
Yuanlong Xiao, Dongjoon Park, Andrew Butt, Hans Giesen, Zhaoyang Han, Rui Ding,
Nevo Magnezi, Raphael Rubin, and André DeHon (andre@acm.org)

Reducing FPGA Compile Time with Separate
Compilation for FPGA Building Blocks

Implementation of Computation Group
University of Pennsylvania

December 12th, 2019

1

Story
Our target is decreasing the compilation time
● Problem: Compilation is slow -- limiting FPGA use and optimization
● Idea: Divide into smaller problems

○ Solve in parallel
○ Incrementally compile just the part that changed

● Tool: PRflow
● Impact: Able to achieve 12-18 minutes using Vivado

○ Contrast 42-160 minutes no PRflow
● Plausible to achieve 2-5 minutes with open source Symbiflow

2

Story
Our target is decreasing the compilation time
● Problem: Compilation is slow -- limiting FPGA use and optimization
● Idea: Divide into smaller problems

○ Solve in parallel
○ Incrementally compile just the part that changed

● Tool: PRflow
● Impact: Able to achieve 12-18 minutes using Vivado

○ Contrast 42-160 minutes no PRflow
● Plausible to achieve 2-5 minutes with open source Symbiflow

3

Story
Our target is decreasing the compilation time
● Problem: Compilation is slow -- limiting FPGA use and optimization
● Idea: Divide into smaller problems

○ Solve in parallel
○ Incrementally compile just the part that changed

● Tool: PRflow
● Impact: Able to achieve 12-18 minutes using Vivado

○ Contrast 42-160 minutes no PRflow
● Plausible to achieve 2-5 minutes with open source Symbiflow

4

Motivation:

● Today’s FPGA compilation is slow
○ 30-178 minutes for Rosetta [1] Benchmarks on Xilinx

ZCU102 board

● Problems due to slow compilation
○ Slow debug and development time
○ Limit the scope of design space exploration

● Why is it slow?
○ Compile and co-optimize the entire design

5[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs. Int’l
Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

Motivation:

● Today’s FPGA compilation is slow
○ 30-178 minutes for Rosetta [1] Benchmarks on Xilinx

ZCU102 board

● Problems due to slow compilation
○ Slow debug and development time
○ Limit the scope of design space exploration

● Why is it slow?
○ Compile and co-optimize the entire design

6[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs. Int’l
Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

Motivation:

● Today’s FPGA compilation is slow
○ 30-178 minutes for Rosetta [1] Benchmarks on Xilinx

ZCU102 board

● Problems due to slow compilation
○ Slow debug and development time
○ Limit the scope of design space exploration

● Why is it slow?
○ Compile and co-optimize the entire design

7[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs. Int’l
Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

Motivation:

● Today’s FPGA compilation is slow
○ 30-178 minutes for Rosetta [1] Benchmarks on Xilinx

ZCU102 board

● Problems due to slow compilation
○ Slow debug and development time
○ Limit the scope of design space exploration

● Why is it slow?
○ Compile and co-optimize the entire design

8[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs. Int’l
Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

Ideas:
● Divide-and-conquer compilation strategy based on

utilizing partial reconfiguration

9

Ideas:
● Divide-and-conquer compilation strategy based on

utilizing partial reconfiguration

10

!"#$ = !&'()("
+, -./0101+2

Ideas:
● Divide-and-conquer compilation strategy based on

utilizing partial reconfiguration

11

!"#$ = !&'()("
+, -./0101+2

Ideas:
● Divide-and-conquer compilation strategy based on

utilizing partial reconfiguration

12

!"#$ = !&'()("
+, -./0101+2

13

Ideas:

PR-
blocks

● How to Link PR-blocks together?
○ Standardized interfaces into each

blocks[2]

○ Leaf interface: Arbitrary number of
inputs and outputs to user logic

○ Butterfly Fat Tree (BFT)
○ Packet-switched: Arbitrary

interconnection between 2 leaves
[2] Caspi, Eylon, et al. "Stream computations organized for reconfigurable execution (SCORE)."
International Workshop on Field Programmable Logic and Applications. Springer, Berlin, Heidelberg, 2000.

14

Ideas:

PR-
blocks

● How to Link PR-blocks together?
○ Standardized interfaces into each

block[2]

○ Leaf interface: Arbitrary number of
inputs and outputs to user logic

○ Butterfly Fat Tree (BFT)
○ Packet-switched: Arbitrary

interconnection between 2 leaves
[2] Caspi, Eylon, et al. "Stream computations organized for reconfigurable execution (SCORE)."
International Workshop on Field Programmable Logic and Applications. Springer, Berlin, Heidelberg, 2000.

15

Ideas:

PR-
blocks

● How to Link PR-blocks together?
○ Standardized interfaces into each

blocks
○ Leaf interface: Arbitrary number of

inputs and outputs to user logic
○ Butterfly Fat Tree (BFT)[3]

○ Packet-switched: Arbitrary
interconnection between 2 leaves

[3] Kapre, N., 2017, September. Deflection-routed butterfly fat trees on FPGAs. In 2017 27th International
Conference on Field Programmable Logic and Applications (FPL) (pp. 1-8). IEEE.

16

Ideas:

PR-
blocks

PR Region

Static Region

PRflow Using Vivado
● Partial Reconfiguration mapping time

increase with size of logic mapped
● Large fixed mapping time is independent

of logic
○ Load up full device description
○ Map static region

■ time proportional to logic in static
region

● Implications
○ Lower bound on speedup
○ Premium to minimize logic in static region

■ Mitigation: move PS BFT Overlay
network out of static region

17

PRflow Using Vivado
● Partial Reconfiguration mapping time

increase with size of logic mapped
● Large fixed mapping time is independent

of logic
○ Load up full device description
○ Map static region

■ time proportional to logic in static
region

● Implications
○ Lower bound on speedup
○ Premium to minimize logic in static region

■ Mitigation: move PS BFT Overlay
network out of static region

18

PRflow Using Vivado
● Partial Reconfiguration mapping time

increase with size of logic mapped
● Large fixed mapping time is independent

of logic
○ Load up full device description
○ Map static region

■ time proportional to logic in static
region

● Implications
○ Lower bound on speedup
○ Premium to minimize logic in static region

■ Mitigation: move PS BFT Overlay
network out of static region

19

PRflow Using Vivado
● Partial Reconfiguration mapping time

increase with size of logic mapped
● Large fixed mapping time is independent

of logic
○ Load up full device description
○ Map static region

■ time proportional to logic in static
region

● Implications
○ Lower bound on speedup
○ Premium to minimize logic in static region

■ Mitigation: move PS BFT Overlay
network out of static region

20

PRflow Using Vivado
● Implications

○ Lower bound on speedup
○ Premium to minimize logic in static region

■ Mitigation: move BFT overlay
network out of static region

21

!"#$ =
!&'()(" − +,(-
/0 1234545/67 + !,(-

!"#$ =
!&'()("

/0 1234545/67

PRflow Using Vivado
● Implications

○ Lower bound on speedup
○ Premium to minimize logic in static region

■ Mitigation: move BFT overlay
network out of static region

22

!"#$ =
!&'()(" − +,(-
/0 1234545/67 + !,(-

!"#$ =
!&'()("

/0 1234545/67

PRflow Using Symbiflow
An open-source Verilog-to-Bitstream FPGA Flow
● Synthesis

○ Yosys supports Logic, BRAM, DSP
● Implementation

○ VPR supports customized
FPGA architecture

● Bitgen
○ X-Ray supports Xilinx 7 Series
○ Support Boards:

■ Digilent Arty A7-35T
■ Digilent Basys 3 Artix-7
■ Digilent Zybo Z7

23
Source: https://symbiflow.github.io/#downloads

https://symbiflow.github.io/

What can Symbiflow offer us?
● Avoid loading full chip database
● Avoid Mapping time for Fix logic
● Customize Quality vs. Runtime
● Fixed time can go away!

24

!"#$ =
!&'()(" − +,(-
/0 1234545/67 + !,(-

!"#$ =
!&'()("

/0 1234545/67

PRflow using Vivado vs. PRflow using Symbiflow

25

PRflow on Vivado PRflow on Symbiflow

Load complete device Needed Not need

Map static region Needed Not need

Quality vs. Runtime
tradeoff ‘default’ or ‘quick’ mode Customizable

Bitstream support All Xilinx Devices 7 Series

Example Compilation Speedup

26

Syn
Implementation

Total
Cluster Place Route

Vivado 1
process

(Baseline)
2361s 123 s 171 s 124 s 2931 s

Vivado
32 processes 4X 1X 1X 1X 2.55X

Our PRflow on
Vivado 19X 12.3X 0.9X 0.9X 5.17X

Our PRflow on
Symbiflow 40X 4.0X 7.4X 3.1X 15.8X 3D- Rendering Benchmark from Rosetta[1]

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs.Int’l
Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

(Baseline)

Example Compilation Speedup

27

Syn
Implementation

Total
Cluster Place Route

Vivado 1
process

(Baseline)
2361s 123 s 171 s 124 s 2931 s

Vivado
32 processes 4X 1X 1X 1X 2.55X

Our PRflow on
Vivado 19X 12.3X 0.9X 0.9X 5.17X

Our PRflow on
Symbiflow 40X 4.0X 7.4X 3.1X 15.8X 3D- Rendering Benchmark from Rosetta[1]

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs.Int’l
Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

(Baseline)

Example Compilation Speedup

28

Syn
Implementation

Total
Cluster Place Route

Vivado 1
process

(Baseline)
2361s 123 s 171 s 124 s 2931 s

Vivado
32 processes

4X 1X 1X 1X 2.55X

Our PRflow on
Vivado

19X 12.3X 0.9X 0.9X 5.17X

Our PRflow on
Symbiflow

40X 4.0X 7.4X 3.1X 15.8X 3D- Rendering Benchmark from Rosetta[1]

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs.Int’l

Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

(Baseline)

Example Compilation Speedup

29

Syn
Implementation

Total
Cluster Place Route

Vivado 1
process

(Baseline)
2361s 123 s 171 s 124 s 2931 s

Vivado
32 processes 4X 1X 1X 1X 2.55X

Our PRflow on
Vivado 19X 12.3X 0.9X 0.9X 5.17X

Our PRflow on
Symbiflow 40X 4.0X 7.4X 3.1X 15.8X 3D- Rendering Benchmark from Rosetta[1]

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs.Int’l
Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

(Baseline)

Example Compilation Speedup

30

Syn
Implementation

Total
Cluster Place Route

Vivado 1
process

(Baseline)
2361s 123 s 171 s 124 s 2931 s

Vivado
32 processes 4X 1X 1X 1X 2.55X

Our PRflow on
Vivado 19X 12.3X 0.9X 0.9X 5.17X

Our PRflow on
Symbiflow 40X 4.0X 7.4X 3.1X 15.8X 3D- Rendering Benchmark from Rosetta[1]

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs.Int’l
Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

(Baseline)

Example Compilation Speedup

31

Syn
Implementation

Total
Cluster Place Route

Vivado 1
process

(Baseline)
2361s 123 s 171 s 124 s 2931 s

Vivado
32 processes 4X 1X 1X 1X 2.55X

Our PRflow on
Vivado 19X 12.3X 0.9X 0.9X 5.17X

Our PRflow on
Symbiflow 40X 4.0X 7.4X 3.1X 15.8X 3D- Rendering Benchmark from Rosetta[1]

[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs.Int’l
Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

(Baseline)

Methodology
● A cluster of 8 compute servers

○ Dual 2.7GHz Intel E5-2680 CPUs, 128GB of RAM (total of 8x2x8=128 cores)
● Platform for PRflow on Vivado 2018.2

○ Xilinx ZCU102 board with xczu9eg-ffvb1155-2-e MP-SOC chip
○ 274K LUTs, 912 BRAM36, 2520 DSPs
○ 775 MHz clock for Fabric

● Platform for PRflow on Symbiflow
○ Digilent Arty A7-35T with XC7A35TICSG324-1L FPGA chip
○ 21K LUTs, 50 BRAM36, 90 DSPs
○ 464MHz clock for Fabric

● Rosetta HLS Benchmark [1]

○ 6 C-based design for High Level Synthesis Benchmark
○ 3-D Rendering, Digit-Recognition, Spam-filter, Optical-flow, BNN, Face-detection
○ We partitioned the benchmarks into small pieces, details in the paper

32[1] Yuan Zhou et al. Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software-Programmable FPGAs.Int’l
Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2018.

33

Physical LayoutFloorplan for ZCU9EG

● 30 leaves for
application logic

● 1 leaf for 4-core
ARM processor

● 1 leaf for DMA
interface

● 32 leaves are
connected by BFT

Floorplan for ZCU9EG
Type LUT FF RAM18 DSP # of Leaf

1 5760 11520 48 48 12

2 4800 9600 24 72 4

3 4800 9600 48 48 4

4 5760 11520 24 72 2

5 6720 13440 48 48 6

6 4320 8640 24 48 1

7 9120 18240 72 48 1

Total 173K 345K 1296 1584 30

Resource Distribution

34

35

Design SDSoC PRflow on
Vivado

PRflow on
Yosys & VPR

Digit
Recognition

2472 638 (3↑) 337 (7↑)
SPAM Filter 1770 658 (2.7↑) 295 (6↑)

3-D Rendering 1769 659 (2.7↑) 185 (9↑)
Optical Flow 2660 744 (3↑) 311 (8↑)
Binarized NN 10726 1000 (10↑) 309 (34↑)

Face Detection 4347 972 (4↑) −#
Average
Speedup 1X 4.6↑ 12.9↑

Rosetta Benchmark Compilation Time (seconds)

PRflow on Vivado
● Speedup from

2.7x to 10.72x
PRflow on Yosys&VPR
● Speedup

6x to 34.7x
● † : Some leaf cannot

be mapped due to

complex interconnect

and floating point

multipliers

36

Design SDSoC PRflow on
Vivado

PRflow on
Yosys & VPR

Digit
Recognition

2472 638 (3↑) 337 (7↑)
SPAM Filter 1770 658 (2.7↑) 295 (6↑)

3-D Rendering 1769 659 (2.7↑) 185 (9↑)
Optical Flow 2660 744 (3↑) 311 (8↑)
Binarized NN 10726 1000 (10↑) 309 (34↑)

Face Detection 4347 972 (4↑) −#
Average
Speedup 1X 4.6↑ 12.9↑

Rosetta Benchmark Compilation Time (seconds)

PRflow on Vivado
● Speedup from

2.7x to 10.72x
PRflow on Yosys&VPR
● Speedup

6x to 34.7x
● † : Some leaf cannot

be mapped due to

complex interconnect

and floating point

multipliers

37

Design SDSoC PRflow on
Vivado

PRflow on
Yosys & VPR

Digit
Recognition

2472 638 (3↑) 337 (7↑)
SPAM Filter 1770 658 (2.7↑) 295 (6↑)

3-D Rendering 1769 659 (2.7↑) 185 (9↑)
Optical Flow 2660 744 (3↑) 311 (8↑)
Binarized NN 10726 1000 (10↑) 309 (34↑)

Face Detection 4347 972 (4↑) −#
Average
Speedup 1↑ 4.6↑ 12.9↑

Rosetta Benchmark Compilation Time (seconds)

PRflow on Vivado
● Speedup from

2.7x to 10.72x
PRflow on Yosys&VPR
● Speedup

6x to 34.7x
● † : Some leaf cannot

be mapped due to

complex interconnect

and floating point

multipliers

Distribution of Compilation Time on Symbiflow

38

● Mapping time from all
the design pieces

● Most of them are
within 5 minutes

● Run pretty fast for
most single-leaf
changes

Distribution of Compilation Time on Symbiflow

39

● Mapping time from all
the design pieces

● Most of them are
within 5 minutes

● Run pretty fast for
most single-leaf
changes↑

↑

↑

↑

↑

Distribution of Compilation Time on Symbiflow

40

● Mapping time from all
the design pieces

● Most of them are
within 5 minutes

● Run pretty fast for
most single-leaf
changes

Distribution of Compilation Time on Symbiflow

41

● Mapping time from all
the design pieces

● Most of them are
within 5 minutes

● Run pretty fast for
most single-leaf
changes

Distribution of Compilation Time on Symbiflow

42

● Mapping time from all
the design pieces

● Most of them are
within 5 minutes

● Run pretty fast for
most single-leaf
changes

Performance Comparison

43

● SDSoC is run on default
100MHz

● PRflow is with 300MHz BFT
and 200MHz user logic

● Some cases, we can get the
same or better performance

● The IO bottlenecks of BFT
constrain some benchmarks
performance

Design SDSoC Our
PRflow

Digit
Recognition 6.17 1.18

SPAM Filter 13 16.58
3-D

Rendering 82.13 48.90

Optical Flow 6.35 25.80
Binarized NN 5.3 17.42

Face
Detection 28.19 351.93

Runtime per input frame (ms)

Performance Comparison

44

● SDSoC is run on default
100MHz

● PRflow is with 300MHz BFT
and 200MHz user logic

● Some cases, we can get the
same or better performance

● The IO bottlenecks of BFT
constrain some benchmarks
performance

Design SDSoC Our
PRflow

Digit
Recognition 6.17 1.18

SPAM Filter 13 16.58
3-D

Rendering 82.13 48.90

Optical Flow 6.35 25.80
Binarized NN 5.3 17.42

Face
Detection 28.19 351.93

Runtime per input frame (ms)

Area Comparison (LUTs)

45

Design SDSoC Our
PRflow

Digit
Recognition 14.11% 48.07%

SPAM Filter 4.65% 41.08%
3-D

Rendering 3.24% 36.53%

Optical Flow 14.15% 43.89%
Binarized NN 16.84% 42.31%

Face
Detection 24.73% 59.26%

● We use BFT and Interface to
link small pieces up

● The platform costs us fixed
35% LUTs overhead

● 35% FFs overhead
● 40% BRAM overhead
● 40% DSPs overhead

Future work:
● IO bottleneck

○ Direct interconnect between leaves
● Vivado Improvement

○ Like Symbiflow to avoid fix time for static region?
● Symbiflow Support

● For More series like UltraScale+ MPSoC
● Floating point multipliers and smarter P&R tool

● Automatic Design Partitioning
○ Use Stylized C/C++ patterns 46

Ideas:
● Divide-and-conquer compilation strategy based on

utilizing partial reconfiguration

47

Conclusion
● Compilation time does not need to take hours
● Decomposition of the design into separate pieces

○ Small compilation tasks in parallel
○ Incremental compile just the part that changed

● Impact: Able to achieve 12-18 minutes using Vivado
○ Contrast 42-160 minutes no PRflow

● Plausible to achieve 2-5 minutes with open source Symbiflow

48

Thank you
Q&A

49

Area Comparison (FFs)

50

Design SDSoC Our
PRflow

Digit
Recognition 3.5% 42.10%

SPAM Filter 2.7% 36.79%
3-D

Rendering 3.24% 33.9%

Optical Flow 1.76% 36.48%
Binarized NN 7.53% 37.35%

Face
Detection 14.1% 46.11%

● We use BFT and Interface to
link small pieces up

● The platform costs us fixed
35% LUTs overhead

● 35% FFs overhead
● 40% BRAM overhead
● 40% DSPs overhead

Area Comparison (BRAMs)

51

Design SDSoC Our
PRflow

Digit
Recognition 33.55% 60.31%

SPAM Filter 8.0% 48.46%
3-D

Rendering 7.73% 38.15%

Optical Flow 10.14% 41.18%
Binarized NN 65.68% 92.59%

Face
Detection 14.64% 63.15%

● We use BFT and Interface to
link small pieces up

● The platform costs us fixed
35% LUTs overhead

● 35% FFs overhead
● 40% BRAM overhead
● 40% DSPs overhead

Area Comparison (DSPs)

52

Design SDSoC Our
PRflow

Digit
Recognition 0.03% 35.23%

SPAM Filter 8.89% 45.30%
3-D

Rendering 0% 35.23%

Optical Flow 4.92% 46.42%
Binarized NN 0.11% 35.48%

Face
Detection 3.13% 39.64%

● We use BFT and Interface to
link small pieces up

● The platform costs us fixed
35% LUTs overhead

● 35% FFs overhead
● 40% BRAM overhead
● 40% DSPs overhead

Ideas:
● Divide-and-conquer Compilation Strategy based on

Utilize Partial Reconfiguration

Leaf p-blocks

Leaf blocks

53

Ideas:
● Leaf Interface

○ Packet-switched: Arbitrary
interconnection between 2
leaves

○ Leaf interface: Arbitrary
number of inputs and
outputs

54

55

● Implementation time
is not related to p-
block size, but logic
size

56

● Logic in static region affect leaf compilation time

Implementation:

57

Resource Distribution

Type LUT FF RAM18 DSP # of Leaf

1 5760 11520 48 48 12

2 6720 13440 48 48 5

3 4800 9600 48 48 4

4 4800 9600 24 72 4

5 5760 11520 24 72 4

6 5960 11920 48 48 1

7 9120 18240 72 48 1

8 4320 8640 24 48 1

Total 172K 344K 1296 1584 30

Implementation:
● Use Python to generate

the TCL scripts
● Use qsub to submit

compilation tasks into
icgrid

● git clone
<yourID>@iclogin.seas.
upenn.edu:/project/ese/ic/
gitroot/prflow.git

58

Resource Utilizations

59

● Resource Overhead for the Overlay
○ 63% Logic Resources

● Leaf interface resource consumption equatio
○ Leaf Interface = 206+66I+227O
○ Leaf Int. 36K BRAMs = 1+2I+O/2

● Frequency and DDR bandwidth
○ 300MHz for the BFT
○ 200MHz for the AXI Bus
○ 200MHz for the leaf_logic

What can Symbiflow offer us?
● Avoid loading full chip database
● Avoid Mapping time for Fix logic
● Customize Quality vs. Runtime
● Fixed time can go away!

60

