Reducing FPGA Compile Time with Separate Compilation for FPGA Building Blocks

Yuanlong Xiao, Dongjoon Park, Andrew Butt, Hans Giesen, Zhaoyang Han, Rui Ding, Nevo Magnezi, Raphael Rubin, and André DeHon (andre@acm.org)

> Implementation of Computation Group University of Pennsylvania December 12th, 2019

Story

Our target is decreasing the compilation time

- **Problem:** Compilation is slow -- limiting FPGA use and optimization
- Idea: Divide into smaller problems
 - Solve in parallel
 - Incrementally compile just the part that changed
- **Tool**: PRflow
- Impact: Able to achieve 12-18 minutes using Vivado
 - Contrast **42-160 minutes** no PRflow
- Plausible to achieve **2-5 minutes** with open source Symbiflow

Story

Our target is decreasing the compilation time

- **Problem:** Compilation is slow -- limiting FPGA use and optimization
- Idea: Divide into smaller problems
 - Solve in parallel
 - Incrementally compile just the part that changed
- Tool: PRflow
- Impact: Able to achieve 12-18 minutes using Vivado
 - Contrast **42-160 minutes** no PRflow
- Plausible to achieve **2-5 minutes** with open source Symbiflow

Story

Our target is decreasing the compilation time

- **Problem:** Compilation is slow -- limiting FPGA use and optimization
- Idea: Divide into smaller problems
 - Solve in parallel
 - Incrementally compile just the part that changed
- **Tool**: PRflow
- Impact: Able to achieve 12-18 minutes using Vivado
 - Contrast **42-160 minutes** no PRflow
- Plausible to achieve **2-5 minutes** with open source Symbiflow

- Today's FPGA compilation is slow
 - 30-178 minutes for Rosetta^[1] Benchmarks on Xilinx
 ZCU102 board
- Problems due to slow compilation
 - Slow debug and development time
 - Limit the scope of design space exploration
- Why is it slow?
 - \circ $\,$ Compile and co-optimize the entire design

- Today's FPGA compilation is slow
 - 30-178 minutes for Rosetta ^[1] Benchmarks on Xilinx ZCU102 board
- Problems due to slow compilation
 - Slow debug and development time
 - Limit the scope of design space exploration
- Why is it slow?
 - \circ $\,$ Compile and co-optimize the entire design

- Today's FPGA compilation is slow
 - 30-178 minutes for Rosetta^[1] Benchmarks on Xilinx
 ZCU102 board
- Problems due to slow compilation
 - Slow debug and development time
 - Limit the scope of design space exploration
- Why is it slow?
 - Compile and co-optimize the entire design

- Today's FPGA compilation is slow
 - 30-178 minutes for Rosetta^[1] Benchmarks on Xilinx
 ZCU102 board
- Problems due to slow compilation
 - Slow debug and development time
 - Limit the scope of design space exploration
- Why is it slow?
 - Compile and co-optimize the entire design

- How to Link PR-blocks together?
 - Standardized interfaces into each blocks^[2]
 - Leaf interface: Arbitrary number of inputs and outputs to user logic
 - Butterfly Fat Tree (BFT)
 - Packet-switched: Arbitrary interconnection between 2 leaves

[2] Caspi, Eylon, et al. "Stream computations organized for reconfigurable execution (SCORE)." International Workshop on Field Programmable Logic and Applications. Springer, Berlin, Heidelberg, 2000.¹³ PRblocks

Ideas:

- How to Link PR-blocks together?
 - Standardized interfaces into each block^[2]
 - Leaf interface: Arbitrary number of inputs and outputs to user logic
 - Butterfly Fat Tree (BFT)
 - Packet-switched: Arbitrary interconnection between 2 leaves

Leaf Leaf Leaf Leaf Interface Interface

[2] Caspi, Eylon, et al. "Stream computations organized for reconfigurable execution (SCORE)." International Workshop on Field Programmable Logic and Applications. Springer, Berlin, Heidelberg, 2000. PRblocks

Ideas:

- How to Link PR-blocks together?
 - Standardized interfaces into each blocks
 - Leaf interface: Arbitrary number of inputs and outputs to user logic
 - Butterfly Fat Tree (BFT)^[3]
 - Packet-switched: Arbitrary interconnection between 2 leaves

[3] Kapre, N., 2017, September. Deflection-routed butterfly fat trees on FPGAs. In 2017 27th International Conference on Field Programmable Logic and Applications (FPL) (pp. 1-8). IEEE.

- Partial Reconfiguration mapping time increase with size of logic mapped
- Large fixed mapping time is independent of logic
 - Load up full device description
 - Map static region
 - time proportional to logic in static region
- Implications
 - Lower bound on speedup
 - Premium to minimize logic in static region
 - Mitigation: move PS BFT Overlay network out of static region

- Partial Reconfiguration mapping time increase with size of logic mapped
- Large fixed mapping time is independent of logic
 - Load up full device description
 - Map static region
 - time proportional to logic in static region
- Implications
 - Lower bound on speedup
 - Premium to minimize logic in static region
 - Mitigation: move PS BFT Overlay network out of static region

- Partial Reconfiguration mapping time increase with size of logic mapped
- Large fixed mapping time is independent of logic
 - Load up full device description
 - Map static region
 - time proportional to logic in static region
- Implications
 - Lower bound on speedup
 - Premium to minimize logic in static region
 - Mitigation: move PS BFT Overlay network out of static region

- Partial Reconfiguration mapping time increase with size of logic mapped
- Large fixed mapping time is independent of logic
 - Load up full device description
 - Map static region
 - time proportional to logic in static region
- Implications
 - Lower bound on speedup
 - Premium to minimize logic in static region
 - Mitigation: move PS BFT Overlay network out of static region

0	
0	
0	
60	
10	
20	

- Implications
 - Lower bound on speedup
 - Premium to minimize logic in static region
 - Mitigation: move BFT overlay network out of static region

- Implications
 - Lower bound on speedup
 - Premium to minimize logic in static region
 - Mitigation: move BFT overlay network out of static region

22

PRflow Using Symbiflow

An open-source Verilog-to-Bitstream FPGA Flow

- Synthesis
 - Yosys supports Logic, BRAM, DSP
- Implementation
 - VPR supports customized FPGA architecture
- Bitgen
 - X-Ray supports Xilinx 7 Series
 - Support Boards:
 - Digilent Arty A7-35T
 - Digilent Basys 3 Artix-7
 - Digilent Zybo Z7

Source: https://symbiflow.github.io/#downloads

What can Symbiflow offer us?

- Avoid loading full chip database
- Avoid Mapping time for Fix logic
- Customize Quality vs. Runtime
- Fixed time can go away!

$$T_{new} = \frac{T_{origin} - F_{fix}}{\# of Partitions} + T_{fix}$$

$$\overline{T_{new}} = \frac{T_{origin}}{\# of Partitions}$$

Compilation Time for Different Leaves

PRflow using Vivado vs. PRflow using Symbiflow

	PRflow on Vivado	PRflow on Symbiflow
Load complete device	Needed	Not need
Map static region	Needed	Not need
Quality vs. Runtime tradeoff	'default' or 'quick' mode	Customizable
Bitstream support	All Xilinx Devices	7 Series

		Imple	ementat	ion		Mapping Time Breakdow			
	Syn	Cluster	Place	Route	lotal	PRflow Yosys+VPR	■ hls □ mkprj □ svn		
Vivado 1 process (Baseline)	2361s	123 s	171 s	124 s	2931 s	PRflow Vivado Quick PRflow Vivado (default)	 rdchk opt.pack place route 		
Vivado 32 processes	4X	1X	1X	1X	2.55X	Mono. Vivado 1 Proc			
Our PRflow on Vivado	19X	12.3X	0.9X	0.9X	5.17X	(Baseline)	500		
Our PRflow on Symbiflow	40X	4.0X	7.4X	3.1X	15.8X	3D- Rendering B	Senchmark from Rosetta ^[1]		

		Imple	ion			N	lappi	ng Ti	me B	reako	down	
	Syn	Cluster	Place	Route	lotal	PRflow Yosys+VPR					■ hls ■ ml □ sy	s kprj n
Vivado 1 process (Baseline)	2361s	123 s	171 s	124 s	2931 s	PRflow Vivado Quick PRflow Vivado (default)					 rde op pla ro 	chk ot.pack ace ute
Vivado 32 processes	4X	1X	1X	1X	2.55X	Mono. Vivado 32 Proc Mono. Vivado 1 Proc						
Our PRflow on Vivado	19X	12.3X	0.9X	0.9X	5.17X	(Baseline)	0	500	1000	1500 -	2000 -	2500
Our PRflow on Symbiflow	40X	4.0X	7.4X	3.1X	15.8X	3D- Rendering E	lenc	chma	rk fr	me (s) om l	Rose	etta ^[1]

		Imple	mentat	ion	T ()	Mapping Time Breakdown
	Syn	Cluster	Place	Route	Iotal	PRflow Yosys+VPR
Vivado 1 process (Baseline)	2361s	123 s	171 s	124 s	2931 s	PRflow Vivado Quick PRflow Vivado (default) Mono, Vivado 32 Proc
Vivado 32 processes	4X	1X	1X	1X	2.55X	Mono. Vivado 32 1 roc
Our PRflow on Vivado	19X	12.3X	0.9X	0.9X	5.17X	(Baseline)
Our PRflow on Symbiflow	40X	4.0X	7.4X	3.1X	15.8X	3D- Rendering Benchmark from Rosetta ^[1]

		Imple	mentat	ion		Mapping Time Breakdow	'n
	Syn	Cluster	Place	Route	Iotal	PRflow Yosys+VPR ■ hls ■ mkprj ■ svn	
Vivado 1 process (Baseline)	2361s	123 s	171 s	124 s	2931 s	PRflow Vivado Quick PRflow Vivado (default) Mono, Vivado 32 Proc	ж
Vivado 32 processes	4X	1X	1X	1X	2.55X	Mono. Vivado 1 Proc	
Our PRflow on Vivado	19X	12.3X	0.9X	0.9X	5.17X	(Baseline) (Baseline) (Baseline)	
Our PRflow on Symbiflow	40X	4.0X	7.4X	3.1X	15.8X	3D- Rendering Benchmark from Rosetta	[1]

	Syn -	Imple	mentat	ion		Mapping Time Breakdown
	Syn	Cluster	Place	Route	lotal	PRflow Yosys+VPR
Vivado 1 process (Baseline)	2361s	123 s	171 s	124 s	2931 s	PRflow Vivado Quick PRflow Vivado (default) Mono, Vivado 32 Proc
Vivado 32 processes	4X	1X	1X	1X	2.55X	Mono. Vivado 1 Proc
Our PRflow on Vivado	19X	12.3X	0.9X	0.9X	5.17X	(Baseline) (Baseline) (Baseline)
Our PRflow on Symbiflow	40X	4.0X	7.4X	3.1X	15.8X	3D- Rendering Benchmark from Rosetta ^[1]

	Syn -	Imple	mentat	ion		Mapping Time Breakdown
	Syn	Cluster	Place	Route	Iotal	PRflow Yosys+VPR
Vivado 1 process (Baseline)	2361s	123 s	171 s	124 s	2931 s	PRflow Vivado Quick PRflow Vivado (default) Mono, Vivado 32 Proc
Vivado 32 processes	4X	1X	1X	1X	2.55X	Mono. Vivado 32 Proc
Our PRflow on Vivado	19X	12.3X	0.9X	0.9X	5.17X	(Baseline)
Our PRflow on Symbiflow	40X	4.0X	7.4X	3.1X	15.8X	3D- Rendering Benchmark from Rosetta ^[1]

Methodology

- A cluster of 8 compute servers
 - Dual 2.7GHz Intel E5-2680 CPUs, 128GB of RAM (total of 8x2x8=128 cores)
- Platform for PRflow on Vivado 2018.2
 - Xilinx ZCU102 board with xczu9eg-ffvb1155-2-e MP-SOC chip
 - o 274K LUTs, 912 BRAM36, 2520 DSPs
 - 775 MHz clock for Fabric
- Platform for PRflow on Symbiflow
 - Digilent Arty A7-35T with XC7A35TICSG324-1L FPGA chip
 - 21K LUTs, 50 BRAM36, 90 DSPs
 - 464MHz clock for Fabric
- Rosetta HLS Benchmark ^[1]
 - 6 C-based design for High Level Synthesis Benchmark
 - 3-D Rendering, Digit-Recognition, Spam-filter, Optical-flow, BNN, Face-detection
 - We partitioned the benchmarks into small pieces, details in the paper

Floorplan for ZCU9EG

30 leaves for application logic

- 1 leaf for 4-core ARM processor
- 1 leaf for DMA interface
- 32 leaves are connected by BFT

Leaf 31	Leaf 27	Leaf 23	Leaf 20	Leaf 19		Leaf 17	
Leaf 30	Leaf 26	Leaf 22	Leaf 21	Leaf 18		Leaf 16	
Leaf 29	Leaf 25	BFT	۲ Inter	conne	ect	Leaf 15	
Leaf 28	Leaf 24		Leaf 5	Leaf 9		Leaf 13	
			Leaf 4	Leaf 8		Leaf 12	V
A C	4ΡU & 0ΜΑ		Leaf 3	Leaf 7		Leaf 14	
			Leaf 2	Leaf 6	Leaf 10	Leaf 11	

Physical Layout

Floorplan for ZCU9EG

Resource Distribution

Leaf	Leaf		Leaf	Leaf	Leaf		Leaf	Туре	LUT	FF	RAM18	DSP	# of Leaf
31	27		23	20	19		1/	1	5760	11520	48	48	12
30	26		22	21	18		16	2	4800	9600	24	72	4
Leaf 29	Leaf 25		BF	Interconnect		Leaf 15	3	4800	9600	48	48	4	
Leaf 28	Leaf 24			Leaf 5	Leaf 9		Leaf 13	4	5760	11520	24	72	2
				Leaf	Leaf		Leaf	5	6720	13440	48	48	6
ŀ	APU			4 Leaf	8 Leaf		12 Leaf	6	4320	8640	24	48	1
C	& MA			3	7		14	7	9120	18240	72	48	1
				Leaf 2	Leaf 6	Leaf 10	Leaf 11	Total	173K	345K	1296	1584	30 34

Rosetta Benchmark Compilation Time (seconds)

Design	SDSoC	PRflow on Vivado	PRflow on Yosys & VPF		
Digit Recognition	2472	638 <mark>(3</mark> ↑)	337 (7 ↑)		
SPAM Filter	1770	658 (2.7↑)	295 (6 ↑)		
3-D Rendering	1769	659 (2.7↑)	185 (9 ↑)		
Optical Flow	2660	744 (3 ↑)	311 (8 ↑)		
Binarized NN	10726	1000 (101)	309 (34 ↑)		
Face Detection	4347	972 (4↑)	†		
Average Speedup	1X	4.6 ↑	12.9 ↑		

PRflow on Vivado

Speedup from
 2.7x to 10.72x

PRflow on Yosys&VPR

- Speedup
 6x to 34.7x
- +: Some leaf cannot be mapped due to complex interconnect and floating point multipliers

Rosetta Benchmark Compilation Time (seconds)

Design	SDSoC	PRflow on Vivado	PRflow on Yosys & VPR		
Digit Recognition	2472	638 (3↑)	337 (7 ↑)		
SPAM Filter	1770	658 (2.7 1)	295 (6 ↑)		
3-D Rendering	1769	659 (2.7 1)	185 (9 ↑)		
Optical Flow	2660	744 (3 ↑)	311 (8 ↑)		
Binarized NN	10726	1000 (10↑)	309 (34 ↑)		
Face Detection	4347	972 (41)	_†		
Average Speedup	1X	4.6 ↑	12.9 ↑		

PRflow on Vivado

Speedup from
 2.7x to 10.72x

PRflow on Yosys&VPR

- Speedup
 6x to 34.7x
- +: Some leaf cannot be mapped due to complex interconnect and floating point multipliers

Rosetta Benchmark Compilation Time (seconds)

Design	SDSoC	PRflow on Vivado	PRflow on Yosys & VPR	PRflow on Vivado
Digit Recognition	2472	638 <mark>(3</mark> ↑)	337 (7 ↑)	 Speedup from 2.7x to 10.72x
SPAM Filter	1770	658 (2.7 1)	295 (6 ↑)	PRflow on Yosys&VPR
3-D Rendering	1769	659 (2.71)	185 (9 ↑)	 Speedup 6x to 34.7x
Optical Flow	2660	744 (3 ↑)	311 (8 ↑)	 +: Some leaf cannot
Binarized NN	10726	1000 (10↑)	309 (34 ↑)	complex interconnect
Face Detection	4347	972 (4↑)		and floating point multipliers
Average Speedup	1 ↑	4.6 ↑	12.9 ↑	37

- Mapping time from all the design pieces
- Most of them are within 5 minutes
- Run pretty fast for most single-leaf changes

- Mapping time from all the design pieces
- Most of them are within 5 minutes
- Run pretty fast for most single-leaf changes

- Mapping time from all the design pieces
- Most of them are within 5 minutes
- Run pretty fast for most single-leaf changes

- Mapping time from all the design pieces
- Most of them are within 5 minutes
- Run pretty fast for most single-leaf changes

- Mapping time from all the design pieces
- Most of them are within 5 minutes
- Run pretty fast for most single-leaf changes

Performance Comparison

Runtime per input frame (ms)

Design	SDSoC	Our PRflow
Digit Recognition	6.17	1.18
SPAM Filter	13	16.58
3-D Rendering	82.13	48.90
Optical Flow	6.35	25.80
Binarized NN	5.3	17.42
Face Detection	28.19	351.93

- SDSoC is run on default 100MHz
- PRflow is with 300MHz BFT and 200MHz user logic
- Some cases, we can get the same or better performance
- The IO bottlenecks of BFT constrain some benchmarks performance

Performance Comparison

Runtime per input frame (ms)

Design	SDSoC	Our PRflow
Digit Recognition	6.17	1.18
SPAM Filter	13	16.58
3-D Rendering	82.13	48.90
Optical Flow	6.35	25.80
Binarized NN	5.3	17.42
Face Detection	28.19	351.93

- SDSoC is run on default 100MHz
- PRflow is with 300MHz BFT and 200MHz user logic
- Some cases, we can get the same or better performance
- The IO bottlenecks of BFT constrain some benchmarks performance

Area Comparison (LUTs)

Design	SDSoC	Our PRflow
Digit Recognition	14.11%	48.07%
SPAM Filter	4.65%	41.08%
3-D Rendering	3.24%	36.53%
Optical Flow	14.15%	43.89%
Binarized NN	16.84%	42.31%
Face Detection	24.73%	59.26%

- We use BFT and Interface to link small pieces up
- The platform costs us fixed 35% LUTs overhead
- 35% FFs overhead
- 40% BRAM overhead
- 40% DSPs overhead

Future work:

- IO bottleneck
 - Direct interconnect between leaves
- Vivado Improvement
 - Like Symbiflow to avoid fix time for static region?
- Symbiflow Support
 - For More series like UltraScale+ MPSoC
 - Floating point multipliers and smarter P&R tool
- Automatic Design Partitioning
 - Use Stylized C/C++ patterns

• Divide-and-conquer compilation strategy based on utilizing partial reconfiguration $T_{new} = \frac{T_{origin}}{\# of Partition}$

47

Conclusion

- Compilation time does not need to take hours
- Decomposition of the design into separate pieces
 - Small compilation tasks in parallel
 - Incremental compile just the part that changed
- Impact: Able to achieve 12-18 minutes using Vivado
 - Contrast 42-160 minutes no PRflow
- Plausible to achieve **2-5 minutes** with open source Symbiflow

Thank you Q&A

Area Comparison (FFs)

Design	SDSoC	Our PRflow
Digit Recognition	3.5%	42.10%
SPAM Filter	2.7%	36.79%
3-D Rendering	3.24%	33.9%
Optical Flow	1.76%	36.48%
Binarized NN	7.53%	37.35%
Face Detection	14.1%	46.11%

- We use BFT and Interface to link small pieces up
- The platform costs us fixed 35% LUTs overhead
- 35% FFs overhead
- 40% BRAM overhead
- 40% DSPs overhead

Area Comparison (BRAMs)

Design	SDSoC	Our PRflow
Digit Recognition	33.55%	60.31%
SPAM Filter	8.0%	48.46%
3-D Rendering	7.73%	38.15%
Optical Flow	10.14%	41.18%
Binarized NN	65.68%	92.59%
Face Detection	14.64%	63.15%

- We use BFT and Interface to link small pieces up
- The platform costs us fixed 35% LUTs overhead
- 35% FFs overhead
- 40% BRAM overhead
- 40% DSPs overhead

Area Comparison (DSPs)

Design	SDSoC	Our PRflow
Digit Recognition	0.03%	35.23%
SPAM Filter	8.89%	45.30%
3-D Rendering	0%	35.23%
Optical Flow	4.92%	46.42%
Binarized NN	0.11%	35.48%
Face Detection	3.13%	39.64%

- We use BFT and Interface to link small pieces up
- The platform costs us fixed 35% LUTs overhead
- 35% FFs overhead
- 40% BRAM overhead
- 40% DSPs overhead

- Leaf Interface
 - Packet-switched: Arbitrary interconnection between 2 leaves
 - Leaf interface: Arbitrary number of inputs and outputs

TABLE I IMPLEMENTATION TIME VS. DESIGN AND P-BLOCK SIZE ON XCZU9EG

• Implementation time is not related to pblock size, but logic size

			P-Block Size (LUTs)				
Design	Size	3960	6160	7920	10120	15840	
	623	203	206	206	205	204	
Shift	1633	210	210	210	208	210	
Register	2661	220	218	218	217	217	
	3614	229	233	224	227	225	
	4616		239	239	234	237	
	5623		239	244	241	242	
	1435	182	181	180	181	185	
MicroBlaze	2860	196	192	195	192	198	
Cores	4285		210	211	210	207	
	5710		605	231	223	226	

(cells show compilation time in seconds)

• Logic in static region affect leaf compilation time

TABLE IISTATIC REGION IMPACT ON IMPLEMENTATION TIME (32 LEAF BFT WITH32b Payload Width Datapath)

	PR impl	OoC impl.	
	BFT in Static	leaf only	
LUTs in mapping	30611	8590	1435
optimize time (s)	29	10	79
place time (s)	238	161	27
route time (s)	170	113	74
total time (s)	437	284	180

Implementation:

Resource Distribution

	Leaf 31	Leaf 27		Leaf 23	Leaf 20	Leaf 19		Leaf 17
	Leaf 30	Leaf 26		Leaf 22	Leaf 21	Leaf 18		Leaf 16
	Leaf 29	Leaf 25	BFT Interconnect					Leaf 15
	Leaf 28	Leaf 24			Leaf 5	Leaf 9		Leaf 13
	APU & DMA			Leaf 4	Leaf 8		Leaf 12	
				Leaf 3	Leaf 7		Leaf 14	
					Leaf 2	Leaf 6	Leaf 10	Leaf 11

Туре	LUT	FF	RAM18	DSP	# of Leaf
1	5760	11520	48	48 48	
2	6720	13440	48	48	5
3	4800	9600	48	48	4
4	4800	9600	24	72	4
5	5760	11520	24	72	4
6	5960	11920	48	48	1
7	9120	18240	72	48	1
8	4320	8640	24	48	1
Total	172K	344K	1296	1584	30 57

Implementation:

- Use **Python** to generate the TCL scripts
- Use **qsub** to submit compilation tasks into icgrid
- git clone
 <yourID>@iclogin.seas.
 upenn.edu:/project/ese/ic/gitroot/prflow.git

Resource Utilizations

- Resource Overhead for the Overlay
 - 63% Logic Resources
- Leaf interface resource consumption equatio
 - Leaf Interface = 206+66I+227O
 - Leaf Int. 36K BRAMs = 1+2I+O/2
- Frequency and DDR bandwidth
 - 300MHz for the BFT
 - 200MHz for the AXI Bus
 - 200MHz for the leaf_logic

Compilation Time for Different Leaves

- Avoid loading full chip database
- Avoid Mapping time for Fix logic
- Customize Quality vs. Runtime
- Fixed time can go away!

$$T_{new} = \frac{T_{origin} - T_{fix}}{\# of Partition} + T_{fix}$$

$$T_{new} = \frac{T_{origin}}{\# of Partition}$$

