George Radin

The 801 Minicomputer

This paper provides an overview of an experimental system developed at the IBM Thomas J. Watson Research Center. It
consists of a running hardware prototype, a control program, and an optimizing compiler. The basic concepts underlying the
system are discussed, as are the performance characteristics of the prototype. In particular, three principles are examined: (1)
system orientation towards the pervasive use of high-level language programming and a sophisticated compiler, (2) a primitive
instruction set which can be completely hard-wired, and (3) storage hierarchy and I/O organization to enable the CPU to

execute an instruction at almost every cycle.

Introduction

In October 1975, a group of about twenty researchers at the
IBM Thomas J. Watson Research Center began the design
of a minicomputer, a compiler, and a control program whose
goal was to achieve significantly better cost/performance for
high-level language programs than that attainable by exist-
ing systems. The name 801 was chosen because it was the
IBM number of the building in which the project resided.
(The twenty creative researchers were singularly uninspired
namers.) This paper describes the basic design principles and
the resulting system components (hardware and software).

Basic concepts

® Single-cycle implementation
Probably the major distinguishing characteristic of the 801
architecture is that its instructions are constrained to execute
in a single, straightforward, rather primitive machine cycle.
A similar general approach has been pursued by a group at
the University of California [1].

Complex, high-function instructions, which require sev-
eral cycles to execute, are conventionally realized by some
combination of random logic and microcode. It is often true
that implementing a complex function in random logic will
result in its execution being significantly faster than if the
function were programmed as a sequence of primitive
instructions. Examples are floating-point arithmetic and
fixed-point multiply. We have no objection to this strategy,
provided the frequency of use justifies the cost and, more
importantly, provided these complex instructions in no way
slow down the primitive instructions.

But it is just this pernicious effect on the primitive
instructions that has made us suspicious. Most instruction
frequency studies show a sharp skew in favor of high usage of
primitive instructions (such as LOAD, STORE, BRANCH,
COMPARE, ADD). If the presence of a more complex set
adds just one logic level to a ten-level basic machine cycle
(e.g., to fetch a microinstruction from ROS), the CPU has
been slowed down by 10%. The frequency and performance
improvement of the complex functions must first overcome
this 10% degradation and then justify the additional cost. If
the presence of complex functions results in the CPU exceed-
ing a packaging constraint on some level (e.g., a chip, a
board), the performance degradation can be even more
substantial.

Often, however, a minicomputer that boasts of a rich set of
complex instructions has not spent additional hardware at
all, but has simply microprogrammed the functions. These
microinstructions are designed to execute in a single cycle
and, in that cycle, to set controls most useful for the functions
desired. This, however, is exactly the design goal of the 801
primitive instruction set. We question, therefore, the need for
a separate set of instructions.

In fact, for “vertical microcode,” the benefits claimed are
generally not due to the power of the instructions as much as
to their residence in a high-speed control store. This amounts
to a hardware architect attempting to guess which subrou-
tines, or macros, are most frequently used and assigning
high-speed memory to them. It has resulted, for instance, in
functions like EXTENDED-PRECISION FLOATING-

©Copyright 1982, Association for Computing Machinery, Inc., reprinted by permission. This paper originally appeared in the Proceedings of the
Symposium for Programming Languages and Operating Systems, published in the ACM SIGARCH Computer Architecture News, Vol. 10,

No. 2, March 1982; it is republished here, with only slight revisions.

REPRINTED FROM IBM JOURNAL OF RESEARCH AND DEVELOPMENT, VOL. 27, NO. 3, 1983; ©1983, 2000

0018-8646 / 00 / $5.00 © 2000 IBM

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

GEORGE RADIN

37

38

POINT DIVIDE and TRANSLATE AND TEST on Sys-
tem/370 computers residing in high-speed storage, while
procedure prologues and the first-level-interrupt handler are
in main storage. The 801 CPU gets its instructions from an
“instruction cache” which is managed by least-recently-used
(LRU) information. Thus, all frequently used functions are
very likely to be found in this high-speed storage, exhibiting
the performance characteristics of vertical microcode.

Programming complex functions as software procedures
or macros rather than in microcode has three advantages:

First, the CPU is interruptible at “microcode” boundaries,
hence more responsive. Architectures with complex instruc-
tions either restrict interrupts to instruction boundaries, or
(as in, for.instance, the MOVE CHARACTERS LONG
instruction on the System/370) define specific interruptible
points. If the instruction must be atomic, the implementation
must ensure that it can successfully complete before any
observable state is saved. Thus, in the System/370 MOVE
CHARACTERS instruction, before the move is started all
pages are pretouched (and locked, in an MP system) to guard
against a page-fault interrupt occurring after the move has
begun. If interruptible points are architected, the state must
be such that the instruction is restartable.

The second advantage of programming these functions is
that an optimizing compiler can often separate their compo-
nents, moving some parts out of a loop, commoning others,
etc.

Third, it is often possible for parts of a complex instruction
to be computed at compile time. Consider, for instance, the
System/370 MOVE CHARACTERS instruction once
again. Each execution of this instruction must determine the
optimal move strategy by examining the lengths of the source
and target strings, whether (and in what direction) they
overlap, and what their alignment characteristics are. But,
for most programming languages, these may all be known at
compile time. Consider also a multiply instruction. If one of
the operands is a constant, known at compile time, the
compiler can often produce more efficient “shift/add”
sequences than the general multiply microcode subroutine.

The major disadvantage to using procedures instead of
microcode to implement complex functions occurs when the
microinstruction set is defined to permit its operands to be
indirectly named by the register name fields in the instruc-
tion which is being interpreted. Since, in the 801 and in most
conventional architectures, the register numbers are bound
into the instructions, a compiler must adopt some specific
register-usage convention for the procedure operands and
must move the operands to these registers when necessary.

GEORGE RADIN

A computer whose instructions all execute very efficiently,
however, is attractive only if the number of such instructions
required to perform a task is not commensurately larger than
that required of a more complex instruction set. The 801
project was concerned only with the execution of programs
compiled by our optimizing compiler. Therefore, within the
constraints of a primitive data flow, we left the actual
definition of the instructions to the compiler writers. The
results, discussed later, generally show path lengths (that is,
number of instructions executed) about equivalent to those
on a System/370 for systems code, and up to 50% longer for
commercial and scientific applications (given no hardware
floating point).

® Overlapped siorage access

Instruction mixes for the 801 show that about 30% of
instructions go to storage to send or receive data, and
between 10% and 20% of instructions are taken branches.
Moreover, for many applications, a significant portion of the
memory bandwidth is used by I/0. If the CPU is forced to
wait many cycles for storage access its internal performance
will be wasted.

The second major design goal of the 801 project, therefore,
was to organize the storage hierarchy and develop a system
architecture to minimize CPU idle time due to storage
access. First, it was clear that a cache was required whose
access time was consistent with the machine cycle of the
CPU. Second, we chose a ““store-in-cache” strategy (instead
of “storing through” to the backing store) so that the 10% of
expected store instructions would not degrade the perform-
ance severely. (For instance, if the time to store a word
through to the backing store is ten cycles, and 10% of
instructions are stores, this will add up to one cycle to each
instruction on average depending on the amount of execution
overlap.)

But a CPU organization that needs a new instruction at
every cycle as well as accessing data every third cycle will
still be degraded by a single conventional cache that delivers
a word every cycle. Thus, we decided to split the cache into a
part containing data and a part containing instructions. In
this way we effectively doubled the bandwidth to the cache
and allowed asynchronous fetching of instructions and data
at the backing store.

Most conventional architectures make this decision diffi-
cult because every store of data can be a modification of an
instruction, perhaps even the one following the store. Thus,
the hardware must ensure that the two caches are properly
synchronized, a job that is either expensive or degrading, or
both. Even instruction prefetch mechanisms are complex,
since the effective address of a store must be compared to the
Instruction Address Register.

VOL. 27, NO. 3, 1983, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

Historically, as soon as index registers were introduced
into computers the frequency of instruction modification fell
dramatically until, today, instructions are almost never mod-
ified. Therefore, the 801 architecture does not require this
hazard detection. Instead it exposes the existence of the split
cache to software and provides instructions by which soft-
ware can synchronize the caches when required. In this
system, the only program that modifies instructions is the one
that loads programs into memory.

Similarly, in conventional systems in which the existence
of a cache is unobservable to the software, I/O must (logical-
ly) go through the cache. This is often accomplished in less
expensive systems by sending the 1/O physically through the
cache. The result is that the CPU is idle while the I/O
proceeds, and that after an I/O burst the contents of the
cache no longer reflect the working set of the process being
executed, forcing it back into transient mode. Even in more
expensive systems a broadcasting or directory-duplication
strategy may result in some performance degradation.

We observed that responsibility for the initiation of 1/O in
current systems was evolving towards paging supervisors,
system I/O managers using fixed-block transfers, and, for
low-speed devices, a buffer strategy which moves data
between subsystem buffers and user areas. This results in the
I/O manager knowing the location and extent of the storage
being accessed, and knowing when an I/O transfer is in
process. Thus, this software can properly synchronize the
caches, and the 1/O hardware can transmit directly to and
from the backing store. The result of this system approach in
our prototype is that, even when half of the memory band-
width is being used for 1/0O, the CPU is virtually unde-
graded.

Notice that in the preceding discussions (and in the earlier
discussion of complex instructions) an underlying strategy is
being pervasively applied. Namely, wherever there is a
system function that is expensive or slow in all its generality,
but where software can recognize a frequently occurring
degenerate case (or can move the entire function from run
time to compile time), that function is moved from hardware
to software, resulting in lower cost and improved per-
formance.

An interesting example of the application of this strategy
concerns managing the cache itself. In the 801 the cache line
is 32 bytes and the largest unit of a store is four bytes. In such
a cache, whose line size is larger than the unit of a store and
in which a “store-in-cache” approach is taken, a store
directed at a word which is not in the cache must initiate a
fetch of the entire line from the backing store into the cache.
This is because, as far as the cache can tell, a load of another
word from this line might be requested subsequently. Fre-

VOL. 27, NO. 3, 1983, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

quently, however, the store is simply the first store into what
to the program is newly acquired space. It could be a new
activation on a process stack just pushed on procedure call
(e.g., PL/I Automatic); it could be an area obtained by a
request to the operating system; or it could be a register save
area used by the first-level-interrupt handler. In all of these
cases the hardware does not know that no old values from
that line will be needed, while to the compiler and supervisor
this situation is quite clear. We have defined explicit instruc-
tions in the 801 for cache management so that software can
reduce these unnecessary loads and stores of cache lines.

One other 801 system strategy leads to more effective use
of the cache. Conventional software assumes that its memory
is randomly addressable. Because of this assumption, each
service program in the supervisor and subsystems has its own
local temporary storage. Thus, an application program
requesting these services will cause references to many
different addresses. In a high-level-language-based system
like the 801, control program services are CALLed just like a
user’s subroutines. The result is that all these service pro-
grams get their temporary areas from the same stack,
resulting in much reuse of cache lines and, therefore, higher
cache hit ratios.

So far we have discussed 801 features that result in
overlapped access to the cache between instructions and
data, overlapped backing store access among the caches and
I/O, less hardware synchronizing among the caches and
I/0, and techniques to improve the cache hit ratios. One
other aspect of the 801 CPU design and architecture should
be described to complete the picture.

Even if almost all instruction and data references are
found in the cache, and the cache and backing store are
always available to the CPU, a conventional CPU will still
often be idle while waiting for a load to complete or for the
target of a branch to be fetched. Sophisticated CPUs often
keep branch-taken histories or fetch ahead on both paths in
order to overcome this idle time. In the 801 project we
observed that, with a small number of hardware primitives,
software (i.e., the compiler) could reorder programs so that
the semantics remained unchanged but the hardware could
easily overlap this idle time with useful work.

On load instructions the register that is to be the target of
the load is locked by the CPU. The CPU then continues
execution of the instruction stream until it reaches an
instruction that requires this register, at which time it idles
until the load is completed. Thus, if the compiler can find a
useful instruction to put after the load that does not require
the result of the load, the CPU will not be idle at all while the
data cache fetches the requested word. (And if the compiler

GEORGE RADIN

39

40

can find several such instructions to put after the load,
execution of these will even overlap cache miss.)

Similarly for branches, the 801 architecture defines, for
every type of branch instruction, an alternate form called
BRANCH WITH EXECUTE. (This is similar to the
delayed branch in the RISC computer [1].) These instruc-
tions have exactly the same semantics as their corresponding
branch instructions, except that while the instruction cache is
fetching the branch target the CPU executes the instruction
that has been placed immediately after the BRANCH
WITH EXECUTE instruction. For instance, in the
sequence

LOAD RLA
BNZL

the CPU would be idle while the instruction cache was
fetching L, if the branch was taken. Changing the BRANCH
NON-ZERO to a BRANCH NON-ZERO WITH EXE-
CUTE and moving the LOAD instruction results in

BNZX L
LOADRILA

which has exactly the same semantics but allows the CPU to
execute the LOAD while the instruction cache is fetching the
instruction at L. The 801 compiler is able, generally, to
convert about 60% of the branches in a program into the
execute form.

® A compiler-based system

So far we have discussed two major ideas which pervade the
801 system. First, build a CPU that can execute its instruc-
tions quickly (i.e., in one relatively short machine cycle), and
define these instructions to be a good target for compilation
so that resulting path lengths are generally commensurate
with those for the same functions on more complex instruc-
tion sets (e.g., System/370). Second, define the storage
hierarchy architecture, the CPU instructions, the I/O archi-
tecture and the software so that the CPU will generally not
have to wait for storage access. The third major idea centers
about the 801 compiler. A fundamental decision of the 801
project was to base the entire system on its pervasive use.
This has resulted in the following system characteristics.

Instruction sets for conventional CPUs have been defined
with an implicit assumption that many programmers will use
assembly language. This assumption has motivated the defi-
nition of complex instructions (such as EDIT AND MARK,
TRANSLATE AND TEST) almost as much as has the
notion of a fast control store. But, increasingly, programmers
do not use assembly language except where optimal per-
formance is essential or machine functions are required that
are not reflected in the source language.

GEORGE RADIN

The compiler for the 801 has demonstrated that it can
produce object code that is close enough to best hand code
generally so that assembly language programming is almost
never needed for performance. The operating system has
isolated those machine-dependent functions not reflected in
the language (such as DISABLE, START 1/0, DIS-
PATCH) and developed efficient procedures which provide
these functions with minimal linkage overhead.

The result is a system in which less than a thousand lines of
supervisor code (and some of the “microcode” subroutine
implementations of the complex functions) are written in
assembly language. This has relieved the 801 architecture of
the burden of being easy to program directly. Virtually the
only programmers who are concerned with the nature of the
architecture are the compiler writers and the “core” supervi-
sor writers. All others see the system only through a high-
level language. Because of this, the 801 architects were able
to base their decisions solely on the needs of these few
programmers and on cost/performance considerations.

Thus, the 801 architecture was defined as that set of
run-time operations which

e could not be moved to compile time,

e could not be more efficiently executed by object code
produced by a compiler which understood the high-level
intent of the program, or

® was to be implemented in random logic more effectively
than the equivalent sequence of software instructions.

It might at first seem surprising that compiler writers
would not want powerful high-level instructions. But in fact
these instructions are often hard to use since the compiler
must find those cases which exactly fit the architected
construct. Code selection becomes not just finding the fewest
instructions, but the right instructions. And when these
instructions name operands in storage instead of in registers,
code selection depends upon the results of register alloca-
tion.

The 801 approach to protection is strongly based upon this
compiler intermediary between users and the hardware.
Conventional systems expect application programmers, and
certainly subsystem programmers, to use assembly language
or other languages in which it is possible to subvert the
system (either deliberately or accidentally). Thus, hardware
facilities are required to properly isolate these users. The
most popular examples of these facilities are storage protect
keys, multiple virtual address spaces, and supervisor state.
These facilities are often costly and sometimes degrade
performance. But what is more important is that they are
often inadequate. Since even 16 different keys are insuffi-
cient for unique assignment, for instance, different users are
sometimes given the same key or the system limits the

VOL. 27, NO. 3, 1983, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

number of active users. Also, because the key disciplines are
only two-level, many subsystems are forced to run with full
addressing capability.

If, however, users are constrained to a properly defined
source language, and their programs are processed by an
intelligent compiler and run on an operating system that
understands the addressing strategies of the compiler, it is
possible to provide better protection at less cost. The 801
system, therefore, is based upon the assumption that certain
critical components of the compiler are correct, and that all
programs executing on the system (except for a small
supervisor core) have been compiled by this compiler. The
system will guarantee

e that all references to data (scalars, arrays, structures,
areas) really do point to that data, and that the extents of
the references are included in the extents of the data,

o that a reference to dynamically allocated-and-freed data is
made only between an allocation and a free,

® that all branches are to labels, and all calls are to proper
entry points in procedures,

o that the extents of all arguments to a procedure match the
extents of their corresponding parameters, so that the
protection persists across calls, and

® that all declarations of global (external) variables in
separately compiled procedures have consistent extents.

This checking is often done at compile time, link-edit time,
or program-fetch time, but, when necessary, trap instruc-
tions are introduced into the object code to check at run time.
The resulting increase in path length due to this run-time
checking is generally less than 10% because this code is
optimized along with the rest of the program [2].

Notice that this is not a “strongly typed” approach to
checking. Overlays of one data type on another are permit-
ted, provided the domains are not exceeded. But our experi-
ence in running code conventionally on the System/370 and
then on the 801 with this checking has shown that many
program bugs are discovered and that, more importantly,
they tend to be the kinds of bugs that elude normal compo-
nent test procedures.

It was noted earlier that, because the operating system was
also written in the 801’s high-level language and compiled by
the 801 compiler, its service programs were simply CALLed
like any external procedure, resulting in better cache behav-
ior. An even more important consequence of this design,
however, is that the checking of matches between arguments
and parameters is performed at the time a program is loaded
into memory and linked to the supervisor. This results in
efficient calls to supervisor services, especially when com-
pared to conventional overhead. It means also that the
compiler-generated “traceback” mechanism continues into

VOL. 27, NO. 3, 1983, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

the operating system, so that when an error occurs the entire
symbolic call chain can be displayed.

The linkage between procedures on the 801 is another
example of a consistent machine design based on a system
used solely via a high-level language. We wanted applica-
tions on the 801 to be programmed using good programming
style. This implies a large number of procedures and many
calls. In particular, it implies that very short procedures can
be freely written and invoked. Thus, for these short proce-
dures, the linkage must be minimal.

The 801 procedure linkage attempts to keep arguments in
registers where possible. It also expects some register values
to be destroyed across a CALL. The result is that a proce-
dure call can be as cheap as a BRANCH AND LINK
instruction when the called procedure can execute entirely
out of available registers. As more complex functions are
required they increase the overhead for linkage incre-
mentally.

Finally, the pervasive use of a high-level language and
compiler has given the project great freedom to change. The
architecture has undergone several drastic changes and
countless minor ones. The linkage conventions, storage map-
ping strategies, and run-time library have similarly been
changed as experience provided new insights. In almost every
case the cost of the change was limited to recompilations.

This ability to preserve source code, thus limiting the
impact of change, can have significant long-range impact on
systems. New technologies (and packaging) often offer great
performance and cost benefits if they can be exploited with
architecture changes.

System components

® The programming language

The source language for the 801 system is called PL.8. It was
defined to be an appropriate language for writing systems
programs and to produce optimized code with the checking
described previously.

PL.8 began as an almost-compatible subset of PL/I, so
that the PL.8 compiler was initially compiled by the PL/I
Optimizer. It contains, for instance, the PL/I storage classes,
functions, floating-point variables, varying character strings,
arrays with adjustable extents, the structured control primi-
tives of PL/I, the string-handling built-in functions, etc. It
differs from PL/I in its interpretation of bit strings as binary
numbers, in its binary arithmetic (which simply reflects the
arithmetic of the 801 hardware) and in some language
additions borrowed from Pascal. It does not contain full PL/1
ON conditions, multiple entry points, or the ability to

GEORGE RADIN

41

42

develop absolute pointers to Automatic or Static storage.
Relative pointers, called Offsets, can be developed only to
Areas. This discipline has several advantages:

e All program and data areas can be moved freely by the
system, since absolute addresses are never stored in user-
addressable data structures.

® Any arithmetic data type can be used as an offset (relative
pointer) and all arithmetic operations can be freely per-
formed, since the extent checks are made on every use.

® A store, using a computed offset, can only affect other data
in that particular area. Thus, the locations whose values
could have been changed by this store are significantly
limited. This enhances the power of the optimization
algorithms.

® It leads to better structured, more easily readable pro-
grams.

® The optimizing compiler

There have been about seven programmers in the compiler
group since the project began. A running compiler was
completed after about two years. Since then the group has
been involved with language extensions, new optimization
techniques, debugging, and usability aids. It should be noted,
however, that for about twenty years the Computer Sciences
department at Yorktown Heights has been working on
compiler algorithms, many of which were simply incorpo-
rated into this compiler.

The PL.8 compiler adopts two strategies which lead to its
excellent object code. The first is a strategy which translates,
in the most straightforward, inefficient (but correct) man-
ner, from PL.8 source language to an intermediate language
(IL). This translation has as its only objective the production
of semantically correct object code. It seeks almost no special
cases, so that it is relatively easy to debug. Moreover, the
intermediate language which is its target is at a very low
level, almost at that of the real 801 machine.

The next phase of the compiler develops flow graphs of the
program as described in [3], and, using these graphs,
performs a series of conventional optimization algorithms,
such as

® common sub-expression elimination,
e moving code out of loops,

¢ climinating dead code, and

® strength reduction.

Each of these algorithms transforms an IL program into a
semantically equivalent, but more efficient, IL program.
Thus, these procedures can be (and are) called repetitively
and in any order. While these procedures are quite sophisti-
cated, since each of them acts on the entire program and on
all programs, a bug in one of them is very easily observed.

GEORGE RADIN

The power of this approach is not only in the optimizing
power of the algorithms but in the fact that they are applied
to such a low-level IL. Conventional global optimizing com-
pilers perform their transformations at a much higher level
of text, primarily because they were designed to run in
relatively small-size memory. Thus, they can often not do
much more than convert one program to another which could
have been written by a more careful programmer. The PL.8
compiler, on the other hand, applies its optimization algo-
rithms to addressing code, domain checking code, procedure
linkage code, etc.

The second compiler strategy which is different from
conventional compilers is our approach to register allocation
[4, 5]. The IL, like that of most compilers, assumes an
arbitrarily large number of registers. In fact, the result of
each different computation in the program is assigned a
different (symbolic) register. The job for register allocation
is simply to assign real registers to these symbolic registers.
Conventional approaches use some subset of the real regis-
ters for special purposes (e.g., pointers to the stack, to the
code, to the parameter list). The remaining set is assigned
locally within a statement, or at best a basic block (e.g., a
loop). Between these assignments, results which are to be
preserved are temporarily stored and variables are redun-
dantly loaded.

The 801 approach observes that the register-assignment
problem is equivalent to the graph-coloring problem, where
each symbolic register is a node and the real registers are
different colors. If two symbolic registers have the property
that there is at least one point in the program where both
their values must be retained, we model that property on the
graph as a vertex between the two nodes. Thus, the register-
allocation problem is equivalent to the problem of coloring
the graph so that no two nodes connected by a vertex are
colored with the same crayon.

This global approach has proven very effective. Surpris-
ingly many procedures “color” so that no store/load
sequences are necessary to keep results in storage temporari-
ly. (At present the compiler “colors” only computations.
There is, however, no technical reason why local variables
could not also be “colored,” and we intend to do this
eventually.) When it does fail, other algorithms which use
this graph information are employed to decide what to store.
Because of this ability of the compiler to effectively utilize a
large number of registers, we decided to implement 32
general-purpose registers in the hardware.

The compiler also accepts Pascal programs, producing
compatible object code so that PL.8 and Pascal procedures
can freely call one another. It also produces efficient object
code for the System/370, thus providing source code porta-
bility.

VOL. 27, NO. 3, 1983, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

Instructions and operands

Instruction formats and data representations are areas which
saw significant change as the project evolved. This section
describes the current version of the architecture. The kind of
instruction and operand set requested by the compiler devel-
opers turned out, fortunately, to be precisely one which made
hardware implementation easier. The overriding theme was
regularity. For instance,

e All operands must be aligned on boundaries consistent
with their size (i.e., halfwords on halfword boundaries,
words on word boundaries). All instructions are fullwords
on fullword boundaries. (This results in an increase in
program size over two- and four-byte formats, but the
larger format allows us to define more powerful instruc-
tions resulting in shorter path lengths.) Since the 801 was
designed for a cache/main store/hard disk hierarchy and
virtual-memory addressing, the consequence of larger pro-
grams is limited to more disk space and larger working sets
(i.e., penalties in cache-hit-ratio and page-fault frequen-
cies).

With this alignment constraint, the hardware is greatly
simplified. Each data or instruction access can cause at
most one cache miss or one page fault. The caches must
access at most one aligned word. Instruction prefetch
mechanisms can easily find op codes if they are searching
for branches. Instruction alignment and data alignment
are unnecessary. Instruction Length Count fields (as in the
System/370 PSW) are unnecessary and software can
always backtrack instructions. Moreover, for data, traces
show that misaligned operands rarely appear, and when
they do are often the result of poor programming style.

e Given four-byte instructions, other benefits accrue. Regis-
ter fields in instructions are made five bits long so that the
801 can name 32 registers. (This aspect of 801 architec-
ture makes it feasible to use the 801 to emulate other
architectures which have 16 general-purpose registers,
since 16 additional 801 registers are still available for
emulator use.)

Four-byte instructions also allow the target register of
every instruction to be named explicitly so that the input
operands need not be destroyed. This facility is applied
pervasively, as in “Shift Reg A Left by contents of Reg B
and Store Result in Reg C.” This feature of the architec-
ture simplifies register allocation and eliminates many
MOVE REGISTER instructions.

e The 801 is a true 32-bit architecture, not a 16-bit architec-
ture with extended registers. Addresses are 32 bits long;
arithmetic is 32-bit two’s complement; logical and shift
instructions deal with 32-bit words (and can shift distances

VOL. 27, NO. 3, 1983, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

up to 32). A useful way to reduce path length (and cache
misses) is to define a rich set of immediate fields, but of
course it is impossible to encode a general 32-bit constant
to fit into an immediate field in a four-byte instruction.
The 801 defines the following subsets of such constants
which meet most requirements:

® A 16-bit immediate field for arithmetic and address
calculation (D field) which is interpreted as a two’s-
complement signed integer. (Thus, the constants +2'
can be represented immediately.)

® A 16-bit logical constant. Each logical operation has two
immediate forms—upper and lower, so that in at most
two instructions (cycles) logical operations can be per-
formed using a 32-bit logical constant.

e An 11-bit encoding of a Mask (i.e., a substring of ones
surrounded by zeros or zeros surrounded by ones). Thus,
for shift, insert, and isolate operations the substring can
be defined immediately.

® A 16-bit immediate field for branch-target calculation
(D field) which is interpreted as a signed two’s-comple-
ment offset from the address of the current instruction.
(Thus, a relative branch to and from anywhere within a
32K-byte procedure can be specified immediately.)

e A 26-bit immediate field specifying an offset from the
address of the current instruction or an absolute address,
so that branches between procedures, to supervisor
services, or to “microcode subroutines™ can be specified
without having to establish addressability.

® LOAD and STORE instructions are available in every
combination of the following options:

e LOAD or STORE.

® Character, halfword, sign-extended halfword, or full-
word.

e Base + Index, or Base + Displacement effective
address calculation. (Usage statistics for System/370
show low use for the full B + X + D form. Thus, a
three-input adder did not seem warranted.)

e Store the effective address back into the base register
(i.e., “autoincrement’) or not.

® Branches are available with the following branch-target
specifications:

e Absolute 26-bit address,

® Instruction Address Register + Displacement (signed
16- or 26-bit word offset), or

® Register + Register,

BRANCH AND LINK forms are defined normally. But
conditional branches are defined not only based upon the
state of the Condition Register but on the presence or
absence of a one in any bit position in any register. [This
allows the TEST UNDER MASK ~ BRANCH CONDI-

GEORGE RADIN

43

44

TION sequence in System/370 to be executed in one
machine cycle (and no storage references) if the bit is already
in a register. Again, the power of global register allocation
makes this more probable.]

® There are COMPARE AND TRAP instructions defined
which allow the System/370 COMPARE - BRANCH
CONDITION sequence to be executed in one machine
cycle for those cases where the test is for an infrequently
encountered exception condition. These instructions are
used to implement the run-time extent checking discussed
earlier.

® Arithmetic is 32-bit two’s complement. There are special
instructions defined to allow MAX, MIN, and decimal
add and subtract to be coded efficiently. There are also two
instructions defined (MULTIPLY STEP and DIVIDE
STEP) to allow two 32-bit words to be multiplied in 16
cycles (yielding a 64-bit product) and a 64-bit dividend to
be divided by a 32-bit divisor in 32 cycles (yielding a 32-bit
quotient and a 32-bit remainder).

© The 801 has a rich set of shift and insert instructions.
These were developed to make device-controller “micro-
code,” emulator “microcode,” and systems code very
efficient. The functions, all available in one machine cycle,
are as follows:

® Ring-shift a register up to 31 positions (specified in
another register or in an immediate field).

e Using a mask (in another register or in an immediate
field), merge this shifted word with all zeros (i.e., isolate
the field) or with any other register (i.e., merge), or with
the result of the previous shift (i.e., long shift),

@ Store this back into any other register or into storage
(i.e., move character string).

(This last facility allows misaligned source and target
character string moves to execute as fast as two characters

per cycle.)

Interrupts and 1/0

I/O in the 801 prototype is controlled by a set of adapters
which attach to the CPU and memory by two buses. The
External Bus attaches the adapters to the CPU. It is used by
software to send commands and receive status, by means of
synchronous READ and WRITE instructions. Data are
transmitted between the adapters and the 801 backing store
through the MIO (Memory-I/O) bus. (As described pre-
viously, it is the responsibility of the software to synchronize
the caches.)

Rather than support integrated and complex (multi-level)

interrupt hardware, the 801 again moves to software func-
tions that can be performed more efficiently by program-

GEORGE RADIN

ming. Software on systems that provide, say, eight interrupt
levels often find this number inadequate as a distinguisher of
interrupt handlers. Thus, a software first-level-interrupt
handler is programmed on top of the hardware, increasing
the real time to respond. Moreover, the requirement to
support eight sets of registers results in these being stored in
some fast memory rather than in logic on-chip. This results in
a slower machine cycle. If the real-time responsiveness of a
system is measured realistically, it must include not only the
time to get to an interrupt handler but the time to process the
interrupt, which clearly depends on the length of the machine
cycle. Thus, in a practical sense the 801 is a good real-time
system.

Interrupt determination and priority handling is packaged
outboard of the CPU chips in a special unit called the
external interrupt controller (along with the system clocks,
timers, and adapter locks). (This packaging decision allows
other versions of 801 systems to choose different interrupt
strategies without impacting the CPU design.) In this con-
troller, there are (logically) two bit vectors. The first, the
Interrupt Request Vector (IRV) contains a bit for each
device which may wish to interrupt the CPU (plus one each
for the clocks, timers, and the CPU itself for simulating
external interrupts). These bits are tied by lines to the
devices.

The second vector, called the Interrupt Mask Vector
(IMYV) contains a bit corresponding to each bit in the IRV.
The IMV is loaded by software in the CPU. It dynamically
establishes the priority levels of the interrupt requesters. If
there is a one in a position in the IRV corresponding to a one
in the corresponding position of the IMV, and the 801 CPU
is enabled for interrupt, the CPU is interrupted.

On interrupt, the CPU becomes disabled and unre-
located and begins executing the first-level-interrupt handler
(FLIH) in lower memory. The FLIH stores the interrupted
state, reads the IRV, and determines the requester. Using
this position number, it sends a new IMV (reflecting the
priority of the requester) and branches to the interrupt
handler for that requester, which executes enabled and
relocated. Path lengths for the FLIH are less than 100
instructions (and can be reduced for a subclass of fast-
response interrupts), and less than 150 instructions for the
dispatcher (when the interrupt handler completes).

Internal bus
We have, so far, described a CPU that must have the
following (logical) buses to storage:

e a command bus to describe the function requested,
® an address bus,

® 3 source data bus for stores, and

® a target data bus for loads.

VOL. 27, NO. 3, 1983, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

Table 1 Performance comparison: System/370-168 and 801, fora
Heap Sort programmed in PL.8.

CPU In inner loop

Code No.of Data Cycles Cycles/
size instruc- refs. inst.
(bytes) tions

System/370-168 236 33 8 56 1.7
801 240 28 6 31 1.1

We observed that other functions might be implemented
outboard of the CPU and could attach to the CPU via these
same buses (e.g., floating point). Therefore, we exposed these
buses in an 801 instruction, called INTERNAL BUS
OPERATION (IBO). This instruction has operands to name
the following:

e the bus unit being requested,

® the command,

® the two operands (B,D or B,X) which will be added to
produce the output on the address bus,

e the source register, and

® the target register, if needed,

and three flags:

® privileged command or not,
® target register required or not, and
® address bus sent back to Base register or not.

Having defined this generic instruction, we gave bus-unit
names to the instruction and data caches, the external-
interrupt controller, the timer, and the relocate controller,
and assigned the IBO op code to all instructions directed to
these units.

Prototype hardware

A hardware prototype has been built for an early version of
the 801 architecture, out of MECL 10K DIPs (Motorola
Emitter Current Logic dual in-line packages). It runs at 1.1
cycles per instruction. (This number must be taken as an
out-of-cache performance figure because the applications
which currently run show hit ratios at close to 100% after the
initial cache load.) We do not yet have multiple-user mea-
surements.

The register file is capable of reading out any three and
writing back any two registers within a single cycle. Thus,
the CPU is pipelined as follows.

The first level of the pipeline decodes the instruction, reads
two registers into the ALU, executes the ALU, and either
latches the result or, for LOAD or STORE instructions,

VOL. 27, NO. 3, 1983, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

Table 2 Performance comparison: randomly selected modules on
PL.8 compiler. (Note: Relative numbers are the ratios of 801
parameters to System/370 parameters.)

Module Relative Dynamic comparisons
(In order code

of increasing size Relative Relative
size) instructions data

executed storage

references
FIND 1.02 0.91 0.60
SEARCHV 0.93 0.83 0.38
LOADS 0.83 091 0.43
P2_EXTS 1.00 1.00 0.57
SORT_S1 0.86 0.78 0.59
PM_ADDI1 0.86 0.96 0.63
ELMISS 0.87 0.86 0.69
PM_GKV 0.92 0.76 0.46
P5DBG 0.98 0.81 0.52
DESCRPT 0.86 0.75 0.42
ENTADD 0.79 0.76 0.42
Total 0.90 0.80 0.50

sends the computed address to the cache. On a STORE
instruction, the data word is also fetched from the register
file and sent to the cache.

The second level of the pipeline sends the latched result
through the shifter, sets the condition register bits, and stores
the result back into a register. During this cycle also, if a
word has been received from the cache as the result of a load
instruction, it is loaded into the register.

(The hardware monitors register names to bypass the load
when the result is being immediately used.)

The cache is designed so that, on a miss, the requested
word is sent directly to the CPU, thus reducing lockout while
the cache line is being filled.

Performance comparisons

Tables 1 and 2 show some early performance comparisons.
Since the compiler produces object code for the System/370
as well as the 801, these comparisons are possible for the
same source programs and the same compiler. We use the
number of cycles in the inner loops and the number of storage
references in the inner loops to approximate dynamic per-
formance.

Table 1 shows results for an in-memory sort procedure.
Table 2 shows the results for randomly selected modules
from the compiler itself. Note that as the modules get larger
the power of global register allocation results in fewer
storage references. Note also that, in spite of the fact that the

GEORGE RADIN

45

46

801 contains no complex instructions, the 801 modules
contain fewer instructions and fewer instruction executions.
This is because the complex instructions are generally very
infrequent, whereas the 801 has a more powerful set of
primitive instructions.

Conclusions

While we do not have nearly enough measurements to draw
hard conclusions, the 801 group has developed a set of
intuitive principles which seem to hold consistently.

At least in low-to-mid-range processor complexity, a gen-
eral-purpose, register-oriented instruction set can be at least
as good as any special vertical microcode set. Thus, there
should be only one hard-wired instruction set, and it should
be directly available to the compiler.

A good global register allocator can effectively use a large
number of general-purpose registers. Therefore, all the regis-
ters which the CPU can afford to build in hardware should
be directly and simultaneously addressable. Stack machines,
machines that hide some of the registers to improve CALL
performance, and multiple-interrupt-level machines all seem
to make poorer use of the available registers.

Protection is far more effectively provided at a level where
the source language program is understood.

It is easy to design and build a fast, cheap CPU, and it will
become more so as VLSI evolves. The harder problem is to
develop software, architecture, and hardware which do not
keep the CPU idling due to storage access.

Acknowledgments

The seminal idea for the 801 and many subsequent concepts
are due to John Cocke. The list of contributors has grown too
large to list here. The following people were with the project
from the beginning and were responsible for most of the

GEORGE RADIN

design and implementation: Hardware: Frank Carrubba,
manager; Paul Stuckert, Norman Kreitzer, Richard Freitas,
and Kenneth Case. Software: Marc Auslander, manager;
Compiler: Martin Hopkins, manager; Richard Goldberg,
Peter Oden, Philip Owens, Peter Markstein, and Gregory
Chaitin; Control Program: Richard Oehler, manager; Albert
Chang. Joel Birnbaum was the first manager of the project
and later a constant supporter. Bill Worley also contributed
significantly through the years.

References

1. D. A. Patterson and C. H. Séquin, “RISC-I: A Reduced Instruc-
tion Set VLSI Computer” Proceedings of the Eighth Annual
Symposium on Computer Architecture, May, 1981.

2. V. Markstein, J. Cocke, and P. Markstein, “Optimization of
Range Checking,” Research Report RC-8456, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, 1980.

3. J. Cocke and P. W. Markstein, “Measurement of Program
Improvement Algorithms,” IFIP 80 Proceedings, Information
Processing, S. H. Lavington, Ed., North-Holland Publishing Co.,
Amsterdam, 1980, pp. 221-228.

4. G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E.
Hopkins, and P. W. Markstein, “Register Allocation via Color-
ing,” Computer Languages (British) 6, 47-57 (1981).

5. G. J. Chaitin, “Register Allocation and Spilling via Coloring,”
Research Report RC-9124, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, 1981.

Received May 6, 1982, revised November 11, 1982

George Radin IBM System Products Division, 44 South
Broadway, White Plains, New York 10601. Mr. Radin is an IBM
Fellow and director of architecture responsible for the definition of
advanced architectures for System Products Division processors. He
joined IBM in 1963 at the New York Programming Center. Since
then he has worked on PL/I language definition in New York, as
senior manager at the Thomas J. Watson Research Center, York-
town Heights, New York, as manager of advanced system architec-
ture and design in Poughkeepsie, New York, and as a member of the
Corporate Technical Committee, Armonk, New York. Before join-
ing IBM, he was manager of the computer center at the New York
University College of Engineering. Mr. Radin received his B.A. in
1951 from Brooklyn College, New York, in English literature, his
M.A. in 1954 from Columbia University, New York, in English
literature, and his M.S. in 1958 from New York University in
mathematics.

VOL. 27, NO. 3, 1983, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

