
Efficient
Embedded
Computing

E
mbedded computing applications demand both
efficiency and flexibility: The bulk of compu-
tation today happens not in desktops, laptops,
or data centers, but rather in embedded media
devices. More than one billion cell phones are

sold each year, and a 3G cell phone performs more oper-
ations per second than a typical desktop CPU.

Media devices like cell phones, video cameras, and
digital televisions perform more computations than all
but the fastest supercomputers at power levels orders of
magnitude lower than general-purpose desktop and lap-
top machines. For example, a 3G mobile phone receiver
requires 35 to 40 giga operations per second (GOPS)
of performance to handle a 14.4-Mbps channel, and
researchers estimate the requirements for a 100-Mbps
orthogonal frequency-division multiplexing (OFDM)
channel at between 210 and 290 GOPS.1

In contrast, a typical desktop computer system has a
peak performance of a few GOPS and sustains far less
on most applications. A cell phone’s computing chal-
lenges are even more impressive when we consider that
these performance levels must be achieved in a small
handheld package with a maximum power dissipation
of about 1W. Simple arithmetic gives a required effi-
ciency of 25 mW/GOP or 25 pJ/op for the 3G receiver
and 3-5 pJ/op for the OFDM receiver.

Demanding performance and efficiency requirements
drive most media devices to perform their computations

with hardwired logic in the form of an application-
specific integrated circuit. A carefully designed ASIC
can achieve an efficiency of 5 pJ/op in a 90-nm CMOS
technology.2 In contrast, very efficient embedded pro-
cessors and DSPs require about 250 pJ/op3 (50X more
energy than an ASIC), and a popular laptop processor
requires 20 nJ/op4 (4,000X more energy than an ASIC).
The efficiencies of these programmable processors is
simply inadequate for demanding embedded applica-
tions—forcing designers to use hardwired logic to keep
energy demands within limits.

While ASICs meet the energy-efficiency demands of
embedded applications, they are difficult to design and
inflexible. It takes two years to design a typical ASIC,
and the cost is $20 million or more. This high cost places
ASIC efficiency out of reach for all but the highest-vol-
ume applications. The long design cycle causes ASICs
to lag far behind the latest developments in algorithms,
modems, and codecs. Inflexibility increases an ASIC’s
area and complexity. If a system must support several
air interfaces, for example, an ASIC implementation
instantiates separate hardwired modems for each inter-
face—even though only one will be used at any time. If
it meets the efficiency requirement, a programmable pro-
cessor can use a single hardware resource to implement
all the interfaces by running different software.

As media applications evolve and become more
complex, the problems of ASICs become larger. The

Hardwired ASICs—50X more efficient than programmable processors—sacrifice

programmability to meet the efficiency requirements of demanding embedded systems.

Programmable processors use energy mostly to supply instructions and data to the arithmetic

units, and several techniques can reduce instruction- and data-supply energy costs. Using these

techniques in the Stanford ELM processor closes the gap with ASICs to within 3X.

William J. Dally, James Balfour, David Black-Shaffer, James Chen, R. Curtis Harting,
Vishal Parikh, Jongsoo Park, and David Sheffield, Stanford University

0018-9162/08/$25.00 © 2008 IEEE	 Published by the IEEE Computer Society 	 July 2008	 27

C o v e r f e a t u r e

	 28	 Computer

increasingly complex applications are harder to imple-
ment as hardwired logic and have more dynamic
requirements—for example, different modes of opera-
tion. Algorithms are also evolving more rapidly, mak-
ing it problematic to freeze them into hardwired imple-
mentations. Increasingly, embedded applications are
demanding flexibility as well as efficiency.

An embedded processor spends most of its energy
on instruction and data supply. Thus, as a first step
in developing an efficient embedded processor, seeing
where the energy goes in an efficient embedded proces-
sor can be instructive. Figure 1 shows that the proces-
sor consumes 70 percent of the energy supplying data
(28 percent) and instructions (42 percent). Performing
arithmetic consumes only 6 percent. Of this, the pro-
cessor spends only 59 percent on useful arithmetic—the
operations the computation actually requires—with
the balance spent on overhead, such as updating loop
indices and calculating memory addresses. The energy
spent on useful arithmetic is similar to that spent on
arithmetic in the hardwired implementation: Both use
similar arithmetic units.

A programmable processor’s high overhead derives
from the inefficient way it supplies data and instruc-
tions to these arithmetic units: for every 10-pJ arithme-
tic operation (a weighted average of 4 pJ adds and 17 pJ
multiplies), the processor spends 70 pJ on instruction
supply and 47 pJ on data supply. This overhead is even
higher, though, because 1.7 instructions must be fetched
and supplied with data for every useful instruction.

Figure 2 shows a further breakdown of the instruction
supply energy. The 8-Kbyte instruction cache consumes
most of the energy. Fetching each instruction requires
accessing both ways of the two-way set-associative cache
and reading two tags, at a cost of 107 pJ of energy.

Table 1 lists each component’s energy costs. Pipeline
registers consume an additional 12 pJ, passing each
instruction down the five-stage RISC pipeline. Thus

the total energy of supplying each instruction is 119pJ
to control a 10-pJ arithmetic operation. Moreover,
because of overhead instructions, 1.7 instructions must
be fetched for each useful instruction.

Figure 3 shows the breakdown of data supply energy.
Here the 8-Kbyte data cache (array, tags, and control)
accounts for 50 percent of the data supply energy. The
40-word multiported general-purpose register file
accounts for 41 percent of the energy, and pipeline reg-
isters account for the balance. Supplying a word of data
from the data cache requires 131 pJ of energy; supply-
ing this word from the register file requires 17 pJ of
energy. Two words must be supplied and one consumed
for every 10-pJ arithmetic operation.

Thus, the energy required to supply data and instruc-
tions to the arithmetic units in a conventional embed-
ded RISC processor ranges from 15 to 50 times the
energy of actually carrying out the instruction. It is
clear that to improve the efficiency of programma-
ble processors we must focus our effort on data and
instruction supply.

Instruction supply energy can be reduced 50X by
using a deeper hierarchy with explicit control, eliminat-
ing overhead instructions, and exposing the pipeline.
Since most of the instruction-supply energy cycles an
instruction cache, to reduce this number the processor
must supply instructions without cycling a power-hun-
gry cache. As Figure 4 shows, our efficient low-power
microprocessor (ELM) supplies instructions from a
small set of distributed instruction registers rather than
from the cache. The cost of reading an instruction bit
from this instruction register file (IRF) is 0.1 pJ versus
3.4pJ for the cache, a reduction of 34X.

In many ways, the IRF is just another, smaller, level
of the instruction memory hierarchy, and we might ask
why such a level has not been included in the past. His-
torically, caches were used to improve performance, not

Figure 1. Embedded processor efficiency. Supplying data and
instructions consumes 70 percent of the processor’s energy;
performing arithmetic consumes only 6 percent.

Instruction
supply42%

24%

6%

28%

Clock +
control logic

Arithmetic

Data
supply

Figure 2. Instruction-supply energy breakdown. The 8-Kbyte
instruction cache consumes the bulk of the energy, while fetching
each instruction requires accessing both directions of the two-
way set-associative cache and reading two tags.

8% 4%

21%

67%

Pipeline
registers

Cache
controller

Cache
tags

Cache
array

	 July 2008	 29

to reduce energy. To maximize performance, the hier-
archy’s lowest level is sized as large as possible while
still being accessible in a single cycle. Making the cache
smaller would only decrease performance by increas-
ing the miss rate, without affecting cycle time. For this
reason, level 1 instruction caches are typically 8 to 64
Kbytes. Optimizing for energy requires minimizing the
hierarchy’s bottom level while still capturing the criti-
cal loops of the kernels that dominate media applica-
tions. The ELM has an IRF with 64 registers that can
be partitioned so that smaller loops need only cycle the
registers’ bit lines as needed to hold the loop.

The ELM processor manages the IRF as a register file,
with the compiler allocating registers and performing
transfers—not as a cache, where hardware performs
allocation and transfers reactively at runtime. Explicit
management of the IRF has two main advantages. First,
it avoids stalls by prefetching a block of instructions into
the IRF as soon as the processor identifies the block to
be executed. In contrast, a cache waits until the first
instruction is needed, then stalls the processor while
it fetches the instruction from backing memory. Some
caches use hardware prefetch engines to avoid this prob-
lem, but they burn power, often fetch unneeded instruc-
tions, and rarely anticipate branches off the straight-line
instruction sequence. In addition to being more efficient,
explicit management better manages cases where the
working set does not quite fit in the IRF.

With an explicitly managed IRF reducing the cost
of fetching each bit of instruction from 3.4 pJ to 0.1 pJ,
the 0.4-pJ cost of moving this bit down the pipeline
now appears large. The ELM processor eliminates
these pipeline instruction registers by exposing the
pipeline. With a conventional, hidden pipeline, the pro-
cessor fetches an instruction that takes many cycles all
at once, then delays it via a series of pipeline registers

Figure 4. Stanford efficient low-power microprocessor. The
processor supplies instructions from a small set of distributed
instruction registers rather than from the cache.

Instruction memory

Instruction register file

Datapath

Figure 3. Data-supply energy breakdown. The 8-Kbyte data
cache—array, tags, and control—accounts for 50 percent of the
data-supply energy. The 40-word multiported general-purpose
register file accounts for 41 percent of the energy; pipeline
registers account for the balance.

18%

6%

26%

9%

41%

Pipeline
registers

Register
file

Cache
controller

Cache
tags

Cache
array

Table 1. Storage hierarchies.

RISC instruction cache	 8 Kbytes (2-way)

Read – tags 	 26
Read – array 	 81
Read – total 	 107 pJ

RISC data cache	 8 Kbytes (2-way)

Read – tags	 26
Read – array 	 81
Read – total 	 107 pJ
Write – tags	 27
Write – array 	 94
Write – total 	 121 pJ

RISC register file [2R + 1W]	 40 x 32-bit

Read 	 17 pJ
Write 	 22 pJ

ELM instruction memory	 8 Kbytes

Read 128-bits	 66 pJ

ELM instruction registers	 64 x 128-bit

Read 128-bits	 16 pJ
Write 128-bits	 18 pJ

ELM data memory	 8 Kbytes

Read	 33 pJ
Write	 29 pJ

ELM XRF [1R + 1W] – 2 files	 16 x 32-bit

Read	 14 pJ
Write	 9 pJ

ELM ORF [2R + 2W] – 1 file per ALU	 4 x 32-bit

Read	 1.3 pJ
Write	 1.8 pJ

	 30	 Computer

until each part is needed. The system uses the register
read addresses during the register read pipeline stage,
the opcode during the execute pipeline stage, and so
on. This is convenient but costly in terms of energy.
An exposed pipeline splits up instructions and fetches
each part of the instruction during the cycle when it
is needed. This requires a little more bookkeeping on
the compiler’s part, but eliminates the power-hungry
instruction pipeline.

The IRF and exposed pipeline reduce the cost of
supplying each instruction bit. Eliminating overhead
instructions reduces the number of instruction bits the
system needs to supply. The processor uses most over-
head instructions to manage loop indices and calculate
addresses. We modify the instruction set so that the
system performs the most common cases of these over-
head functions automatically—as side effects of other
instructions. For example, our load instruction allows
loading a word from memory with the address postin-
cremented by a constant and wrapped to a start address
when it reaches a limit. This allows implementing a
circular buffer using a single load instruction rather
than a sequence of five instructions.

Adding these side effects to instructions represents
a selective return to complex instruction sets. When
energy is the major concern, such CISC constructs
make sense, and the ELM architecture introduces them
in ways that make them easy for an optimizing com-
piler to use. Over our suite of benchmarks, the ELM
fetched 63 percent fewer dynamic instruction bits than
the bits fetched for the RISC.

Data supply energy can be reduced 21X by using a
deeper storage hierarchy with indexed register files:
Most data in the RISC processor is supplied from the
general register file at a cost of 17 pJ/word. Accessing
this register file is costly because of its 40-word size
and multiple read and write ports. As Figure 5 shows,

the ELM reduces the data supply energy by
placing a small, four-entry operand register file
(ORF) on each arithmetic logic unit’s (ALU’s)
input. Because of its small size and port count,
reading a word from an ORF requires only 1.3
pJ, a savings of 13X. The ORF’s small size also
allows reading the ORF in the same clock cycle
as the arithmetic operation, without apprecia-
bly lengthening the cycle time. This helps sim-
plify the exposed pipeline.

Figure 5 also shows the use of an indexed
register file (XRF) as the hierarchy’s next
level. The system can access the XRF either
directly—a field of the instruction specifies the
register to access—or indirectly—a field of the
instruction specifies an index register which in
turn specifies the register to access. Allowing
indirect, or indexed, access to this register file
eliminates the need for many references to the

data cache or memory. Many media kernels are char-
acterized by accesses to small arrays that can fit in the
register file but require indirect access. On ELM, these
arrays can be kept in the indexed register file, greatly
reducing their access energy. Across our benchmark
suite, the ELM data memory reads 77 percent fewer
words than the RISC data cache.

COMPILATION FOR EXPOSED
COMMUNICATION ARCHITECTURES

Exposing the movement of instructions and data
with IRFs, ORFs, and XRFs requires that the compiler
perform many new tasks. In particular, it must manage
the transfer of instruction blocks into the IRFs; coordi-
nate the movement of data between XRFs, ORFs, and
ALUs; and map arrays into XRFs. The exposed pipe-
line creates new compilation challenges, particularly
at the boundaries of basic blocks where the compiler
can overlap operations from multiple blocks—but lets
the compiler precisely control the movement of data
through the data path and avoid unnecessarily cycling
data through costly register files. While not part of con-
ventional compilers, all these tasks are well within the
reach of current technology.

To quantify our current compiler’s efficiency, we ran
our benchmark suite using only compiled code, then
compared the results to hand-optimized code for both
the ELM and RISC processors. The results showed a
degradation in performance of 1.7X for both the ELM
and RISC when moving from hand-scheduled code to
compiled code. Much of the performance degradation
on the ELM processor results from the current com-
piler performing only basic scheduling optimizations
at the boundaries of basic blocks; the current sched-
uling algorithms sometimes introduce brief bubbles
in the pipeline when a branch instruction jumps to a
new instruction.

Figure 5. Reducing data-supply energy. The ELM reduces the data-supply
energy by placing a small, four-entry operand register file (ORF) on each
ALU’s input and by using an indexed register fille (XRF).

XRF

ORF

ORF

	 July 2008	 31

CLOSING THE GAP
To quantify how closely the ELM processor

approaches the ultimate goal of ASIC efficiency, we
compared our processor to ASIC implementations of
several kernels in our benchmark suite. These imple-
mentations used the same technology and design flow.
On kernels such as AES encryption and discrete cosine
transfer computation, where the ELM processor stores
part of the data working set in its local memory, the
ELM processor consumes about 3X the energy of an
ASIC. On compute-intensive kernels such as FIR fil-
tering, where the data register hierarchy captures the
working sets, the ELM processor consumes no more
than 1.5X the energy of an ASIC.

These results are promising. We chose the arithmetic
operations and register hierarchies implemented in the
ELM processor to allow a fair comparison against an
embedded RISC processor, and room remains for fur-
ther optimization along these two dimensions. Despite
this, the ELM processor’s efficiency is close enough to
that of an ASIC for us to expect that we can close the
remaining gap using a combination of minor improve-
ments to the ISA and microarchitecture along with
more efficient custom circuits and layout, particularly
in the instruction and data storage hierarchies.

THE FUTURE IS COOL
Increasingly complex, modern media applications

demand high performance and low power. Histori-
cally, developers have used hardwired logic to meet
these performance and power demands. The increas-
ing complexity and fixed costs of ASICs, however, call
for a programmable solution. Conventional program-
mable processors do not have the efficiency required for
these applications because of the energy they consume
to supply data and instructions to arithmetic units. Our
ELM processor optimizes instruction and data supply
to improve energy efficiency by 23X compared to an
embedded RISC processor, while closing the gap with
ASICs from 1.5X to 3.0X.

The ELM design represents only a starting point
in our quest for more energy-efficient programmable
processing. Considerable opportunities for additional
energy savings exist. In the area of instruction supply,
we can add additional levels to the hierarchy, factor
instructions so that common instruction parts can be
shared between instructions, and compress out no-
operation fields of instructions. We can view instruc-
tion supply as a data- or instruction-compression
problem. However, rather than trying to represent an
instruction stream with the minimum number of bits,
we seek to deliver the dynamic instruction stream with
a minimum amount of energy.

Opportunities exist to improve data-supply energy as
well. For example, we can construct compound opera-
tions that perform several instructions as a unit without

incurring the cost of cycling intermediate data through
even the smallest of register files.

While aimed at embedded computing, the tech-
niques used in the ELM might be valuable in reducing
energy in other applications. For example, the servers
used in large data centers are rapidly becoming power
limited. The energy cost of operating these machines
usually exceeds their purchase price within two years.
In 2007, the US expended one percent of its electric-
ity supply operating large servers. The applications
that run on these servers differ markedly from the
embedded media-processing applications we have
considered. In particular, they have far less instruc-
tion locality, making IRFs less attractive. Even so,
some of the same techniques might apply and could
yield significant power savings.

W hether in embedded processors, data centers,
or personal computers, the world of comput-
ing is becoming energy limited. By carefully

focusing on where energy is consumed in computers—
instruction supply and data supply—we can make these
machines much more efficient, ensuring that future com-
puting is cool in both senses of the word. ■

References
	 1.	O. Silven and K. Jyrkkä, “Observations on Power-Effi-

ciency Trends in Mobile Communication Devices,”
EURASIP J. Embedded Systems, vol. 2007, no. 1, 2007,
p. 17.

	2.	S. Hsu et al., “A 2GHz 13.6mW 12x9b Multiplier for
Energy Efficient FFT Accelerators,” Proc. 31st European
Solid-State Circuits Conf., IEEE Press, 2005, pp. 199-
202.

	 3.	T.R. Halfhill, “MIPS Threads the Needle,” Microproces-
sor Report, Feb. 2006, vol. 20, part 2, pp. 1-8.

	 4.	E. Grochowski and M. Annavaram, “Energy per Instruc-
tion Trends in Intel Microprocessors,” Technology@Intel
Magazine, Mar. 2006, pp. 1-8.

William J. Dally is the Bell Professor of Engineering and
chairman of the Computer Science Department at Stanford
University and founder, chairman, and CTO of Stream
Processors. His research interests include computer archi-
tecture, interconnection networks, compilers, and circuit
design. Dally received a PhD in computer science from
Caltech. Contact him at dally@stanford.edu.

James Balfour is a PhD candidate at Stanford University.
His research interests include computer architecture, com-
pilers, interconnection networks, and circuit design. Bal-
four received an MS in electrical engineering from Stan-
ford University. Contact him at jbalfour@cva.stanford.
edu.

	 32	 Computer

David Black-Shaffer received a PhD in electrical engineer-
ing from Stanford University. His research focused on pro-
gramming systems for embedded applications on many-
core processors and efficient instruction delivery. He will
be joining the GPGPU group at Apple Computer to work
on high-performance programming systems. Contact him
at davidbbs@cva.stanford.edu.

James Chen is a PhD candidate at Stanford University. His
research interests include energy-efficient circuit design.
Chen received an MS in electrical engineering from Stanford
University. Contact him at jameschen@cva.stanford.edu.

R. Curtis Harting is a research assistant at Stanford Uni-
versity. His research interests include the design and imple-
mentation of low-power architectures. Harting received
a BSE in electrical and computer engineering from Duke
University. Contact him at charting@stanford.edu.

Vishal Parikh is a research assistant at Stanford Uni-
versity. His research interests include computer archi-
tecture, on-chip networks, and programming systems.
Parikh received a BS in electrical engineering from the
University of Texas at Austin. Contact him at vparikh@
stanford.edu.

Jongsoo Park is a PhD candidate at Stanford University.
His research interests include compilers and energy-effi-
cient computer architectures. Park received an MS in elec-
trical engineering from Stanford University. Contact him
at jongsoo@stanford.edu.

David Sheffield is a research assistant at Stanford Univer-
sity. His research interests include computer architecture,
operating systems, and computer-aided design. Sheffield
received an ScB in engineering from Brown University.
Contact him at dsheffie@stanford.edu.

