially reconfigurable regions, pages, and operators

communicate through the pre-built NoC overlay. This separate

place/route and linking strategy, similar to software compilation,

decreases FPGA compile time with a divide-and-conquer strategy

and recompiles only the changed operators. However, programmers

still do not have access to the inner state of the application and

cannot identify what part of the codes to refine. The question is,

can we identify the bottleneck of the application along with the fast

compilation to iterate through the initial design points quickly on the

path to an optimized monolithic FPGA design?

Fig.1 (b) shows the incremental refinement strategy integrated

with our fast bottleneck identification based on runtime feedback

from the hardware. The goal is to quickly map the HLS dataflow

application on the FPGA with the previously suggested NoC-based

strategy and to incrementally refine each operator. In this process,

the bottleneck operator is identified on each iteration and the sizes

of bottleneck operators may increase to exploit more parallelism

on the hardware. However, the infrastructure added for the NoC

based system may add its own bottlenecks and prevent the design

from fully using all the FPGA resources for the application. When

the design space for the bottleneck operator is all explored or the

design is expected to use more resources than available on the PR

pages, we remove the NoC and optimize for the final monolithic

design, which directly connects the operators with FIFOs using a

similar bottleneck identification scheme. Instead of using poten-

tially inaccurate models for application performance or resource

utilization, we always have a working copy of the application whose

performance we can measure to provide feedback to identify the

next bottleneck that needs attention.

To illustrate our fast bottleneck identification and refinement

capabilities, we use them in a simple, greedy automated Design

Space Exploration (DSE) experiment. This experiment removes the

human from the loop to focus entirely on (1) the accuracy of the

bottleneck identification and (2) the time required to automatically

identify bottlenecks and recompile refinements. Twomajor knobs in

the design space are design parameters and kernel clock frequency.

One example of design parameters are HLS pragmas that are added

to the source code. In both the NoC-based system and monolithic

system, we explore different kernel clock frequencies (200MHzś

400MHz) per operator so that an operator with the lowest Fmax does

not limit the operating frequency of the rest of the design. Fig.1 (c)

shows one of the case studies for the greedy, automated DSE. In our

fast incremental refinement strategy (green), DSE starts with the

fast, separate compile framework using a pre-built NoC. After each

compilation, the design runs on the hardware, the bottleneck oper-

ator is identified, and the next design point is selected. In Fig.1 (c),

both incremental (green) and monolithic (red) correctly identify

the operators limiting performance and tune their parameters to

achieve a 3.8× reduction in runtime. In the incremental strategy,

the NoC-based fast compile iterates 32 design points (marked as ×)

then iterates 2 design points (marked as ) with the regular mono-

lithic compilation all in less than 2.2 hours, leading to an overall

2.5× speedup in design tuning over a purely monolithic flow.

The contributions of this work include:

• We provide a fast, automatic runtime bottleneck identifi-

cation scheme based on the FIFO counters, along with the

tools to automate their insertion and bottleneck identifica-

tion (Sec. 4).

• We demonstrate an incremental refinement strategy that

iterates initial design points with the fast, NoC-based, sepa-

rate compilation and migrates to the optimized monolithic

FPGA design (Sec. 7).

• We enhance the NoC-based system including the support

for the multiple clock frequencies for the pages (200MHzś

400MHz), utilization of multiple NoC interfaces, and page

assignment based on graph bi-partitioning (Sec. 5).

• We evaluate our incremental refinement strategy with au-

tomatic DSE case studies on Rosetta benchmarks [42] and

FINN [4, 34] where bottleneck identification selects which

operators and parameters to adjust to incrementally improve

performance (Sec. 8). We show that the kernel execution

time improves 2.2ś12.7×, continually using the feedback

from each compilation. The design space exploration time

was 1.3ś2.7× shorter than when the design is monolithically

compiled every time.

We provide an open-source distribution for our tools.1

2 BACKGROUND

2.1 HLS Design Space Exploration on FPGA

There have been numerous works on HLS DSE [5, 11, 16, 23ś25,

30, 32, 40]. HLS DSE is generally categorized into two approaches,

model-based and synthesis-based. Model-based techniques build

predictive models for performance and resource, so they can quickly

search the design space. However, model-based techniques are

inaccurate compared to synthesis-based methods that invoke HLS

tools to evaluate the design point, and inaccurate models could lead

to a suboptimal design, under-utilizing or over-utilizing resources

for the given platform. Synthesis-based methods use results in

the early stages of the hardware mapping like post-HLS estimates.

They are more accurate than model-based methods at the expense

of runtime, but there is still a huge gap between post-HLS estimates

and the actual placed and routed designs [7]. The problemwith post-

HLS estimates is exacerbated for the data-dependent applications.

For example, when there are variable loop bounds, AMD Vitis_HLS

does not report the trip counts as the values are unknown at compile

time [3, 6].

Our strategy (Fig. 1 (b)) is different from the aforementioned

approaches because we place, route, and run the design on the FPGA

and incrementally refine the design. We perform bottleneck-guided

optimization, similar to the strategy used in [32]. Instead of relying

on post-HLS estimates as done in [32], we use the feedback from

the placed and routed design that runs on the hardware. [23] uses

a domain-specific overlay to avoid repetitive FPGA compilation

in DSE, but our approach accelerate FPGA compilation directly

1https://github.com/icgrp/prflow_REFINE

https://github.com/icgrp/prflow_REFINE
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to the FPGA substrate, avoiding the overhead introduced by the

domain-specific overlay.

2.2 Partial Reconfiguration

Partial Reconfiguration (PR) is a technology that reconfigures part

of the reconfigurable fabric while other parts of the design are still

operating [15, 39]. PR design consists of static logic that does not

change, and reconfigurable logic that can be reconfigured. Com-

piling a small reconfigurable design on a small PR region should

generally be much faster than compiling a large design on the entire

chip due to the smaller problem size. AMD’s Abstract Shells load

the minimal logical and physical database to realize more of the

potential benefit of mapping a small PR region. Hierarchical PR

supports subdividing a single reconfigurable partition into multiple

reconfigurable partitions [15, 39], leading to finer-grained PR.

2.3 Separate Compilation on FPGA

One of the reasons that current FPGA development is different

from software engineering is the long FPGA compilation. Recently,

many academic publications address slow FPGA compilation with

a divide-and-conquer approach. The common idea is to split the de-

vice into multiple sections and compile each section in parallel since

compiling small sections in parallel is faster than monolithically

compiling the entire device, utilizing more cores in a multi-core

workstation or compute server.

One main approach is to use a pre-routed overlay with PR. Au-

thors in [29, 36ś38] employ a pre-routed NoC or switchboxes to

support separate compilations on partially reconfigurable pages.

The advantage of this approach with a pre-routed overlay is that

the global inter-page routing is not required after each page is sep-

arately compiled. This means that only the necessary pages can be

recompiled similar to how software processors support separate

compilation and linking so that only necessary files or functions are

recompiled. The disadvantage of this approach is limited bandwidth

and the area overhead introduced by the NoC.

Another main approach is to compile each island on FPGA in

parallel and utilize an open source CAD tool like RapidWright [21]

to stitch the compiled blocks together [14, 27, 33]. Authors in [14]

demonstrate significant compile time speedup and improve the

maximum clock frequency of the application. The advantage of this

approach is that the design does not have extra design elements like

NoC, which could result in bandwidth bottleneck or area overhead.

The disadvantage of this approach is the global stitching process

that integrates separately compiled islands which can take half an

hour to an hour for current designs. As the size of islands decreases

or the FPGA capacity grows, the final routing time is expected to

grow. This limitation is detrimental especially in the incremental

development since a very minor edit in the design would require

top-level routing. In [13], a follow-up work of [14], authors show

their work-in-progress effort to use pre-routed inter-island routing

with PR to remove the final stiching time at the expense of an earlier

global routing phase.

To support software-like incremental refinement, we build upon

separate compilation using PR that recompiles the modules that

change instead of going through the global routing. We adopt [28]

that utilizes a pre-built NoC and Hierarchical PR pages because

variable-sized pages can support continually changing sizes of op-

erators in DSE (in Fig.1 (b), A,C are mapped to single-sized pages, B

is mapped to a double-sized page and D,E are mapped to quad-sized

pages). In [28], we demonstrate how the incremental development

could be done, showing a single compile iteration could take less

than 2 minutes when a single PR page is recompiled. However, the

incremental refinement in [28] is manual, and bottleneck identifi-

cation requires user insight.

2.4 Streaming Computations

We focus on streaming dataflow designs (Fig. 1 (a)) described at the

C/C++ level that consists of operators and streaming links [9, 17].

Both the NoC-based system and the monolithic system include

asynchronous FIFOs in the stream links between the operators so

that operators can run at different rates. The NoC-based system has

a pre-implemented NoC between the FIFOs to decouple the imple-

mentations of each operator while operators are directly connected

with FIFOs in the monolithic system.

3 INCREMENTAL REFINEMENT STRATEGY

Our strategy is to start with the separately-compiled, NoC-based

system design to evaluate the design on hardware. We support a

fast incremental refinement approach by automatically identify-

ing bottlenecks and incrementally recompiling only the operators

revised to address the bottleneck.

We automatically add FIFO counters on the stream connections

into and out of operators to monitor the design and identify bot-

tlenecks. The support for bottleneck identification (Sec. 4) is the

key component to guide users or an automated flow that other split

FPGA compilation works lack.

When bottlenecks are identified, we can refine the operators or

the NoC communication mapping for the streams between opera-

tors. To resolve the NoC bandwidth bottleneck, we support multiple

NoC interfaces for an operator or operator merging to directly con-

nect high bandwidth operators avoiding the need for the NoC on

those links (Sec. 5).

The user or automation selects a new design point by refining

either the bottleneck operator or the NoC bandwidth bottleneck.

When a new design point is generated, we recompile only the

necessary operators. This gives us a new design which can then be

profiled with the FIFO counters to identify the next bottleneck.

This iteration continues until the design space is explored for

the bottleneck operator or the design needs more resources than

available in the PR pages. Finally, a design is compiled with the

monolithic system that also integrates FIFO counters to identify

the bottleneck (Sec. 6) and the iteration continues. This strategy

can help the users to quickly iterate the important, initial design

points, or the flow can be automated to output an optimized design

in the given design space (Sec. 7, Sec. 8).

4 BOTTLENECK IDENTIFICATION

Building on prior work [6, 31], we insert counters on stream FIFOs

and use those counters to identify likely bottlenecks. Operators in

both the NoC-based system and the monolithic system have input

and output FIFOs. In the NoC-based system, these FIFOs reside

in the NoC interface which is then connected with the NoC. In
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the monolithic system, operators are directly connected with these

FIFOs. In a streaming model, one or more operators could limit the

throughput of the entire application. These bottleneck operators

have lower throughput than their predecessors and their successors.

As a result, they tend to have relatively empty output FIFOs and

relatively full input FIFOs. Our tool instantiates different counters

to monitor the status of the FIFOs and use them to identify the

bottleneck operator or the NoC bandwidth bottleneck without any

impact on the performance. The idea is similar to -pg option in the

software compiler that causes each function to call mcount routine

whose results are later profiled by a program like gprof [12].

[31] has bottleneck identification on a cluster of "Computing El-

ements" but does not attempt to systematically utilize the feedback

to affect the next design point. [6] modifies HLS source codes to

monitor the modules under analysis and detects the cause of the

stall. We do not modify the source code; we identify bottlenecks

in software based on the raw counter data collected. Unlike previ-

ous works, we demonstrate the incremental refinement on realistic

applications using bottleneck identification (Sec. 8), and our work

is embedded with the fast separate compile so that the runtime

hardware execution feedback is obtained quickly.

4.1 Stall counters

Both the initial NoC-based system and the final monolithic system

utilize stall counters to identify the bottleneck operator as shown in

Fig. 2 (a). The input stall condition is defined as the state when the

input FIFO is empty and the user operator asserts a ready signal. At a

high level, it means that the operator wants to process the data, but

the data is not available, so the operator stalls. Similarly, the output

stall condition is defined as the state when the output FIFO is full and

the user operator asserts a valid signal for the data. At a high level, it

means that the operator wants to output the data, but the successor

is still busy processing the previous data. The stall condition for

the operator is asserted when at least one input FIFO has a stall

condition or at least one output FIFO has a stall condition. Finally, the

stall counter increments when the stall condition is asserted. We

know that as the number of stall counters for an operator is low,

the operator is likely to be the bottleneck because this operator is

busy processing some data while other operators are waiting for

the input data or waiting to output the data.

4.2 Full counters

In the NoC-based system, each operator has a single, limited-

bandwidth input channel into the NoC and a single limited-

bandwidth output channel; these can be narrower than the total

input and output width needed by the application. This limited

NoC bandwidth could limit the application performance. A NoC

bottleneck can be detected similarly with full counters on the FIFOs

associated with the stream links into and out of each operator. Full

counters increment when the FIFO is full. In Fig. 2 (b), operator A

sends data to operator B through the NoC. If operator A’s output

FIFO has large full counters and operator B’s input FIFO has small

full counters, we can assume that the NoC bandwidth could be a

bottleneck. This means that operator A tries to send out the data

often, but operator B does not receive the data at a similar rate. In

our system, we consider there exists NoC bandwidth bottleneck if
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Output FIFO Input FIFO Output FIFOInput FIFO

(a) Use stall counters 

     to identify bottleneck op
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Output FIFO stalls: full && user_valid

➔ Stall condition: at least one FIFO stalls

A’s Output FIFO’s full↑ && B’s Input FIFO’s full↓

Figure 2: Bottleneck Identification with FIFOs

the difference in the full counters (output FIFO’s full counters of A -

input FIFO’s full counters of B) is large enough.

4.3 Resource usage

Logic related to FIFO counters is implemented in RTL along with

NoC interface (NoC-based) or the top-level wrapper function (mono-

lithic, Sec. 6). In the NoC-based system, a NoC interface and a user

operator are mapped in a PR page. When the counters are set to

28-bit registers, a NoC interface with a single user input stream

(32 bit) and a single user output stream (32 bit) costs about 700

LUTs, 1000 FFs, and 4 36Kb BRAMs including counters logic. Logic

related to counters alone uses about 200 LUTs and 400 FFs. The

size of single-sized pages in [28] is about 7,000ś8,400 LUTs, so the

counters logic is about 2% of the LUTs in a single-sized PR page.

In the monolithic system, logic related to counters uses about 60

LUTs and 140 FFs per operator. One reason for the discrepancy in

resource usage is that the NoC-based system uses about double

the number of FIFOs than the number of FIFOs used in the mono-

lithic system. For instance, for operators A and B in Fig. 4 (b), in

the NoC-based system, they need one output FIFO for A and one

input FIFO for B. In the monolithic system, on the other hand, one

FIFO between A and B is enough. Among the benchmarks in our

experiments (Sec. 8), Rendering has the largest number of streams

(30 streams) thereby consuming the most resources for counters

logic. In the final monolithic design of Rendering, counters logic

is only 3.4% (1900 LUTs) of the final design’s total LUT utilization,

and only 5.3% (3500 FFs) of the FF utilization.

4.4 Limitations

It is possible to have a stall counter per input and output stream

to identify the problematic stream for finer-grained analysis. For

simplicity, we keep a single stall counter per operator and identify

the bottleneck operator.

For the same run time, an operator running at 400MHz can have

up to twice as large stall/full counters as an operator running at

200MHz. Therefore, we normalize counters by dividing them by

the operating frequencies, but this simple approach may not be

sufficient to reflect the differences in operating frequencies. Further-

more, an operator with different rates of input and output may be

harder to classify correctly as the low rate side is less likely to fill a
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FIFO than the high rate side. Although our bottleneck identification

based on FIFO counters is an approximation, in Sec. 8, we show

how our approach based on FIFO counters identifies bottleneck

operators and resolves NoC bandwidth bottleneck in incremental

development for realistic HLS designs, improving the application

performance by 2.2ś12.7×.

5 NOC-BASED SYSTEM

An assumption with using the incremental refinement strategy to

accelerate optimized designs that will ultimately be implemented

monolithically is that design points that the NoC-based system

explores are similar to those the monolithic system would have

explored. To narrow the gap between the two, we address the

previous NoC-based system issues including the NoC bandwidth

limit, NoC congestion and resource fragmentation.

5.1 Knobs in NoC-based system

As noted, the NoC-based system introduces its own performance

artifacts and bottlenecks. In this section, we introduce potential

optimizations and tuning knobs that can be applied to minimize the

impact of the NoC. Developers can directly tune these knobs. How-

ever, since these optimizations require a detailed understanding of

the NoC, it is less likely the software engineer will understand them

and when they are necessary; even a hardware engineer thinking

primarily about the final, monolithic design and not the details

of the NoC overlay may find them difficult to understand. Conse-

quently, it is particularly valuable to automate the tuning of these

knobs as illustrated in the automated DSE case studies in Sec. 7 and

Sec. 8.

5.1.1 Multiple NoC interfaces. [28] utilizes Hierarchical PR to sup-

port variable-sized (single, double, quad) PR pages by recombining

smaller pages to create larger pages. Yet, in [28], the number of

NoC interfaces is limited to 1 even after multiple PR pages are

recombined. Because this limitation could lead to a NoC bandwidth

bottleneck when the communication is heavy, we add support for

multiple NoC interfaces for recombined pages. Fig. 3 (a) is the ex-

ample that the user operator A is using two NoC interfaces when A

has two input streams (32 bits, 64 bits) and three output streams (32

bits, 32 bits, 64 bits). The distribution of the streams to the multiple

NoC interfaces is statically determined in a way to minimize the

standard deviation of sums of the stream widths. In simple words,

in Fig. 3 (a) case, we distribute two 32-bit output streams to one

NoC interface and one 64-bit output stream to another NoC inter-

face because the sums of the output streams per a NoC interface

are equally 64. Future work can explore distributing the streams

dynamically based on the operator’s read and write rates.

5.1.2 Merging. If a NoC bandwidth bottleneck is detected and a

larger number of leaf interfaces does not help, users or the au-

tomation script can simply merge two operators whose connection

seems to suffer from the limited NoC bandwidth. This removes the

NoC bandwidth limitation, at the cost of a larger page that will be

slower to compile. In Fig. 3 (b), two operators A and B are merged,

and 144 bits of data packets then do not need to be routed over the

NoC. Among the two operators, the sender operator (A) and the

receiver operator (B), the receiver operator (B) becomes the new

A B
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3232

Figure 3: Knobs in NoC-based system to mitigate NoC band-

width bottleneck

łrepresentativež operator for the new merged operator and inherits

the parameters from both operators.

5.1.3 Multiple clock frequencies. The reason multiple kernel clock

frequencies is supported is not to close the gap between the NoC-

based system and the monolithic system but just to create a more

performant FPGA design with our incremental strategy. It also sup-

ports incremental refinement as we can recompile one operator

at a time for a different frequency, rather than needing to recom-

pile all the operators to try out an increased frequency. While [28]

supports a single 200MHz clock for both NoC and user operators,

we support 200MHz, 250MHz, 300MHz, 350MHz, 400MHz for user

operators. NoC and NoC interfaces run on the maximum 400MHz,

and asynchronous FIFOs are used to connect the NoC clock domain

and the user operator’s clock domain. We insert pipeline registers

for the data signals and skid buffers for the ready signals between

the NoC and the NoC interface to create a heavily pipelined sys-

tem that runs at 400MHz. If we do not constrain the placement of

the pipeline registers, these registers are randomly placed. Then,

the tool (Vivado) could struggle to meet the timing when gener-

ating the NoC-based system’s overlay, or even if it successfully

generates the overlay, when user operators are mapped to the PR

pages, the design may struggle to meet the timing since pipeline

registers are not placed close enough. For this reason, we create

pblocks right next to each PR page which constrain the placement of

pipeline registers. Different clock frequencies significantly improve

the application performance. In Sec. 8.3, the final designs’ latencies

are 1.3× (Rendering), 1.3× (Digit Recognition), 1.9× (Optical Flow),

2.2× (CNN-1), 2.2× (CNN-2) better than latencies when the clock

frequencies are fixed to the lowest 200MHz.

5.2 Enhancements in NoC-based system

This section includes the pure enhancements for the NoC-based

system over the previous works. The objectives of these enhance-

ments are to make a smooth continuum between the NoC-based

system and the monolithic system and to allow as many design

points as possible to iterate in the NoC-base system.

5.2.1 Page Heterogeneity. In the NoC-based system, PR pages are

heterogeneous, which means that even if they are the same single-

sized pages, available logic and routing resources are different.

One reason for the heterogeneous PR pages is irregular columnar
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Figure 4: Snapshots of NoC-based system’s PR page

resource distribution on modern FPGAs. Another reason is that

modern PR technology from vendor tools allows the static design to

route over reconfigurable regions [15, 39], thereby stealing routing

resources from the PR pages and blocking some logic resources

on the pages. This heterogeneity complicates the page assignment

algorithm which will be explained in Sec. 5.2.3.

5.2.2 Static Routing over PR pages. We reduce the effects of static

routing over PR pages by creating a pblock for non-pages ele-

ments (the NoC, AXI interconnect, peripherals) and setting the

CONTAIN_ROUTING property on. This requires Vivado to create a

hierarchy in the block diagram for non-pages logic and assign

the newly created cell to the pblock. With this setting, routing

whose source is in static design and destination is in static design

(highlighted in white in Fig. 4 (b)) will be prevented from the recon-

figurable regions. Fig. 4 (a) shows the snapshot of a PR page when

the static logic is added to a pblock that has CONTAIN_ROUTING

property on. The remaining green routing on the PR page shown

is static⇔reconfigurable routing or global clock signals.

5.2.3 Page Assignment. [28]’s separate compilation framework

runs HLS and logic synthesis for each operator in parallel. Then,

it synchronizes to assign synthesized netlists to appropriate PR

pages based on post-synthesis resource estimates to launch parallel

placement and routing. To address heterogeneous page capacity, its

capacity-based page assignment sorts the operators in descending

order in size and assigns the łtightestž page for the operator. This

greedy page assignment solely based on capacity could potentially

lead to NoC congestion if logically adjacent operators are placed

far apart from each other in the NoC. Butterfly Fat Tree (BFT) NoC

[8, 18, 22] is used in [28], and a simple node placement to mitigate

the congestion on BFT NoC is a placement based on recursive graph

bi-partition. As BFT has a hierarchical structure, we can bi-partition

the dataflow graph to minimize the traffic between two partitions,

and we assign operators in one partition to one subtree and assign

operators in another partition to another subtree. Fig. 5 shows how

recursive bi-partition is used in the page assignment. The numbers

inside the operators indicate łweightsž, the expected sizes of the

PR pages that the operator will use based on the post-synthesis

resource estimates. Although Fig. 5 shows only two levels of bi-

partition, we keep bi-partitioning the subtrees until there is only one

operator in the subtree. This approach could reduce unnecessary

global traffic over the NoC. We choose the fast, heuristic-based

page assignment algorithm because we want the algorithm to work

reasonably well and the algorithm to run fast so that it does not

slow the fast separate compile approach.

1
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1 1
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1 1 1

1 1
1
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Figure 5: Page Assignment based on recursive bi-

partitioning

We use metis software [19] to perform graph bi-partitioning.

Our input graph has weighted vertices that indicate the sizes of the

pages (single, double, or quad) that each operator is expected to

use. The capacity-based page assignment that assigns the tightest

page to the operators runs first to assign weights to the operators.

After every bi-partition, we make sure that operators are mappable

in the subtree, and at this point, because of heterogeneity in the PR

pages, the weights of the operators could increase (e.g., an operator

that was mappable to a single page cannot find a large enough

single page in the newly assigned subtree and now needs to be

mapped to a double page). If the two partitions cannot be mapped

to the initially assigned subtrees, we try swapping subtrees for each

partition. While recursively bi-partitioning the graph, if there is

one operator left to map in a subtree, instead of mapping to the

tightest page, we assign a larger page in the subtree to the operator.

If there is no valid page assignment using the recursive-bisection

approach, the page assignment algorithm performs capacity-based

page assignment. If the capacity-basedmapping does not find a valid

page assignment, we exit the page assignment, notifying the user or

the automation script that there is no valid page assignment. In the

incremental refinement scenario, if the previous page assignment

is still expected to map the refined design, the algorithm uses the

previous page assignment so thatwe do not unnecessarily recompile

the unchanged operator in the different PR page.

5.2.4 IsFit classifiers. Simple resource counts are not sufficient to

decide if a synthesized netlist will fit in a PR Region. Differences in

routing complexity (e.g., Rent exponent [20]) will determine how

tightly the resources (LUT, BRAM, DSP) can be packed into the PR

region. This is further complicated by the loss of routing resources

due to connections outside the PR region (Sec. 5.2.1). To determine

whether a synthesized netlist fits a specific PR page or not, we train

a classifier per PR page to predict whether a netlist would fail in the

implementation or not. To generate datasets for the training, we

traverse different parameter values for Rosetta benchmarks [42]

and use integrated top functions of multiple submodules to create

diverse designs as done in [41]. Features include post-synthesis

resource estimates (LUT, BRAM and DSP), and complexity char-

acteristics (Rent value, average fanout, and total instances). If all

LUT, BRAM and DSP resource estimates are lower than 60% of the

resources available in the PR page, we assume that the netlist can

be successfully placed and routed. Otherwise, we use our classi-

fiers to make a decision. For each PR page’s training and test data,

we select netlist with over 60% of the PR page in LUT utilization

(post-synthesis estimates). The average number of training and
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test datasets for each page is 2,572 (80% training, 20% test), and

place/route results become the labels. We use Random Forest model

for all the classifiers and perform a grid search to find the best

hyperparameter for each classifier. Our page assignment algorithm

based on graph bi-partitioning and isFit classifiers finishes in less

than a second.

6 MONOLITHIC SYSTEM

The source codes for NoC-based system and monolithic system are

the same, but in the monolithic system, each operator is directly

connected through FIFOs. Like operators in the NoC-based system,

operators in the monolithic system can also run on different fre-

quencies (200MHzś400MHz), and the read and write frequencies for

the FIFOs differ accordingly. HLS for operators compile in parallel

as done in NoC-based system. Then, the generated RTL modules

are collected and instantiated in a single top-level wrapper function

with FIFOs and counter logic mentioned in Sec. 4. Logic synthesis

and implementation are done monolithically. The monolithic sys-

tem has similar AXI interconnect (runs 300MHz) and peripheral

infrastructure to the NoC-based system. The monolithic infrastruc-

ture is a synthesized netlist that is placed/routed along with the

generated monolithic top-level module.

7 AUTOMATED DSE CASE STUDY

Users can refine early designs based on runtime feedback informa-

tion with the NoC-based system and then monolithically compile

the final designs as our incremental refinement strategy suggests.

While the strategy is still useful when the users hand-tune the

design, we introduce automated DSE case studies that remove the

human from the incremental refinement loop. Automation is useful,

especially for software programmers who are not familiar with

hardware design with multiple clocks or the NoC bandwidth bottle-

neck issue. The automated case further allows us to illustrate the

potential impact on design iterations in the limit case where the

time for developer changes is trivial.

7.1 DSE Experiment Overview

Fig. 6 shows the overview of our automated DSE experi-

ment. User inputs of the system are parameter design space

(param_space.json) that lists possible values for different parame-

ters and HLS source code generator. We explore design parameters

and kernel clock frequency per operator. Design parameters are

application-specific like parallelization factor, and possible values

for kernel clock frequency are 200MHz, 250MHz, 300MHz, 350MHz,

and 400MHz. The HLS source code generator could be an external

framework like FINN fromAMDResearch [4, 34]. Larger paralleliza-

tion factor (e.g. 2) could mean either a larger operator (twice as

large) or multiple (two small operators) operators. This transforma-

tion is described in the source code generator. The interconnection

of the operators should also be defined in the source code generator.

The generated source codes are the input of either NoC-based

flow or monolithic flow which is equipped with the counter-based

bottleneck identification. After partial bitstreams (NoC-based flow)

or a full bitstream (monolithic flow) are generated, the bitstreams

are copied to the hardware along with the host executable. Then,

performance metrics like latency and accuracy are measured. The
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src code 
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Figure 6: Automated DSE Experiment Overview

files containing performance metrics and FIFO counters are copied

back to the host machine. The tuner records the results, identifies

the bottleneck, and selects the next design point (Sec. 7.2).

7.2 Greedy Tuner

The tuning algorithm used in our case studies for both NoC-based

system and monolithic system is as simple as identifying the opera-

tor with the least stall count and selecting the next design point that

can improve the kernel execution latency. If the previous design

point results in implementation failure, we revert to the most recent

successful design point, and then select the next design point. Also,

when the previous design point worsens the application latency,

then we revert the design point. The previous latency could be

just slightly worse than the best latency so far because of noise,

so we relax the greedy nature of the algorithm by having a small

margin (10% in the experiments). As explained in Sec. 4.2, NoC

bandwidth bottlenecks can also be detected with full counters in

the NoC-based system. If NoC bandwidth bottleneck is detected,

then we increase the number of leaf interfaces or merge the two

operators whose connection stream suffers from the limited NoC

bandwidth as stated in Sec. 5.1. We prioritize NoC bottleneck over

bottleneck operator so that any NoC bottleneck is resolved imme-

diately, and the correct bottleneck operator is identified. When

no NoC bottleneck is detected in the NoC-based system, or in the

case of a monolithic system, we identify the bottleneck operator

and select the design point that can improve the latency and has

not been tried yet. When identifying the bottleneck operator, we

search for the list of bottleneck operators that have similar small

stall counts (10% in the experiments) instead of a single bottleneck

operator with the least stall counters. In the NoC-based system,

when we cannot improve the bottleneck operator anymore, then

we move to a monolithic system. In the monolithic system, when

we cannot improve the bottleneck operator anymore, we end the

DSE.

There are design parameters that can improve the quality of

the results but worsen the execution time. For example, in the

K-Nearest-Neighbor (KNN) algorithm of Digit Recognition appli-

cation in Sec. 8.3, a larger K value can improve the accuracy but

increase the execution time. We provide params_metric.json that

annotates the metrics the specific parameter can affect. For exam-

ple, Digit Recognition’s params_metric.json hints that K value
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is related to the accuracy and parallelization factor is related to the

latency (K_CONST: “accuracy”, PAR_FACTOR: “latency”). We

also provide the minimum accuracy for the benchmarks if appli-

cable, and the tuner prioritizes to achieve the minimum accuracy

instead of tuning for bottleneck operators to improve latency. Clock

frequency is explored after design parameters are explored. There-

fore, we tune for the design parameters like K_CONST first to achieve

the minimum accuracy and tune for PAR_FACTOR and then clock

frequencies.

Some benchmarks could have almost identical operators. For

example, maybe designs have data parallel sections where one

can allocate a number of identical data parallel operators. By de-

fault, our script updates parameter values of identical operators

together since independently refining one operator at a time would

unnecessarily take a long time. Nevertheless, if the computation is

data-dependent, separately tuning each operator could be useful

because one operator that has heavy computation load may need

to run at 350MHz while another identical operator with a light load

can run at 200MHz. In Sec. 8.3’s Rendering benchmark, we will

show the DSE results of both approaches.

8 EXPERIMENT

In this section, we evaluate the incremental refinement strategy

with automated DSE case studies. We evaluate how both the fast,

incremental flow and monolithic flow improve the application per-

formance with our bottleneck identification. We also compare both

flows in DSE time.

8.1 Experiment Setup

We create the NoC-based overlay on AMD ZCU102 evaluation

board featuring UltraScale+ ZCU9EG FPGA. We use ZCU102 DFX

platform [2] for the NoC-based system as we partially reconfigure

each PR page separately in parallel. In the ZCU102 DFX platformwe

use, the dynamic region, the area that can be partially reconfigured,

contains 262,496 LUTs, 1,752 18Kb BRAMs and 2,448 DSPs. We use

the ZCU102 platform (non-DFX platform) for themonolithic system.

274,080 LUTs, 1,824 18Kb BRAMs and 2,520 DSPs are available

in ZCU102 platform. We use Vitis 22.1 including Vitis_HLS and

Vivado. We run the automated DSE experiments on a workstation

equipped with the 3.4GHz AMD Ryzen 9 5950X 16 Core CPU with

32 processing threads and 128 GB of RAM.

8.2 NoC-based Overlay and Monolithic Overlay

The NoC-based system consists of 20 single-sized pages (7,264ś

7,919 LUTs, 44ś66 18Kb BRAMs, 44ś88 DSPs), 11 double-sized

pages (14,647ś15,840 LUTs, 110ś132 18Kb BRAMs, 131ś154 DSPs)

and 5 quad-sized pages (29,806ś31,392 LUTs, 220ś264 18Kb BRAMs,

264ś308 DSPs). One double page is not subdivided into two single

pages in the overlay used in this experiment, and this is why there

are only 20 single pages instead of 22 single pages. Total 64% of

LUTs, 78% of BRAMs and 63% of DSPs are available in the PR pages.

An abstract shell for each PR page is generated accordingly, and

synthesized operators are mapped to appropriate abstract shells

with the page assignment algorithm in Sec. 5.2.3. We use a BFT NoC

as done in [28]. The number of processing elements (PEs) in the

NoC is 24, Rent’s parameter 𝑝 [20] is 0.67, and sizes of the packet

and payload are 49 bits and 32 bits respectively. Two PEs are used

for the NoC configuration and DMA. The BFT uses 11,297 LUTs,

and other peripherals including AXI interconnect use about 27K

LUTs. Similarly, the monolithic overlay uses about 23K LUTs.

Table 1: Resource utilization and DSE results

Benchmarks LUT % FF % BRAM % DSP % lat. tDSE

Rendering
Init 3 2 6 0

3.9× 1.8×NoC Fnl 15 7 14 1
Mono Fnl - - - -

Rendering†
Init 4 2 9 0 3.8× 2.5×Mono Fnl 20 12 11 1

Digit Rec. Init 9 5 21 0 12.7× 1.3×Mono Fnl 58 34 97 0

Optical Init 7 4 11 5 3.8× 0.9×Mono Fnl 15 12 14 10

Optical‡
Init 7 4 11 5 3.9× 1.4×Mono Fnl 14 10 13 4

CNN-1 Init 13 6 11 0 2.2× 2.7×Mono Fnl 20 14 13 0

CNN-2 Init 17 8 11 0 2.2× 2.3×Mono Fnl 26 16 13 0

Rendering† : Rendering when identical operators are separately tuned

Optical‡ : Optical Flow with a lower accuracy target
lat.: improvement in Kernel Latency, tDSE : speedup in DSE time

8.3 DSE time and Performance

Fig. 7 shows the benefit of our incremental refinement strategy in

DSE time. Both the NoC-based system and monolithic system use

FIFO counters to identify the bottleneck as discussed in Sec. 4. Fig. 7

records the best kernel latency. Tab. 1 shows the resource utilization

of the incremental strategy at different stages: the initial design

point (Init: application + NoC interfaces) with the NoC-based flow

and the final design point after the monolithic flow is over (Mono

Fnl: application + AXI interconnect + peripherals). The reason

why łMono Fnlž data for Rendering is not available is that the final

design point of the NoC flow did not meet the timing for monolithic

system. In such case, the final design point of the NoC flow is the

best design, superior to the final design point of the monolithic-only

flow. Tab. 1 also shows improvement in the application latency and

DSE time. Since we consider the design that matches the minimum

accuracy as a valid design, the latency improvement is calculated

as the latency achieved by the monolithic flow that first matches

the minimum accuracy divided by the latency achieved by the final

design of the fast incremental strategy.

8.3.1 Rendering. The design space of the user parameters for Ren-

dering from Rosetta benchmarks [42] includes parallelization factor

for rasterization function and zculling function. As stated in

Sec. 7.2, by default, we tune identical operators together. For exam-

ple, zculling’s parallelization factor of 4 results in four zculling

operators, and when one of the zculling operator is identified as

a bottleneck, the tuner increases the clock frequency for all four

identical operators together. However, data-dependent applications

like Rendering may require independent tuning for identical opera-

tors even if independent tuning takes longer. Rendering in Fig.7 is

the DSE results when identical operators are tuned together, and

Fig.1 (c) in Sec. 1 is the DSE results when identical operators are

refined separately.

Tab. 2 illustrates each step in Fig.1 (c). For the first few iter-

ations, our greedy tuner increases the parallelization factor for
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Figure 7: DSE Results

rasterization function and zculling function, generating new

operators, and this is why the number of parallel compile runs

increases. When the design parameters are all explored, clock fre-

quencies are explored. DSE finishes because while the final design

still points to rasterization and zculling as the bottlenecks (list

of bottlenecks as discussed in Sec. 7.2), rasterization operators

already reach the maximum kernel frequency and zculling fails

at 400MHz. Our strategy achieves 1.8× and 2.5× faster DSE time in

Fig.7 case and Fig.1 (c) case, improving 3.9× and 3.8× in application

latency respectively.

Table 2: DSE trace for Rendering†

Iteration Compile Bottleneck Design Point Best # parallel FlowCount Time Latency runs

1 237s None init 2.23ms 5 NoC
2 241s rast2_i1 PAR_RAST = 2 1.55ms 4 NoC
3 273s zcul_i1 PAR_ZCUL = 2 1.27ms 8 NoC
4 270s rast2_i1 PAR_RAST = 4 1.13ms 9 NoC
5 320s zcul_i2 PAR_ZCUL = 4 0.81ms 13 NoC
6 170s rast2_i1 clk = 250MHz 0.81ms 1 NoC
7 195s rast2_i2 clk = 250MHz 0.81ms 1 NoC
8 131s rast2_i4 clk = 250MHz 0.81ms 1 NoC
9 191s zcul_i3 clk = 250MHz 0.78ms 1 NoC
... ... ... ... ... ... ...
34 865s zcul_i3 clk = 400MHz 0.58ms 1 Mono

Rendering† : Rendering when operators are separately tuned

8.3.2 Digit Recognition. The design space of the user parameters

for Digit Recognition from Rosetta benchmarks includes paralleliza-

tion factor KNN algorithm and K value. In the experiment, we set

the minimum accuracy of 0.94, so our greedy tuner navigates the

parameter (K value) to meet this accuracy first and then tunes for

latency. This is why we see an increase in latency for the first four

iterations. Our strategy achieves 1.3× faster DSE time compared to

the monolithic flow while improving 12.7× in application latency.

In Digit Recognition, our strategy shifts to the monolithic system

relatively quickly compared to other benchmarks, and this is be-

cause our tuner explores the user parameters (parallelization factor)

first and then explores kernel frequencies. In Digit Recognition, we

have 10 identical operators for the entire tuning and tune them to-

gether. The NoC-based system reaches to the parallelization factor

that requires more BRAMs than available in the PR pages, and the

design is migrated to the monolithic system. Then, different clock

frequencies are all explored in the monolithic system.

8.3.3 Optical Flow. The design space of the user parameters for Op-

tical Flow from Rosetta benchmarks includes parallelization factor

and width of OUTER_WIDTH variable that affects the accuracy of the

application. Similar to Digit Recognition, it takes three iterations to

reach the user-defined minimum accuracy and then tunes for the

latency. Optical Flow is the application that our incremental strat-

egy takes longer than the monolithic flow to reach the final design.

In the incremental strategy, for the total 11 iterations spent with

the NoC-based flow, 3 of them were to mitigate the limited NoC

bandwidth by merging operators (Sec. 5.1.2). These three iterations

are łextraž that are not necessary for the monolithic flow. Moreover,

as the operators are merged to resolve the NoC bottleneck, the size

of the merged operator becomes large, and the benefit of the fast

separate compilation approach is reduced. Monolithic flow iden-

tifies one obvious bottleneck operator (tensor_weight_y) which

is still the bottleneck when it is tuned to run with the maximum

400MHz. Optical Flow‡ is the version when the accuracy target is

relaxed so that OUTER_WIDTH variable does not increase and does

not cause NoC bottleneck in the DSE. In this version, our strategy

achieves 1.4× faster DSE time than the monolithic flow.

8.3.4 CNN. To implement a Convolutional Neural Network (CNN)

on FPGA, [4, 10, 26, 34, 35] use a streaming architecture that each

layer has its own processing engine instead of having a single pro-

cessing engine for all layers. As the input of the separate FPGA com-

pilation framework is a dataflow graph, the streaming architecture

naturally fits with the separate compilation. Therefore, instead of

original Binarized Neural Network (BNN) design in Rosetta Bench-

mark, we use FINN open-source framework [4, 34] to generate

neural network designs.

In our demonstration, we use FINN to generate HLS codes. In the

generated HLS codes, performance and resource utilization for each

layer can be controlled by parameters like PE and SIMD. We receive

a hint from this configuration to set the starting point of the applica-

tions instead of starting from the minimum PE and SIMD. We create

small CNNs with 6 convolutional layers and train the networks for

CIFAR-10 dataset. CNN-1 has 1 bit for both weight quantization

and activation quantization, and CNN-2 has 1 bit for weight and 2

bits for activation. The design space of the user parameters for CNN

benchmark includes SIMD values for convolution modules and PE

values for matrix multiplication modules. Our DSE system achieves

2.3ś2.7× faster DSE time compared to the monolithic flow while

improving 2.2× in application latency. The starting configuration

is set by FINN assuming a single clock for all the operators. During

DSE, as we increase the frequency of the bottleneck layer, the bot-

tleneck moves to the different layer, exploring new SIMD values or

PE values. The final designs in both CNN-1 and CNN-2 identify the
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Figure 8: Compile Time Breakdown

first convolutional layer as the bottleneck operator which already

reaches the maximum SIMD value and maximum clock frequency.

8.4 Compile Time Analysis

Fig. 8 shows the compile time breakdown for both the monolithic

flow and the incremental strategy. Time to read Vivado design

checkpoints and phys_opt_design is omitted in Fig. 8 for brevity.

As expected, the incremental strategy reduces compile time in all

phases from HLS to bitstream generation except for the Optical

Flow benchmark.

In CNN benchmarks, HLS takes 16ś20% of the entire compile

with our strategy whereas HLS takes only 3ś5% for other applica-

tions. Long HLS runtime in FINN-generated HLS codes is a known

issue which the authors in [1] resolve with łRTL weightsž instead

of embedding weight constants in HLS codes. If HLS runtime de-

creases with RTL weights, we expect to see even more speedup

in DSE time. For example, if we exclude HLS time in DSE time,

our incremental strategy achieves 2.9× faster DSE time for CNN-1

benchmark. While we can support RTL weights for necessary mod-

ules, we keep all the source codes at the HLS level to be consistent

with other benchmarks.

8.5 Incremental Compilation

Fig. 9 shows the distribution of number of parallel compile jobs

in the NoC-based system to show that the incremental strategy

recompiles only necessary operators just like software compilation.

In most of the benchmarks, only one operator is incrementally

refined in the NoC-based system except for Digit Recognition in

which 10 identical operators are tuned together throughout the

DSE. The reason why the number is not always 1 is that the first

compilation runs multiple compile runs in parallel for all opera-

tors. If new operators are generated with a new design point (e.g.

parallelization factor in Rendering), these new operators need to

be compiled together. If the page assignment changes because the

newly compiled operator consumes more resources than before, all

operators with the new PR pages need to be placed and routed.

9 DISCUSSION

Our experimental results show that our fast bottleneck identifica-

tion (1) guides the users or the automation through the impactful

design points that decrease application latency for both NoC-based

and monolithic design flows, and (2) our incremental compilation

reduces DSE time by recompiling only changed operators. Initial

working designs are available in minutes, and improved designs
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Figure 9: Number of parallel incremental page compile jobs

in the NoC-based system

become available every few minutes. Except for Optical Flow, the

NoC-based incremental compilation produces lower latency de-

signs than the purely monolithic flow for any compile time budget

(the incremental curves are under the monolithic curves). Despite

the limitations of the NoC platform, the final performance of the

monolithic designs accelerated by the NoC-based flow in the early

iterations is comparable to the performance of the final, monolithic-

only optimization.

In Optical Flow, optimizations to repair NoC-bandwidth lim-

itations eliminate the compile time benefits of the incremental-

compilation scheme. Future work will explore both (1) how to

better use the FIFO counter feedback to more quickly resolve NoC

bottlenecks and (2) more optimization knobs to relieve NoC bottle-

necks.

Our DSE case studies are simple and have limited design space

for illustrative purposes. It will be valuable to extend the benchmark

set and the tuning parameters available to each design.

Although we showcase that our incremental strategy can be

integrated with performance/resource models in CNN benchmarks

the idea can be generalized. We can categorize (1) applications that

have to be evaluated in runtime with real data because of data-

dependent functions (e.g. Rendering) and (2) applications that can

have reasonably good starting points from model-based methods

(CNNs). In (2) case, as shown in CNN benchmarks, model-based

methods can reduce the design space so that the fully mapped,

NoC-based system can start from a realistic design.

10 CONCLUSIONS

FPGA development is different from software programming be-

cause of the lack of visibility on the inner state of the design and

slow compilation. While there exist previous works on hardware

profiling and fast FPGA compilation, both efforts need to be in-

tegrated to support a software-like development experience for

FPGAs. Our integrated stream FIFO counters automatically identify

bottlenecks that limit performance. Our case studies show that our

incremental refinement strategy using these lightweight counters

and fast incremental compilation iterates initial yet important de-

sign points in 2ś3 minutes and achieves 1.3ś2.7× faster DSE time

compared to the monolithic compilation while improving the kernel

execution latency by 2.2ś12.7×.
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