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E
mbedded computing applications demand both 
efficiency and flexibility: The bulk of compu-
tation today happens not in desktops, laptops, 
or data centers, but rather in embedded media 
devices. More than one billion cell phones are 

sold each year, and a 3G cell phone performs more oper-
ations per second than a typical desktop CPU.

Media devices like cell phones, video cameras, and 
digital televisions perform more computations than all 
but the fastest supercomputers at power levels orders of 
magnitude lower than general-purpose desktop and lap-
top machines. For example, a 3G mobile phone receiver 
requires 35 to 40 giga operations per second (GOPS) 
of performance to handle a 14.4-Mbps channel, and 
researchers estimate the requirements for a 100-Mbps 
orthogonal frequency-division multiplexing (OFDM) 
channel at between 210 and 290 GOPS.1

In contrast, a typical desktop computer system has a 
peak performance of a few GOPS and sustains far less 
on most applications. A cell phone’s computing chal-
lenges are even more impressive when we consider that 
these performance levels must be achieved in a small 
handheld package with a maximum power dissipation 
of about 1W. Simple arithmetic gives a required effi-
ciency of 25 mW/GOP or 25 pJ/op for the 3G receiver 
and 3-5 pJ/op for the OFDM receiver.

Demanding performance and efficiency requirements 
drive most media devices to perform their computations 

with hardwired logic in the form of an application- 
specific integrated circuit. A carefully designed ASIC 
can achieve an efficiency of 5 pJ/op in a 90-nm CMOS 
technology.2 In contrast, very efficient embedded pro-
cessors and DSPs require about 250 pJ/op3 (50X more 
energy than an ASIC), and a popular laptop processor 
requires 20 nJ/op4 (4,000X more energy than an ASIC). 
The efficiencies of these programmable processors is 
simply inadequate for demanding embedded applica-
tions—forcing designers to use hardwired logic to keep 
energy demands within limits.

While ASICs meet the energy-efficiency demands of 
embedded applications, they are difficult to design and 
inflexible. It takes two years to design a typical ASIC, 
and the cost is $20 million or more. This high cost places 
ASIC efficiency out of reach for all but the highest-vol-
ume applications. The long design cycle causes ASICs 
to lag far behind the latest developments in algorithms, 
modems, and codecs. Inflexibility increases an ASIC’s 
area and complexity. If a system must support several 
air interfaces, for example, an ASIC implementation 
instantiates separate hardwired modems for each inter-
face—even though only one will be used at any time. If 
it meets the efficiency requirement, a programmable pro-
cessor can use a single hardware resource to implement 
all the interfaces by running different software.

As media applications evolve and become more  
complex, the problems of ASICs become larger. The 

Hardwired ASICs—50X more efficient than programmable processors—sacrifice 

programmability to meet the efficiency requirements of demanding embedded systems. 

Programmable processors use energy mostly to supply instructions and data to the arithmetic 

units, and several techniques can reduce instruction- and data-supply energy costs. Using these 

techniques in the Stanford ELM processor closes the gap with ASICs to within 3X.
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increasingly complex applications are harder to imple-
ment as hardwired logic and have more dynamic 
requirements—for example, different modes of opera-
tion. Algorithms are also evolving more rapidly, mak-
ing it problematic to freeze them into hardwired imple-
mentations. Increasingly, embedded applications are 
demanding flexibility as well as efficiency.

An embedded processor spends most of its energy 
on instruction and data supply. Thus, as a first step 
in developing an efficient embedded processor, seeing 
where the energy goes in an efficient embedded proces-
sor can be instructive. Figure 1 shows that the proces-
sor consumes 70 percent of the energy supplying data 
(28 percent) and instructions (42 percent). Performing 
arithmetic consumes only 6 percent. Of this, the pro-
cessor spends only 59 percent on useful arithmetic—the 
operations the computation actually requires—with 
the balance spent on overhead, such as updating loop 
indices and calculating memory addresses. The energy 
spent on useful arithmetic is similar to that spent on 
arithmetic in the hardwired implementation: Both use 
similar arithmetic units.

A programmable processor’s high overhead derives 
from the inefficient way it supplies data and instruc-
tions to these arithmetic units: for every 10-pJ arithme-
tic operation (a weighted average of 4 pJ adds and 17 pJ 
multiplies), the processor spends 70 pJ on instruction 
supply and 47 pJ on data supply. This overhead is even 
higher, though, because 1.7 instructions must be fetched 
and supplied with data for every useful instruction.

Figure 2 shows a further breakdown of the instruction 
supply energy. The 8-Kbyte instruction cache consumes 
most of the energy. Fetching each instruction requires 
accessing both ways of the two-way set-associative cache 
and reading two tags, at a cost of 107 pJ of energy.

Table 1 lists each component’s energy costs. Pipeline 
registers consume an additional 12 pJ, passing each 
instruction down the five-stage RISC pipeline. Thus 

the total energy of supplying each instruction is 119pJ 
to control a 10-pJ arithmetic operation. Moreover, 
because of overhead instructions, 1.7 instructions must 
be fetched for each useful instruction.

Figure 3 shows the breakdown of data supply energy. 
Here the 8-Kbyte data cache (array, tags, and control) 
accounts for 50 percent of the data supply energy. The 
40-word multiported general-purpose register file 
accounts for 41 percent of the energy, and pipeline reg-
isters account for the balance. Supplying a word of data 
from the data cache requires 131 pJ of energy; supply-
ing this word from the register file requires 17 pJ of 
energy. Two words must be supplied and one consumed 
for every 10-pJ arithmetic operation. 

Thus, the energy required to supply data and instruc-
tions to the arithmetic units in a conventional embed-
ded RISC processor ranges from 15 to 50 times the 
energy of actually carrying out the instruction. It is 
clear that to improve the efficiency of programma-
ble processors we must focus our effort on data and 
instruction supply.

Instruction supply energy can be reduced 50X by 
using a deeper hierarchy with explicit control, eliminat-
ing overhead instructions, and exposing the pipeline. 
Since most of the instruction-supply energy cycles an 
instruction cache, to reduce this number the processor 
must supply instructions without cycling a power-hun-
gry cache. As Figure 4 shows, our efficient low-power 
microprocessor (ELM) supplies instructions from a 
small set of distributed instruction registers rather than 
from the cache. The cost of reading an instruction bit 
from this instruction register file (IRF) is 0.1 pJ versus 
3.4pJ for the cache, a reduction of 34X.

In many ways, the IRF is just another, smaller, level 
of the instruction memory hierarchy, and we might ask 
why such a level has not been included in the past. His-
torically, caches were used to improve performance, not 

Figure 1. Embedded processor efficiency. Supplying data and 
instructions consumes 70 percent of the processor’s energy; 
performing arithmetic consumes only 6 percent.
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Figure 2. Instruction-supply energy breakdown. The 8-Kbyte 
instruction cache consumes the bulk of the energy, while fetching 
each instruction requires accessing both directions of the two-
way set-associative cache and reading two tags.
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to reduce energy. To maximize performance, the hier-
archy’s lowest level is sized as large as possible while 
still being accessible in a single cycle. Making the cache 
smaller would only decrease performance by increas-
ing the miss rate, without affecting cycle time. For this 
reason, level 1 instruction caches are typically 8 to 64 
Kbytes. Optimizing for energy requires minimizing the 
hierarchy’s bottom level while still capturing the criti-
cal loops of the kernels that dominate media applica-
tions. The ELM has an IRF with 64 registers that can 
be partitioned so that smaller loops need only cycle the 
registers’ bit lines as needed to hold the loop.

The ELM processor manages the IRF as a register file, 
with the compiler allocating registers and performing 
transfers—not as a cache, where hardware performs 
allocation and transfers reactively at runtime. Explicit 
management of the IRF has two main advantages. First, 
it avoids stalls by prefetching a block of instructions into 
the IRF as soon as the processor identifies the block to 
be executed. In contrast, a cache waits until the first 
instruction is needed, then stalls the processor while 
it fetches the instruction from backing memory. Some 
caches use hardware prefetch engines to avoid this prob-
lem, but they burn power, often fetch unneeded instruc-
tions, and rarely anticipate branches off the straight-line 
instruction sequence. In addition to being more efficient, 
explicit management better manages cases where the 
working set does not quite fit in the IRF.

With an explicitly managed IRF reducing the cost 
of fetching each bit of instruction from 3.4 pJ to 0.1 pJ,  
the 0.4-pJ cost of moving this bit down the pipeline 
now appears large. The ELM processor eliminates 
these pipeline instruction registers by exposing the 
pipeline. With a conventional, hidden pipeline, the pro-
cessor fetches an instruction that takes many cycles all 
at once, then delays it via a series of pipeline registers 

Figure 4. Stanford efficient low-power microprocessor. The 
processor supplies instructions from a small set of distributed 
instruction registers rather than from the cache.
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Figure 3. Data-supply energy breakdown. The 8-Kbyte data 
cache—array, tags, and control—accounts for 50 percent of the 
data-supply energy. The 40-word multiported general-purpose 
register file accounts for 41 percent of the energy; pipeline 
registers account for the balance. 
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Table 1. Storage hierarchies.

RISC instruction cache	 8 Kbytes (2-way)

Read – tags 	 26
Read – array 	 81
Read – total 	 107 pJ

RISC data cache	 8 Kbytes (2-way)

Read – tags	 26
Read – array 	 81
Read – total 	 107 pJ
Write – tags	 27
Write – array 	 94
Write – total 	 121 pJ

RISC register file [2R + 1W]	 40 x 32-bit

Read 	 17 pJ
Write 	 22 pJ

ELM instruction memory	 8 Kbytes 

Read 128-bits	 66 pJ

ELM instruction registers	 64 x 128-bit

Read 128-bits	 16 pJ
Write 128-bits	 18 pJ

ELM data memory	 8 Kbytes

Read	 33 pJ
Write	 29 pJ

ELM XRF [1R + 1W] – 2 files	 16 x 32-bit

Read	 14 pJ
Write	 9 pJ

ELM ORF [2R + 2W] – 1 file per ALU	 4 x 32-bit

Read	 1.3 pJ
Write	 1.8 pJ
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until each part is needed. The system uses the register 
read addresses during the register read pipeline stage, 
the opcode during the execute pipeline stage, and so 
on. This is convenient but costly in terms of energy. 
An exposed pipeline splits up instructions and fetches 
each part of the instruction during the cycle when it 
is needed. This requires a little more bookkeeping on 
the compiler’s part, but eliminates the power-hungry 
instruction pipeline.

The IRF and exposed pipeline reduce the cost of 
supplying each instruction bit. Eliminating overhead 
instructions reduces the number of instruction bits the 
system needs to supply. The processor uses most over-
head instructions to manage loop indices and calculate 
addresses. We modify the instruction set so that the 
system performs the most common cases of these over-
head functions automatically—as side effects of other 
instructions. For example, our load instruction allows 
loading a word from memory with the address postin-
cremented by a constant and wrapped to a start address 
when it reaches a limit. This allows implementing a 
circular buffer using a single load instruction rather 
than a sequence of five instructions.

Adding these side effects to instructions represents 
a selective return to complex instruction sets. When 
energy is the major concern, such CISC constructs 
make sense, and the ELM architecture introduces them 
in ways that make them easy for an optimizing com-
piler to use. Over our suite of benchmarks, the ELM 
fetched 63 percent fewer dynamic instruction bits than 
the bits fetched for the RISC.

Data supply energy can be reduced 21X by using a 
deeper storage hierarchy with indexed register files: 
Most data in the RISC processor is supplied from the 
general register file at a cost of 17 pJ/word. Accessing 
this register file is costly because of its 40-word size 
and multiple read and write ports. As Figure 5 shows, 

the ELM reduces the data supply energy by 
placing a small, four-entry operand register file 
(ORF) on each arithmetic logic unit’s (ALU’s) 
input. Because of its small size and port count, 
reading a word from an ORF requires only 1.3 
pJ, a savings of 13X. The ORF’s small size also 
allows reading the ORF in the same clock cycle 
as the arithmetic operation, without apprecia-
bly lengthening the cycle time. This helps sim-
plify the exposed pipeline.

Figure 5 also shows the use of an indexed 
register file (XRF) as the hierarchy’s next 
level. The system can access the XRF either 
directly—a field of the instruction specifies the 
register to access—or indirectly—a field of the 
instruction specifies an index register which in 
turn specifies the register to access. Allowing 
indirect, or indexed, access to this register file 
eliminates the need for many references to the 

data cache or memory. Many media kernels are char-
acterized by accesses to small arrays that can fit in the 
register file but require indirect access. On ELM, these 
arrays can be kept in the indexed register file, greatly 
reducing their access energy. Across our benchmark 
suite, the ELM data memory reads 77 percent fewer 
words than the RISC data cache. 

COMPILATION FOR EXPOSED  
COMMUNICATION ARCHITECTURES

Exposing the movement of instructions and data 
with IRFs, ORFs, and XRFs requires that the compiler 
perform many new tasks. In particular, it must manage 
the transfer of instruction blocks into the IRFs; coordi-
nate the movement of data between XRFs, ORFs, and 
ALUs; and map arrays into XRFs. The exposed pipe-
line creates new compilation challenges, particularly 
at the boundaries of basic blocks where the compiler 
can overlap operations from multiple blocks—but lets 
the compiler precisely control the movement of data 
through the data path and avoid unnecessarily cycling 
data through costly register files. While not part of con-
ventional compilers, all these tasks are well within the 
reach of current technology.

To quantify our current compiler’s efficiency, we ran 
our benchmark suite using only compiled code, then 
compared the results to hand-optimized code for both 
the ELM and RISC processors. The results showed a 
degradation in performance of 1.7X for both the ELM 
and RISC when moving from hand-scheduled code to 
compiled code. Much of the performance degradation 
on the ELM processor results from the current com-
piler performing only basic scheduling optimizations 
at the boundaries of basic blocks; the current sched-
uling algorithms sometimes introduce brief bubbles 
in the pipeline when a branch instruction jumps to a 
new instruction.

Figure 5. Reducing data-supply energy. The ELM reduces the data-supply 
energy by placing a small, four-entry operand register file (ORF) on each 
ALU’s input and by using an indexed register fille (XRF).
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CLOSING THE GAP
To quantify how closely the ELM processor 

approaches the ultimate goal of ASIC efficiency, we 
compared our processor to ASIC implementations of 
several kernels in our benchmark suite. These imple-
mentations used the same technology and design flow. 
On kernels such as AES encryption and discrete cosine 
transfer computation, where the ELM processor stores 
part of the data working set in its local memory, the 
ELM processor consumes about 3X the energy of an 
ASIC. On compute-intensive kernels such as FIR fil-
tering, where the data register hierarchy captures the 
working sets, the ELM processor consumes no more 
than 1.5X the energy of an ASIC. 

These results are promising. We chose the arithmetic 
operations and register hierarchies implemented in the 
ELM processor to allow a fair comparison against an 
embedded RISC processor, and room remains for fur-
ther optimization along these two dimensions. Despite 
this, the ELM processor’s efficiency is close enough to 
that of an ASIC for us to expect that we can close the 
remaining gap using a combination of minor improve-
ments to the ISA and microarchitecture along with 
more efficient custom circuits and layout, particularly 
in the instruction and data storage hierarchies.

THE FUTURE IS COOL
Increasingly complex, modern media applications 

demand high performance and low power. Histori-
cally, developers have used hardwired logic to meet 
these performance and power demands. The increas-
ing complexity and fixed costs of ASICs, however, call 
for a programmable solution. Conventional program-
mable processors do not have the efficiency required for 
these applications because of the energy they consume 
to supply data and instructions to arithmetic units. Our 
ELM processor optimizes instruction and data supply 
to improve energy efficiency by 23X compared to an 
embedded RISC processor, while closing the gap with 
ASICs from 1.5X to 3.0X.

The ELM design represents only a starting point 
in our quest for more energy-efficient programmable 
processing. Considerable opportunities for additional 
energy savings exist. In the area of instruction supply, 
we can add additional levels to the hierarchy, factor 
instructions so that common instruction parts can be 
shared between instructions, and compress out no-
operation fields of instructions. We can view instruc-
tion supply as a data- or instruction-compression 
problem. However, rather than trying to represent an 
instruction stream with the minimum number of bits, 
we seek to deliver the dynamic instruction stream with 
a minimum amount of energy.

Opportunities exist to improve data-supply energy as 
well. For example, we can construct compound opera-
tions that perform several instructions as a unit without 

incurring the cost of cycling intermediate data through 
even the smallest of register files.

While aimed at embedded computing, the tech-
niques used in the ELM might be valuable in reducing 
energy in other applications. For example, the servers 
used in large data centers are rapidly becoming power 
limited. The energy cost of operating these machines 
usually exceeds their purchase price within two years. 
In 2007, the US expended one percent of its electric-
ity supply operating large servers. The applications 
that run on these servers differ markedly from the 
embedded media-processing applications we have 
considered. In particular, they have far less instruc-
tion locality, making IRFs less attractive. Even so, 
some of the same techniques might apply and could 
yield significant power savings.

W hether in embedded processors, data centers, 
or personal computers, the world of comput-
ing is becoming energy limited. By carefully 

focusing on where energy is consumed in computers—
instruction supply and data supply—we can make these 
machines much more efficient, ensuring that future com-
puting is cool in both senses of the word. ■
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