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Abstract—Datacenters could greatly improve their sustainabil-
ity by shifting their power usage across time in response to elec-
tricity’s carbon intensity. However, despite decades of research,
modulating demand in response to grid signals has not been
deployed in wide practice. We review diverse studies and real-
world practices to understand the reasons for the gap between
concept and reality, identifying several significant challenges.
Demand response frameworks (i) are often too complex, (ii)
break abstraction layers in datacenter management, (iii) place
too much emphasis on batch processing jobs, (iv) lack dynamic
strategies, and (v) provide insufficient incentives for datacenter
operators and users. Overcoming these challenges is essential to
making datacenter demand response a reality, which would lead
to sustainable, efficient computing.
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I. DEMAND RESPONSE AND CARBON

Hyperscale datacenters consume tens of terawatt hours of
energy each year even as they continue to invest in new
computational capacity. For instance, technology companies
doubled their energy use between 2019 and 2022 [1], [2].
This growth may accelerate with the advent of emerging
workloads such as artificial intelligence. Technology compa-
nies are increasingly motivated to manage their electricity
usage better and mitigate their datacenters’ operational carbon
footprints. They invest heavily in renewable energy generation
to offset datacenter consumption [3], [4]. However, reliance
on intermittent wind and solar assets makes it increasingly
difficult to match their computational demands with carbon-
free electricity supplies [5], [6].

Carbon-conscious demand response (CDR) adjusts com-
putational demand in response to variations in carbon-free
energy supply, aligning datacenter power use to periods when
electricity’s carbon intensity is lower. Some researchers di-
rectly schedule batch jobs according to carbon signals, usually
with greedy heuristics or mixed-integer programming [7]–
[13]. Others predict and plan workload power usage [14],
[15] or battery charge/discharge [16], [17]. Markets and game
theory can apportion power adjustments and reduce carbon
footprints [18]–[22]. Indeed, demand response and managing
datacenters to exploit carbon-efficient electricity has been a
broad topic of research that spans several decades [23].

Acknowledgements: National Science Foundation grant CCF-2326606 (Ex-
pedition in Computing, Carbon-Connect)

CDR has sought to mitigate carbon at multiple scales.
Individual cloud users could modulate their workload [11]–
[13]. Datacenters of various sizes could do so based on their
installations and purchases of carbon-free energy [7], [9], [15],
[20], [21]. And finally, micro- and power grids could do so
by engaging with datacenters that are often among the largest
loads in the system [14], [17], [18]. A system’s scale and
boundaries will often dictate the type of technical solution used
for CDR. Direct scheduling can be effective for cloud users or
privately owned datacenters because workloads are scheduled
by a centralized orchestration framework. However, indirect
incentives may be required for more complex environments—
multi-tenant datacenters, hyperscale datacenters, or power
grids—that are shared by diverse stakeholders.

Despite extensive research literature and recent industry
reports, CDR has only been a concept rather than a practice
[1], [2], [4]. Researchers and grid operators often identify
datacenters as ideal candidates for CDR programs due to
their large, supposedly flexible load [24], [25]. But datacen-
ter operators themselves are often reluctant to participate in
these programs and, to our knowledge, CDR is not currently
deployed at scale [1], [2], [4], [26]. Only in 2022 did Google
implement and test a CDR framework, but this solution was
designed for grid stability and power emergencies [15], [27].

II. CHALLENGES AND OPPORTUNITIES

Model Complexity. Existing literature often describes com-
plex, end-to-end optimization frameworks that seek compre-
hensive solutions for carbon mitigation [10], [14], [17], [28]–
[30]. While theoretically optimal, these models are intricate
and fragile, making them impractical for production systems.
They require extensive modeling process and precise central-
ized control, which can be difficult in dynamic, distributed
systems. Furthermore, prior research focuses on sophisticated
optimization but makes simplistic assumptions about data-
center operations. For example, they often assume a large
percentage of workload power can be flexibly rescheduled
without significant performance loss or difficulty.

We need more practical models for real-world systems.
Workload analysis will enable schedules that better balance
performance with carbon reductions. Performance and power
models will need to better predict the impact on energy



consumption and operational efficiency. Furthermore, under-
standing the actual flexibility of workloads across time periods
or geographical locations is critical. We need to formulate and
satisfy constraints imposed by various workloads as we exploit
temporal and spatial variations in electricity’s carbon intensity.
Machine learning and real-time data analytics could enable
models that better capture variability.

Abstractions and Interfaces. Practical CDR must account
for robust abstractions and interfaces that have enabled modern
datacenter scaling. CDR must interface with grids that supply
power through sophisticated purchase agreements and pric-
ing mechanisms [18]. It must simultaneously interface with
loosely federated schedulers that manage diverse workloads
[31]. Previous proposals neglect these layers of abstraction and
directly schedule jobs based on the grid’s carbon signals [9],
[10]. Yet frameworks that allocate power without accounting
for job scheduling might over-estimate workload flexibility and
under-estimate performance losses [15], [18], [32].

Future research must re-think abstractions and interfaces
between CDR frameworks, power infrastructure, and workload
management in datacenters. Some of these interfaces may
require scenario planning because there exists uncertainty
about the role of power purchase agreements and renewable
energy credits when assessing the net carbon intensity of a
datacenter’s electricity. Location-based estimates analyze the
local grid’s energy sources. Market-based estimates account
for renewable energy certificates generated by datacenter op-
erators’ investments in wind and solar projects. How carbon
is assessed and communicated will impact CDR policy.

We draw inspiration from successes such as Google’s
Carbon-Intelligent Computing System [15], [33], which in-
tegrates CDR with the Borg scheduler to preserve existing
abstractions. When CDR curtails or boosts power, the number
of virtual machines available for Borg allocation decreases or
increases, respectively. CDR inherits existing scoring functions
that govern how jobs are assigned to machines; there would
simply be more or fewer machines depending on CDR policy.

Workload Diversity. Prior research has disproportionately
focused on scheduling batch (i.e. offline, background) com-
putation. Such jobs are assumed to be deferrable, permitting
simpler workload models and optimization. However, batch
workloads are not as flexible as typically assumed [31]. They
are often launched with specific landing times (e.g., four hours)
and cannot be deferred arbitrarily. Moreover, interactive (i.e.
online, real-time) workloads account for a large portion of
datacenter power [31]. These workloads are less amenable
to CDR policies designed to target batch workloads. CDR
strategies that reduce carbon through batch workloads alone
risks prohibitively large penalties for these workloads.

Future CDR should accommodate a diverse array of batch
and interactive workloads. Techniques should pursue effi-
ciency, aligning power curtailments and boosts to workloads
and computational phases that suffer least and benefit most,
respectively. Techniques should also balance efficiency with
fairness, distributing power adjustments across workload types
so that all users’ workloads bear some responsibility for

carbon mitigation. Finally, we could curate workload libraries
in which a workload specifies multiple versions, each with
distinct performance and power characteristics, allowing CDR
frameworks to dynamically switch between versions based on
energy availability or carbon intensity. More granular work-
load options permit more precise trade-offs between service-
level objectives and carbon intensity.

Dynamic Strategies. Day-ahead forecasts for computational
load and carbon intensity are increasingly accurate due to
recent advances in machine learning [15], [32], [34], [35].
These forecasts often provide fixed inputs to optimizations,
such as linear programming, that solve for the next day’s
hourly power allocations. But such allocations cannot flexibly
respond to real-time variations in datacenter or grid conditions.

Future approaches to CDR could include dynamic mecha-
nism design, a game-theoretic framework that makes decisions
in an environment where the game evolves over time and
where agents’ preferences, information, and constraints evolve
over time. Unlike static mechanisms, which assume a single
one-shot interaction between agents, dynamic mechanisms
anticipate repeated interactions and accommodates uncertainty
about future events. Multi-agent reinforcement learning could
prove helpful [36], [37], but research is required to guarantee
grid stability and datacenter availability.

Incentive Structures. Most existing approaches to CDR do
not incentivize datacenters and their users to modulate power
usage. Datacenter users seek performance whereas datacenter
operators seek energy efficiency and, increasingly, carbon
reductions. Techniques that improve efficiency often offer
benefits to operators while only offer risks to users, leading
to misaligned incentives. The absence of carbon attribution,
which estimates each job’s contribution towards the system’s
total carbon footprint, prevents effective decision making [38].

We need carbon attribution techniques that are transparent,
fair, and fine-grained. Operational carbon will depend on
power use and the grid’s carbon intensity whereas embodied
carbon will depend on hardware use and the amortization of
manufacturing costs across time. Attribution permits carbon
pricing, which could be implemented by cloud providers
independently of any broader regulatory policy.

Multi-agent game theory provides a framework in which
users and jobs act selfishly to pursue performance objectives
within a game that is designed to achieve broader system
objectives for carbon efficiency. An effectively designed game
would allow strategic users to engage with CDR on their own
terms, determining how much power to use and when. Under
what conditions might a user forgo 10KW now for 15KW
later? Users (or intelligent agents that act on their behalf) could
learn and optimize policies that respond to such choices. And
datacenter operators could, in turn, explore and optimize the
set of choices offered to produce desired system outcomes.

III. CONCLUSION

While demand response offers significant promise for reduc-
ing datacenter computing’s carbon footprint, several challenges
remain. Existing approaches have defined the solution space



and demonstrated potential, but we require further research
that extends demand response to more realistic models of
computational load and system interfaces. Moreover, further
research must explore dynamic strategies that incentivize par-
ticipation in demand response and contributions to carbon mit-
igation. Whereas mandates enforced by centralized schedulers
could prove effective, we find incentives that motivate decen-
tralized decision making more attractive given the diversity of
stakeholders in modern hyperscale datacenters.
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