Reducing FPGA Compile Time with Separate
Compilation for FPGA Building Blocks

Yuanlong Xiao, Dongjoon Park, Andrew Butt, Hans Giesen, Zhaoyang Han, Rui Ding,
Nevo Magnezi, Raphael Rubin, and André DeHon (andre@acm.org)

Implementation of Computation Group
University of Pennsylvania
December 12th, 2019

Penn

Story

Our target is decreasing the compilation time
e Problem: Compilation is slow -- limiting FPGA use and optimization

e Idea: Divide into smaller problems
O Solve in parallel
O Incrementally compile just the part that changed

e Tool: PRflow
e Impact: Able to achieve 12-18 minutes using Vivado
o Contrast 42-160 minutes no PRflow
e Plausible to achieve 2-5 minutes with open source Symbiflow

Story

Our target is decreasing the compilation time
e Problem: Compilation is slow -- limiting FPGA use and optimization

e Idea: Divide into smaller problems
O Solve in parallel
O Incrementally compile just the part that changed

e Tool: PRflow
e Impact: Able to achieve 12-18 minutes using Vivado
o Contrast 42-160 minutes no PRflow
e Plausible to achieve 2-5 minutes with open source Symbiflow

Story

Our target is decreasing the compilation time
e Problem: Compilation is slow -- limiting FPGA use and optimization

e Idea: Divide into smaller problems
O Solve in parallel
O Incrementally compile just the part that changed

e Tool: PRflow
e Impact: Able to achieve 12-18 minutes using Vivado
o Contrast 42-160 minutes no PRflow
e Plausible to achieve 2-5 minutes with open source Symbiflow

Motivation:

e Today’'s FPGA compilation is slow

o 30-178 minutes for Rosetta ['l Benchmarks on Xilinx
ZCU102 board

e Problems due to slow compilation
o Slow debug and development time
o Limit the scope of design space exploration

e Why is it slow?
o Compile and co-optimize the entire design

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs. Int'l 5
Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

Motivation:

e Today’'s FPGA compilation is slow

o 30-178 minutes for Rosetta ['l Benchmarks on Xilinx
ZCU102 board

e Problems due to slow compilation
o Slow debug and development time
o Limit the scope of design space exploration

e Why is it slow?
o Compile and co-optimize the entire design

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs. Int'l 6
Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

Motivation:

e Today’'s FPGA compilation is slow

o 30-178 minutes for Rosetta ['l Benchmarks on Xilinx
ZCU102 board

e Problems due to slow compilation
o Slow debug and development time
o Limit the scope of design space exploration

e Why is it slow?
o Compile and co-optimize the entire design

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs. Int'l 7
Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

Motivation:

e Today’'s FPGA compilation is slow

o 30-178 minutes for Rosetta ['l Benchmarks on Xilinx
ZCU102 board

e Problems due to slow compilation
o Slow debug and development time
o Limit the scope of design space exploration

e Why is it slow?
o Compile and co-optimize the entire design

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs. Int'l 8
Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

ldeas:

e Divide-and-conquer compilation strategy based on
utilizing partial reconfiguration

Task Parallel map leaf blocks Load PR bitstreams
on Cloud| onto Packet-Switched

network (PS net)

PR Compile

PR Compile

PR Compile

PR Compile

Leaf
P-block

ldeas:

e Divide-and-conquer compilation strategy based on
utilizing partial reconfiguration

T . Torigin
"W # of Partition
Task Parallel map leaf blocks Load PR bitstreams
on Cloud| onto Packet-Switched

network (PS net)

PR Compile

PR Compile

PR Compile

PR Compile

Leaf
P-block

ldeas:

e Divide-and-conquer compilation strategy based on
utilizing partial reconfiguration

T . Torigin
"W # of Partition
Task Parallel map leaf blocks Load PR bitstreams
on Cloud| onto Packet-Switched

network (PS net)

PR Compile

PR Compile

PR Compile

PR Compile

Leaf
P-block

ldeas:

e Divide-and-conquer compilation strategy based on
utilizing partial reconfiguration

Task

Torigin

M
"W # of Partition

Parallel map leaf blocks
on Cloud

mpile l

PR Compile |

PR Compile

PR Compil

Load PR bitstreams
onto Packet-Switched
network (PS net)

Leaf
P-block

12

o =t D > 12 >34 | I >

blocks [= =
/ R e — Sy
Ideas:
e How to Link PR-blocks together?

o Standardized interfaces into each
blocksl?l
o Leaf interface: Arbitrary number of

iInputs and outputs to user logic
o Butterfly Fat Tree (BFT)
o Packet-switched: Arbitrary

interconnection between 2 leaves ::} DQ DQ ::}

[2] Caspi, Eylon, et al. "Stream computations organized for reconfigurable execution (SCORE)."

International Workshop on Field Programmable Logic and Applications. Springer, Berlin, Heidelberg, 2000. 13

o [P D (2 >3 | 3>
blocks (> > [>T <L/Iﬁf Leaf Leaf ‘L?«b
7 Interface || Interface | Interface | Interfac
, —_—— L
Ideas: /
l
e How to Link PR-blocks together?
o Standardized interfaces into each
block!2!
o Leaf interface: Arbitrary number of
inputs and outputs to user logic
npu gy - J L—Leaf Leaf Leaf Leaf
o Butterfly Fat Tree (BFT) Interface | Interface | Interface | Interface
o Packet-switched: Arbitrary e = | -
interconnection between 2 leaves —} |>O \)O —}

[2] Caspi, Eylon, et al. "Stream computations organized for reconfigurable execution (SCORE)."
International Workshop on Field Programmable Logic and Applications. Springer, Berlin, Heidelberg, 2000.

14

PR-
blocks D >° [=) T=
/—1—1 “/_Iﬁ
Ideas: /

e How to Link PR-blocks together?

Standardized interfaces into each
blocks

Leaf interface: Arbitrary number of
iInputs and outputs to user logic
Butterfly Fat Tree (BFT)
Packet-switched: Arbitrary
interconnection between 2 leaves

O

)

=

1 >

) >

Leaf
Interface

Leaf
Interface

Interface

Leaf

Leaf

Interface

Switch
Box

f—

—

~ Box

t Switch

Box

Switch

[«

Sw1tclL1 Box

! " Box

Switch _
Box

11
. Switch .

_ Switch _

Box

N

J

Léaf
Interface

Léaf
Interface

Léaf
Interface

Léaf
Interface

D;

[>x

[>x

1 >

[3] Kapre, N., 2017, September. Deflection-routed butterfly fat trees on FPGAs. In 2017 27th International
Conference on Field Programmable Logic and Applications (FPL) (pp. 1-8). IEEE.

15

PR-
blocks

ldeas:

0 >

=

1 >

) >

Leaf
Interface

Leaf
Interface

Leaf
Interface

Leaf
Interface

Static Region

PR Region

Switch
— Box -

t Switch

Box

Switch
Box F

Sw1tclL1 Box |

Switch _

“__> Box

W
. Switch .
| Box

| Switch
Box

Leaf
Interface

Leaf
Interface

Leaf
Interface

Leaf
Interface

D,

[>x

[>x

1 >

16

PRflow Using Vivado

Partial Reconfiguration mapping time
increase with size of logic mapped
Large fixed mapping time is independent
of logic
o Load up full device description
o Map static region
m time proportional to logic in static
region
Implications
o Lower bound on speedup
o Premium to minimize logic in static region
m Mitigation: move PS BFT Overlay
network out of static region

Compilation Time for Different Leaves

y
i
y

»

Leaf Leaf
Interface | Interface

Leaf | Leaf

Switch J Switch J
Box S h Box
witc
R
SWltCE & X
]

SWthCh

o S g
W Box] ’T Box]

Leaf Leaf Leaf || Leaf
Interface | Interface || Interface | Interface

f = DO Do:}

Interface | Interface

PRflow Using Vivado

e Partial Reconfiguration mapping time
increase with size of logic mapped
e Large fixed mapping time is independent
of logic
o Load up full device description
o Map static region
m time proportional to logic in static
region
e Implications
o Lower bound on speedup
o Premium to minimize logic in static region
m Mitigation: move PS BFT Overlay
network out of static region

Compilation Time for Different Leaves

Leaf Leaf

Interface

lSwitchJ
Box
| Switch

Box

SWltCﬁ éox

SWithh
Box

witch Switch

W Box ’T Box

Leaf Leaf Leaf
Interface | Interface || Interface

~ Leaf
Interface

3 (= 111

»

\ J \ J \ J \

18

PRflow Using Vivado

Partial Reconfiguration mapping time
increase with size of logic mapped
Large fixed mapping time is independent
of logic
o Load up full device description
o Map static region
m time proportional to logic in static
region
Implications
o Lower bound on speedup
o Premium to minimize logic in static region
m Mitigation: move PS BFT Overlay
network out of static region

Compilation Time for Different Leaves

y
\/

Leaf

Interface

Leaf Leaf

Interface

» »
 Leaf
‘ Interface

L

Switch Switch

Box ~ Box

““““““ [— Switch | il

Box

SWltCﬁ on

SWithh

T‘f Box]
_ Switch _ | Switch

Box Box

¥

Leaf

»

Interface

Leaf Leaf
Interface || Interface

> >

~ Leaf
Interface

»

19

Compilation Time for Different Leaves

PRflow Using Vivado :

e Partial Reconfiguration mapping time
increase with size of logic mapped

e Large fixed mapping time is independent
of logic

o Load up full device description
o Map static region
m time proportional to logic in static
region
e Implications
o Lower bound on speedup

o Premium to minimize logic in static region
m Mitigation: move PS BFT Overlay
network out of static region

PRflow Using Vivado

e Implications
o Lower bound on speedup
o Premium to minimize logic in static region
m Mitigation: move BFT overlay
network out of static region

Torigin
of Partitions

—1

T . Torigin - Ffix
"W # of Partitions

Tnew —

+ Trix

Compilation Time for Different Leaves

» PP B P

Leaf Leaf Leaf || Leaf
Interface | Interface || Interface | Interface

Switch J Switchj
Box Switch Box |
T witc

|—' Box J
SWltCE gox
]

SWiTtCh

R e
] [

Leaf Leaf Leaf || Leaf
Interface | Interface || Interface Jnterface

» b b B

Compilation Time for Different Leaves

PRflow Using Vivado 1:3

e Implications e
o Lower bound on speedup

o Premium to minimize logic in static region h e S e =

m Mitigation: move BFT overlay

)) Leaf Leaf Leaf Leaf
network out of static region I L e | Interface] I e | Iptertace
» Il l_{ Lnpin]
_ TOTlngl l 1 | = B |

T = —
"W # of Partitions

7 =1 [
. TOTigin — F f X . Interface :
Tnew = # of Partitions Tin LN 2

ea
Interface

t Interface l Interface

22

PRflow Using Symbiflow

An open-source Verilog-to-Bitstream FPGA Flow
e Synthesis
o Yosys supports Logic, BRAM, DSP
e Implementation
o VPR supports customized Synthesis FPGA tools
FPGA architecture [nextpnr] 1 project lcestorm

e Bitgen [Yosys] ‘
o X-Ray supports Xilinx 7 Series
o Support Boards:
m Digilent Arty A7-35T Architecture def
m Digilent Basys 3 Artix-7
m Digilent Zybo Z7

: Project X-Ray |

Verilog to || “emm—————————
Routing o e 1

' Project Trellis

-—

................

nitions

Verification, Testing
& Simulation

Source: https://symbiflow.github.io/#downloads

23

https://symbiflow.github.io/

Compilation Time for Different Leaves

What can Symbiflow offer us? =

Avoid loading full chip database
Avoid Mapping time for Fix logic RaCaCaCataC

Customize Quality vs. Runtime
Fixed time can go away!

. Torigin - Ffix
of Partitions

[

—1

N

+ Trix

TTLBW

Torigin
of Partitions

TTLQW -

PRflow using Vivado vs. PRflow using Symbiflow

PRflow on Vivado PRflow on Symbiflow

Load complete device Needed Not need

Map static region Needed Not need

Quality vs. Runtime

tradeoff default’ or ‘quick’ mode Customizable

Bitstream support All Xilinx Devices

25

Example Compilation Speedup

Implementation

Syn Total
Cluster | Place |Route
Vivado 1
process 2361s| 123 s (1715|124 s|2931 s
(Baseline)
Vivado
32 processes 4x X 1X | 1X | 2.55X
Our PRflow on
Vivado 19X [12.3X | 0.9X |0.9X | 5.17X
Our PRflow on
Symbiflow 40X | 4.0X [7.4X[3.1X|15.8X

PRflow Yosys+VPR
PRflow Vivado Quick
PRflow Vivado (default)
Mono. Vivado 32 Proc

Mono. Vivado 1 Proc

(Baseline)

Mapping Time Breakdown
B his
B mkprj
O syn
B rdchk
O opt.pack
O place
B route
| I | | I
o o o o o
8 8 8 8 B
— — (aV} (aV}
Time (s)

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs.Int'l

Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

3D- Rendering Benchmark from Rosettall

26

Example Compilation Speedup

Implementation

Syn Total
Cluster | Place |Route
Vivado 1
process 2361s| 123 s (1715|124 s|2931 s
(Baseline)
Vivado
32 processes 4x X 1X | 1X | 2.55X
Our PRflow on
Vivado 19X [12.3X | 0.9X |0.9X | 5.17X
Our PRflow on
Symbiflow 40X | 4.0X [7.4X[3.1X|15.8X

PRflow Yosys+VPR

PRflow Vivado Quick

PRflow Vivado (default)

Mono. Vivado 32 Proc

Mapping Time Breakdown

EC0OER0OON

hls
mKkprj
syn
rdchk
opt.pack
place
route

[Mono. Vivado 1 Proc
(Baseline)

=

500 |

1000 |

1500 |

Time (s)

2000
2500 |-

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs.Int'l

Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

3D- Rendering Benchmark from Rosettall

27

Example Compilation Speedup

Implementation

Syn Total
Cluster | Place |Route
Vivado 1
process 2361s| 123 s (1715|124 s|2931 s
(Baseline)
Vivado
32 processes 4x X 1X | 1X | 2.55X
Our PRflow on
Vivado 19X [12.3X | 0.9X |0.9X | 5.17X
ur PRflow on
Symbiflow 40X | 4.0X [7.4X[3.1X|15.8X

Mapping Time Breakdown

[PRflow Yosys+VPR

PRflow Vivado Quick
PRflow Vivado (default)
Mono. Vivado 32 Proc

Mono. Vivado 1 Proc

(Baseline)

EC0OER0OON

hls
mKkprj
syn
rdchk
opt.pack
place
route

500 —

1000 —
1500 —

Time (s)

2000 —
2500 —

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs.Int'l

Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

3D- Rendering Benchmark from Rosettall

28

Example Compilation Speedup

Implementation

Syn Total
Cluster | Place |Route
Vivado 1
process 2361s| 123 s (1715|124 s|2931 s
(Baseline)
" Vivado
32 processes 4x X 1X | 1X | 2.55X
Our PRflow on
Vivado 19X [12.3X | 0.9X |0.9X | 5.17X
Our PRflow on
Symbiflow 40X | 4.0X [7.4X[3.1X|15.8X

Mapping Time Breakdown
PRflow Yosys+VPR B his
B8 mkprj
O syn
PRflow Vivado Quick B rdchk
O opt.pack
PRflow Vivado (default) O place
B route
{Aono. Vivado 32 Proc
Mono. Vivado 1 Proc
(Baseline) | | | | |
o o o o o
o o o o o
L o n o n
- ~-— (4] [qV]
Time (s)

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs.Int'l

Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

3D- Rendering Benchmark from Rosettall

29

Example Compilation Speedup

Implementation

Syn Total
Cluster | Place |Route
Vivado 1
process 2361s| 123 s (1715|124 s|2931 s
(Baseline)
Vivado
32 processes 4x X 1X | 1X | 2.55X
Our PRflow on
Vivado 19X [12.3X | 0.9X |0.9X | 5.17X
Our PRflow on
Symbiflow 40X | 4.0X [7.4X[3.1X|15.8X

PRflow Yosys+VPR

[P Rflow Vivado Quick

Mapping Time Breakdown

PRflow Vivado (default)
Mono. Vivado 32 Proc

Mono. Vivado 1 Proc

(Baseline)

EC0OER0OON

hls
mKkprj
syn
rdchk
opt.pack
place
route

500 —

1000 —
1500 —

Time (s)

2000 —
2500 —

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs.Int'l

Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

3D- Rendering Benchmark from Rosettall

30

Example Compilation Speedup

Implementation

Syn Total
Cluster | Place |Route
Vivado 1
process 2361s| 123 s (1715|124 s|2931 s
(Baseline)
Vivado
32 processes 4x X 1X | 1X | 2.55X
Our PRflow on
Vivado 19X [12.3X | 0.9X |0.9X | 5.17X
bur PRflow on
- Symbiflow 40X | 4.0X [7.4X[3.1X|15.8X

|

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs.Int'l

Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

[PRflow Yosys+VPR

PRflow Vivado Quick
PRflow Vivado (default)
Mono. Vivado 32 Proc

Mono. Vivado 1 Proc

(Baseline)

Mapping Time Breakdown
B his
B mkprj
O syn
B rdchk
O opt.pack
O place
B route
| I I | I
o o o o o
8 8 8 8 B
— — (aV} (aV}
Time (s)

3D- Rendering Benchmark from Rosettall

31

Methodology

e A cluster of 8 compute servers
o Dual 2.7GHz Intel E5-2680 CPUs, 128GB of RAM (total of 8x2x8=128 cores)

e Platform for PRflow on Vivado 2018.2 :
o Xilinx ZCU102 board with xczu9eg-ffvb1155-2-e MP-SOC chip§
o 274K LUTs, 912 BRAM36, 2520 DSPs
o 775 MHz clock for Fabric

e Platform for PRflow on Symbiflow
o Digilent Arty A7-35T with XC7A35TICSG324-1L FPGA chip
o 21K LUTs, 50 BRAM36, 90 DSPs
o 464MHz clock for Fabric

e Rosetta HLS Benchmark [l

o 6 C-based design for High Level Synthesis Benchmark
o 3-D Rendering, Digit-Recognition, Spam-filter, Optical-flow, BNN, Face-detection
o We partitioned the benchmarks into small pieces, details in the paper

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs.Int’|

Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

32

30 leaves for
application logic

1 leaf for 4-core
ARM processor

1 leaf for DMA
interface

32 leaves are
connected by BFT

Floorplan for ZCU9EG

Leaf
31

Leaf
30

Leaf
29

Leaf
28

Leaf
27

Leaf
26

Leaf
25

Leaf
24

Leaf
23

Leaf
22

Leaf
20

Leaf
21

Leaf
19

Leaf
18

BFT Interconnect

Leaf
5

Leaf
4

Leaf
3

Leaf
2

Leaf
9

Leaf
8

Leaf
7

Leaf
6

Leaf
10

Leaf
17

Leaf
16

Leaf
15

Leaf
13

Leaf
12

Leaf
14

Leaf
11

Physical Layout

33

oorplan for ZC

UJ9EG

Resource Distribution

Leaf | Leaf Leaf Leaf Leaf Leaf
31 | 27 23 | 20 | 19 17
Leaf Leaf Leaf Leaf | Leaf Leaf
30 26 22 | 21 | 18 16
Leaf Leaf Leaf
29 | 25 BFT Interconnect 15
Leaf Leaf Leaf Leaf Leaf
28 | 24 5 9 13
Leaf Leaf Leaf
4 8 12
Leaf Leaf Leaf
3 7 14
Leaf | Leaf |Leaf Leaf
2 6 10 11

Type LUT FF RAM18 | DSP | # of Leaf
1 5760 | 11520 48 48 12
2 4800 9600 24 72 4
3 4800 9600 48 48 4
4 5760 | 11520 24 72 2
5 6720 | 13440 48 48 6
6 4320 8640 24 48 1
7 9120 | 18240 72 48 1
Total | 173K | 345K 1296 | 1584 30

34

Rosetta Benchmark Compilation Time (seconds)

PRflow on | PRflow on

Design [SDSoC! * yivado [Yosys & VPR| PRflow on Vivado

Digit e Speedup from
Recolggr:ition 2472 | 638 (31) | 337 (71) S o 10,79
SPAM Filter | 1770|658 (2.71)| 295 (67) PRf'gw o Yosys&VPR

e Speedup
3-D Rendering| 1769 |659 (2.71)| 185 (91) Ex 10 34 7x

Optical Flow | 2660 | 744 (31) | 311 (81) | * :Some eaf cannof
Binarized NN [10726/1000 (101)] 309 (341) e mapped due to

complex interconnect

Face Detection| 4347 | 972 (47) —T and floating point
multipliers

Average
Speedup 1X 4.67 12.97 35

Rosetta Benchmark Compilation Time (seconds)

PRflow on | PRflow on

Design [SDSoC! * yivado [Yosys & VPR| PRflow on Vivado

Digit '8 ™ e Speedup from
Recolggr:ition 2472(| 638 (31) |) 337 (71) S o 10,79
SPAM Filter | 1770|658 (2.71) || 295 (67) PRf'gw o Yosys&VPR

e Speedup
3-D Rendering| 1769|659 (2.71)|| 185 (91) Ex 10 34 7x

Optical Flow | 2660|| 744 (31) || 311 (81) | * :Some leaf cannof
Binarized NN [10726/1000 (101)][309 (341) e mapped due to

complex interconnect

Face Detection| 4347\ 972 (41) |} -t and floating point
[~ - multipliers

Average
Speedup 1X 4.67 12.97 36

Rosetta Benchmark Compilation Time (seconds)

Design SDSoC PI\R/I;Loav:I:n YPRrow on
Recocnition | 2472 | 638 (31) | 337 (71)
SPAM Filter | 1770 {658 (2.77)| 295 (6T)

3-D Rendering| 1769 [639 (2.7T)| 185 (97)
Optical Flow | 2660 | 744 (31) | 311 (87)
Binarized NN [10726|{1000 (10T)| 309 (34T)

Face Detection| 4347 | 972 (4T) |~ T
Average
Speedup 11 4.61 12.97

PRflow on Vivado
e Speedup from
2.7x to 10.72x
PRflow on Yosys&VPR
e Speedup
6x to 34.7x
e 1 :Some leaf cannot

be mapped due to
complex interconnect

and floating point
multipliers

37

Distribution of Compilation Time on Symbiflow

BNN (no bin_conv) — r[lli OO O e Mapping time from all
Optical Flow — F""I]] the design pieces
g Ei I-ﬂ e Most of them are
pam Filter 1 within 5 minutes
Rendering 3D — kl] -4 most single-leaf
T T T 1 changes
©O O ©O O O
o 1 O u O
- - N N ™
Time (s)

38

Distribution of Compilation Time on Symbiflow

BNN (no bin_conv) — r[lli OO O e Mapping time from all
Optical Flow — F-T---I] 1 the design pieces
$ e Most of them are

Spam Filter — l-ﬂr 1 within 5 minutes
Digit Recognition — I"II i O e Run pretty fast for
1 .
Rendering 3D — FI] - most single-leaf
T T T changes
©O © O © O
S O & O O
~ ~ AN AN ™M
Time (s)

39

Distribution of Compilation Time on Symbiflow

BNN (no bin_conv)
Optical Flow
Spam Filter

Digit Recognition
Rendering 3D

Time

e Mapping time from all

the design pieces
Most of them are
within 5 minutes
Run pretty fast for
most single-leaf
changes

40

Distribution of Compilation Time on Symbiflow

BNN (no bin_conv) — F[ll! © e Mapping time from all
Optical Flow — F""I]] the design pieces
g Ei I~[| e Most of them are
pam Filter 1 within 5 minutes
Digit Recognition — F‘D: 1@ e Run pretty fast for
Rendering 3D — kl] -4 most single-leaf
T T T 1 changes
O O O O O
o 1 O u O
- - N A ™
Time (s)

41

Distribution of Compilation Time on Symbiflow

BNN (no bin_conv) — 4[||| oo \o e Mapping time from all
Optical Flow — +|] | the design pieces
e Most of them are

Spam Filter —{ +{] within 5 minutes

Digit Recognition — -1 || © e Run pretty fast for
Rendering 3D — r[l - most single-leaf
"] changes
o O © 9O O
S H © O O
- - N A ™
Time (s)

42

Performance Comparison
Runtime per input frame (ms)

: Our e SDSoC is run on default
Design SDSoC PRflow 00MHa
Digit (6.17 118 || ¢ PRflow is with 300MHz BFT

Recognition

SPAM Filter 13 16.58 and 200MHz user logic

e Some cases, we can get the

= :;'D _ @2_13 48.90) same or better performance
e_n ering e The IO bottlenecks of BFT
O_Ptlc_al Flow| 6.35 25.80 constrain some benchmarks
Binarized NN| 5.3 17.42 performance
Face

Detection 28.19 | 351.93 43

Performance Comparison
Runtime per input frame (ms)

Design SDSoC Our e SDSoC is run on default
PRflow 100MHz
Digit 6.17 1.18 e PRflow is with 300MHz BFT

Recognition

SPAM Filter 13 16.58 and 200MHz user logic

e Some cases, we can get the

3-D _ 8213 48 90 same or better performance
Re_nderlng ~ < e The IO bottlenecks of BFT
O.ptlc.al Flow |[6.35 25.80 constrain some benchmarks
Binarized NN|| 5.3 17.42 performance

Face 112819 | 351.93,

44

Detection

Area Comparison (LUTSs)

: Our
Design SDSoC PRflow

Digit .) e \We use BFT and Interface to
Recognition 141 1 A) 4807 A) link small pieCeS up

SPAM Filter | 4.65% | 41.08% | ® The platform costs us fixed

3-D o o 35% LUTs overhead
Rendering 3.24% | 36.53% | o 35% FFs overhead

Optical Flow|14.15% | 43.89% | ® 407 BRAM overhead

Binarized NN| 16.84% | 42.31% | * 407 DSPsoverhead

Face |,/ 730,| 59.26%
Detection

45

Future work:

|0 bottleneck

O Direct interconnect between leaves

Vivado Improvement

O Like Symbiflow to avoid fix time for static region?

Symbiflow Support
® For More series like UltraScale+ MPSoC
® Floating point multipliers and smarter P&R tool

Automatic Design Partitioning
O Use Stylized C/C++ patterns

46

ldeas:

e Divide-and-conquer compilation strategy based on

utilizing partial reconfiguration —_— Torigin
neW # of Partition
Task Parallel map leaf blocks Load PR bitstreams
on Cloud onto Packet-Switched

network (PS net)

PR Compile

PR Compile

PR Compile

PR Compile

Leaf

P-block 47

Penn

Conclusion

e Compilation time does not need to take hours
e Decomposition of the design into separate pieces
o Small compilation tasks in parallel
o Incremental compile just the part that changed
e Impact: Able to achieve 12-18 minutes using Vivado
o Contrast 42-160 minutes no PRflow
e Plausible to achieve 2-5 minutes with open source Symbiflow

48

Thank you
Q&A

Area Comparison (FFs)

: Our

Design SDSoC PRflow
Digit

Recognition 3.5% 42.10%
SPAM Filter | 2.7% | 36.79%

3-D o o
Rendering 3.24% | 33.9%
Optical Flow| 1.76% | 36.48%
Binarized NN| 7.53% | 37.35%
Face o o
Detection 14.1% | 46.11%

We use BFT and Interface to
link small pieces up

The platform costs us fixed
35% LUTs overhead

35% FFs overhead

40% BRAM overhead

40% DSPs overhead

50

Area Comparison (BRAMs)

: Our
Design SDSoC PRflow

Digit e \We use BFT and Interface to
(0)
Recognition 33.55% | 60.31% link small pieces up

SPAM Filter| 8.0% | 48.46% | ® The platform costs us fixed

3-D 35% LUTs overhead

Rendering 7.713% | 38.15% | 35% FFs overhead

Optical Flow| 10.14% | 41.18% | ® “0% BRAMoverhead

Binarized NN| 65.68% | 92.59% | * 07 DSPsoverhead

Face |1/ s49| 63.15%
Detection

51

Area Comparison (DSPs)

: Our
Design SDSoC PRflow

Digit .) e We use BFT and Interface to
Recognition 0.03% | 35.23% link small pieces up

SPAM Filter | 8.89% | 45.30% | ® The platform costs us fixed

3-D 35% LUTs overhead

Rendering 0% 35.23% | o 35% FFs overhead

Optical Flow| 4.92% | 46.42% | ® 407 BRAM overhead

Binarized NN| 0.11% | 35.48% | * 07 DSPsoverhead

Face o o
Detection 3.13% | 39.64%

52

Ideas:

e Divide-and-conquer Compilation Strategy based on
Utilize Partial Reconfiguration

/
y——

‘,./ L [[> L > :):>— Leaf blocks
[/, /
T / —— Leaf p-blocks

53

Ideas:

e [.caf Interface

o Packet-switched: Arbitrary
interconnection between 2
leaves

o0 Leaf interface: Arbitrary
number of inputs and
outputs

BFT

ﬁ__| Port

SI'c regs
dst regs

clk_bft

) o
= || £
= =

clk_user

T

LT
§ 1

Leaf Interface

User Operator Logic

Leaf Block

@)
SN

e [mplementation time

1s not related to p-
block size, but logic

S1ze

TABLE I
IMPLEMENTATION TIME VS. DESIGN AND P-BLOCK SIZE ON XCZU9EG

P-Block Size (LUTs)

| Design | Size | 3960 | 6160 | 7920 | 10120 | 15840
623 203 206 206 205 204

Shift 1633 210 210 210 208 210
Register 2661 220 218 218 217 217
3614 229 233 224 227 225

4616 239 239 234 237

5623 239 244 241 242

1435 182 181 180 181 185

MicroBlaze | 2860 196 192 195 192 198
Cores 4285 210 211 210 207
5710 605 231 223 226

(cells show compilation time in seconds)

95

e [ogic in static region affect leaf compilation time

STATIC REGION IMPACT ON IMPLEMENTATION TIME (32 LEAF BFT WITH

TABLE 1II

32B PAYLOAD WIDTH DATAPATH)

PR implementation OoC 1mpl.

BFT in Static | BFT as P-block leaf only

LUTs in mapping 30611 8590 1435
optimize time (s) 29 10 79
place time (s) 238 161 27

route time (s) 170 113 74

| total time (s) || 437 284 180

600

5001

4001

Implementation Time (second)
3
)

0 4 8 12 16
Number of Fixed Leaves

20

24

28

56

Implementatlon: Resource Distribution

Type LUT FF RAM18 | DSP | # of Leaf
1 5760 11520 48 48 12
Leaf | Leaf Leaf Leaf | Leaf Leaf
31 | 27 23 20] 19 17 2 6720 13440 48 48 5
Leaf | Leaf Leaf Leaf | Leaf Leaf
30 ‘ 26 22 21 ‘ 18 16 3 4800 9600 48 48 4
Leaf | Leaf Leaf
29 25 BFT Interconnect . _ 4 4800 9600 24 72 4
Leaf Leaf Leaf | Leaf Leaf 5 5760 11520 24 72 4
28 | 24 5 9 13
oot | Loat I Loat 6 5960 11920 48 48 1
4 8 12
7 9120 18240 72 48 1
Leaf Leaf Leaf
3 17 s 8 4320 8640 24 48 1
Leaf Leaf Leaf Leaf i
2 6 10 11 Total 172K 344K 1296 1584 30 57

Implementation:

e Use Python to generate
the TCL scripts

e Use gsub to submit
compilation tasks into
icgrid

e git clone
<yourlD>@iclogin.seas.

upenn.edu:/project/ese/ic/
gitroot/prilow.git

§}:

W
©
‘l Prepare Synthesis |
app defxml

NG
|
e
|
=i
X!

=
nyg
(=}
P
-
=

IV DO| |\luno| [\‘
S

md
=
>
(7]

"_-_I
5 9

)
-

o]
[
wn
]
|
wn

o‘ |\'I\'ADO‘ Parallel HLS

HLS

&
ig
o =]

-
1 O
4 O

-

-3 2
-2
A
5
- =
-}

on Cloud
_______ & .
D T Qo b ect)
5 |Parallel Synthesis |

on Cloud :

.
.f‘*«e:hﬂek
@fo-

.

itstream

re Implemjentation.

><x__
Ha
| |

Parallel :
Implement on|

OE0E

Cloud !

58

Resource Utilizations

e Resource Overhead for the Overlay

o 63% Logic Resources

e [caf interface resource consumption equatio
o Leaf Interface = 206+66/+2270
o Leaf Int. 36K BRAMs = 1+2/+0/2

e Frequency and DDR bandwidth

o 300MHz for the BFT
o 200MHz for the AXI Bus
o 200MHz for the leaf logic

59

Compilation Time for Different Leaves

What can Symbiflow offer us? :

Avoid loading full chip database REVESIV IR SN,
Avoid Mapping time for Fix logic

Customize Quality vs. Runtime
Fixed time can go away!

Torigin o Tfix

T = + T%;
new T # of Partition %
Torigin
Thew =

of Partition

