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Abstract

This paper examines simultaneous multithreading, a technique per-
mitting several independent threads to issue instructions to a su-
perscalar’s multiple functional units in a single cycle. We present
several models of simultaneous multithreading and compare them
with alternative organizations: a wide superscalar, a fine-grain mul-
tithreaded processor, and single-chip, multiple-issue multiprocess-
ing architectures. Our results show that both (single-threaded) su-
perscalar and fine-grain multithreaded architectures are limited in
their ability to utilize the resources of a wide-issue processor. Si-
multaneous multithreading has the potential to achieve 4 times the
throughput of a superscalar, and double that of fine-grain multi-
threading. We evaluate several cache configurations made possible
by this type of organization and evaluate tradeoffs between them.
We also show that simultaneous multithreading is an attractive alter-
native to single-chip multiprocessors; simultaneous multithreaded
processorswith avariety of organizations outperform corresponding
conventional multiprocessors with similar execution resources.

While simultaneous multithreading has excellent potential to in-
crease processor utilization, it can add substantial complexity to
the design. We examine many of these complexities and evaluate
alternative organizations in the design space.

1 Introduction

This paper examines simultaneousmultithreading (SM), a technique
that permits several independent threads to issue to multiple func-
tional units each cycle. Inthe most general case, the binding between
thread and functional unit is completely dynamic. The objective of
SM is to substantially increase processor utilization in the face of
both long memory latencies and limited available parallelism per
thread. Simultaneous multithreading combines the multiple-issue-
per-instruction features of modern superscalar processors with the
latency-hiding ability of multithreaded architectures. It also inherits
numerous design challenges from these architectures, e.g., achiev-
ing high register file bandwidth, supporting high memory access
demands, meeting large forwarding requirements, and scheduling
instructions onto functional units. In this paper, we (1) introduce
several SM models, most of which limit key aspects of the complex-
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ity of such a machine, (2) evaluate the performance of those models
relative to superscalar and fine-grain multithreading, (3) show how
to tune the cache hierarchy for SM processors, and (4) demonstrate
the potential for performance and real-estate advantages of SM ar-
chitectures over small-scale, on-chip multiprocessors.

Current microprocessors employ various techniques to increase
parallelism and processor utilization; however, each technique has
its limits. For example, modern superscalars, such as the DEC
Alpha 21164 [11], PowerPC 604 [9], MIPS R10000 [24], Sun UI-
traSparc [25], and HP PA-8000 [26] issue up to four instructions per
cycle from asingle thread. Multiple instruction issue has the poten-
tial to increase performance, but is ultimately limited by instruction
dependencies (i.e., the available parallelism) and long-latency op-
erations within the single executing thread. The effects of these are
shown as horizontal waste and vertical waste in Figure 1. Multi-
threaded architectures, on the other hand, such as HEP [28], Tera[3],
MASA [15] and Alewife [2] employ multiple threads with fast con-
text switch between threads. Traditional multithreading hides mem-
ory and functional unit latencies, attacking vertical waste. Inany one
cycle, though, these architectures issue instructions from only one
thread. The technique is thus limited by the amount of parallelism
that can be found in a single thread in a single cycle. And as issue
width increases, the ability of traditional multithreading to utilize
processor resources will decrease. Simultaneous multithreading, in
contrast, attacks both horizontal and vertical waste.

This study evaluates the potential improvement, relative to wide
superscalar architectures and conventional multithreaded architec-
tures, of various simultaneous multithreading models. To place our
evaluation in the context of modern superscalar processors, we simu-
late a base architecture derived from the 300 MHz Alpha 21164 [11],
enhanced for wider superscalar execution; our SM architectures are
extensions of that basic design. Since code scheduling is crucial
on wide superscalars, we generate code using the state-of-the-art
Multiflow trace scheduling compiler [20].

Our results show the limits of superscalar execution and tradi-
tional multithreading to increase instruction throughput in future
processors. For example, we show that (1) even an 8-issue super-
scalar architecture fails to sustain 1.5 instructions per cycle, and (2)
a fine-grain multithreaded processor (capable of switching contexts
every cycle at no cost) utilizes only about 40% of a wide superscalar,
regardless of the number of threads. Simultaneous multithreading,
on the other hand, provides significant performance improvements
in instruction throughput, and is only limited by the issue bandwidth
of the processor.

A more traditional means of achieving parallelism is the con-
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Figure 1: Empty issue slots can be defined as either vertical
waste or horizontal waste. Vertical waste is introduced when
the processor issuesno instructionsin a cycle, horizontal waste
when not all issue slots can be filled in a cycle. Superscalar
execution (asopposed to single-issueexecution) both introduces
horizontal waste and increasesthe amount of vertical waste.

ventional multiprocessor. As chip densities increase, single-chip
multiprocessors will become a viable design option [7]. The simul-
taneous multithreaded processor and the single-chip multiprocessor
are two close organizational alternatives for increasing on-chip exe-
cution resources. We compare these two approaches and show that
simultaneous multithreading is potentially superior to multiprocess-
ing in its ability to utilize processor resources. For example, asingle
simultaneous multithreaded processor with 10 functional units out-
performs by 24% a conventional 8-processor multiprocessor with a
total of 32 functional units, when they have equal issue bandwidth.

For this study we have speculated on the pipeline structure for
a simultaneous multithreaded processor, since an implementation
does not yet exist. Our architecture may therefore be optimistic in
two respects: first, in the number of pipeline stages required for
instruction issue; second, in the data cache accesstime (or load de-
lay cycles) for a shared cache, which affects our comparisons with
single-chip multiprocessors. The likely magnitude of these effects
is discussed in Sections 2.1 and 6, respectively. Our results thus
serve, at the least, as an upper bound to simultaneous multithread-
ing performance, given the other constraints of our architecture.
Real implementations may see reduced performance due to various
design tradeoffs; we intend to explore these implementation issues
in future work.

Previous studies have examined architectures that exhibit simul-
taneous multithreading through various combinations of VLIW, su-
perscalar, and multithreading features, both analytically [34] and
through simulation [16, 17, 6, 23]; we discuss these in detail in
Section 7. Our work differs and extends from that work in multiple
respects: (1) the methodology, including the accuracy and detail of
our simulations, the base architecture we use for comparison, the
workload, and the wide-issue compiler optimization and scheduling
technology; (2) the variety of SM models we simulate; (3) our anal-
ysis of cache interactions with simultaneous multithreading; and
finally, (4) in our comparison and evaluation of multiprocessing and
simultaneous multithreading.

This paper is organized as follows. Section 2 defines in detail
our basic machine model, the workloads that we measure, and the
simulation environment that we constructed. Section 3 evaluates

the performance of a single-threaded superscalar architecture; it
provides motivation for the simultaneous multithreaded approach.
Section 4 presents the performance of a range of SM architectures
and compares them to the superscalar architecture, as well as a
fine-grain multithreaded processor. Section 5 explores the effect of
cachedesign alternatives on the performance of simultaneous multi-
threading. Section 6 compares the SM approach with conventional
multiprocessor architectures. We discuss related work in Section 7,
and summarize our results in Section 8.

2 Methodology

Our goal is to evaluate several architectural alternatives as defined
in the previous section: wide superscalars, traditional multithreaded
processors, simultaneous multithreaded processors, and small-scale
multiple-issue multiprocessors. To do this, we have developed a
simulation environment that defines an implementation of a simul-
taneous multithreaded architecture; that architecture is a straight-
forward extension of next-generation wide superscalar processors,
running a real multiprogrammed workload that is highly optimized
for execution on our target machine.

2.1 Simulation Environment

Our simulator uses emulation-based instruction-level simulation,
similar to Tango [8] and g88 [4]. Like g88, it features caching of
partially decoded instructions for fast emulated execution.

Our simulator models the execution pipelines, the memory hier-
archy (both in terms of hit rates and bandwidths), the TLBs, and the
branch prediction logic of a wide superscalar processor. It is based
on the Alpha AXP 21164, augmented first for wider superscalar ex-
ecution and then for multithreaded execution. The model deviates
from the Alpha in some respects to support increased single-stream
parallelism, such as more flexible instruction issue, improved branch
prediction, and larger, higher-bandwidth caches.

The typical simulated configuration contains 10 functional units
of four types (four integer, two floating point, three load/store and
1 branch) and a maximum issue rate of 8 instructions per cycle. We
assume that all functional units are completely pipelined. Table 1
shows the instruction latencies used in the simulations, which are
derived from the Alpha 21164.

| Instruction Class | Latency |

integer multiply 8,16
conditional move 2
compare 0
all other integer 1
FP divide 17,30
all other FP 4
load (L1 cache hit, no bank conflicts) 2
load (L2 cache hit) 8
load (L3 cache hit) 14
load (memory) 50
control hazard (br or jmp predicted) 1
control hazard (br or jmp mispredicted) 6

Table 1: Simulated instruction latencies



We assume first- and second-level on-chip caches considerably
larger than on the Alpha, for two reasons. First, multithreading
puts a larger strain on the cache subsystem, and second, we expect
larger on-chip caches to be common in the same time-frame that
simultaneous multithreading becomes viable. We also ran simu-
lations with caches closer to current processors—we discuss these
experiments as appropriate, but do not show any results. The caches
(Table 2) are multi-ported by interleaving them into banks, similar
to the design of Sohi and Franklin [30]. An instruction cache access
occurs whenever the program counter crosses a 32-byte boundary;
otherwise, the instruction is fetched from the prefetch buffer. We
model lockup-free caches and TLBs. TLB misses require two full
memory accesses and no execution resources.

| || 1Cache | DCache | L2 Cache | L3 Cache ]

Size 64 KB 64 KB 256 KB 2 MB
Assoc DM DM 4-way DM
Line Size 32 32 32 32
Banks 8 8 4 1
Transfer

time/bank || lcycle | 1cycle 2 cycles 2 cycles

Table 2: Details of the cache hierarchy

We support limited dynamic execution. Dependence-freeinstruc-
tions are issued in-order to an eight-instruction-per-thread schedul-
ing window; from there, instructions can be scheduled onto func-
tional units out of order, depending on functional unit availability.
Instructions not scheduled due to functional unit availability have
priority in the next cycle. We complement this straightforward issue
model with the use of state-of-the-art static scheduling, using the
Multiflow trace scheduling compiler [20]. This reduces the benefits
that might be gained by full dynamic execution, thus eliminating
a great deal of complexity (e.g., we don’t need register renaming
unless we need precise exceptions, and we can use a simple 1-bit-
per-register scoreboarding scheme) in the replicated register sets
and fetch/decode pipes.

A 2048-entry, direct-mapped, 2-bit branch prediction history ta-
ble [29] supports branch prediction; the table improves coverage
of branch addresses relative to the Alpha (with an 8 KB I cache),
which only stores prediction information for branches that remain
in the I cache. Conflicts in the table are not resolved. To predict re-
turn destinations, we use a 12-entry return stack like the 21164 (one
return stack per hardware context). Our compiler does not support
Alpha-style hints for computed jumps; we simulate the effect with
a 32-entry jump table, which records the last jumped-to destination
from a particular address.

For our multithreaded experiments, we assume support is added
for up to eight hardware contexts. We support several models of
simultaneous multithreaded execution, as discussed in Section4. In
most of our experiments instructions are scheduled in a strict prior-
ity order, i.e., context 0 can schedule instructions onto any available
functional unit, context 1 can schedule onto any unit unutilized by
context 0, etc. Our experiments show that the overall instruction
throughput of this scheme and a completely fair scheme are virtually
identical for most of our execution models; only the relative speeds
of the different threads change. The results from the priority scheme
present us with some analytical advantages, as will be seen in Sec-

tion 4, and the performance of the fair scheme can be extrapolated
from the priority scheme results.

We do not assume any changes to the basic pipeline to accommo-
date simultaneous multithreading. The Alphadevotesa full pipeline
stage to arrange instructions for issue and another to issue. If simul-
taneous multithreading requires more than two pipeline stages for
instruction scheduling, the primary effect would be an increase in
the misprediction penalty. We have run experiments that show that
a one-cycle increase in the misprediction penalty would have less
than a 1% impact on instruction throughput in single-threaded mode.
With 8 threads, where throughput is more tolerant of misprediction
delays, the impact was less than .5%.

2.2 Workload

Our workload is the SPEC92 benchmark suite [10]. To gauge the
raw instruction throughput achievable by multithreaded superscalar
processors, we chose uniprocessor applications, assigning a distinct
program to each thread. This models a parallel workload achieved
by multiprogramming rather than parallel processing. In this way,
throughput results are not affected by synchronization delays, ineffi-
cient parallelization, etc., effects that would make it more difficult to
see the performance impact of simultaneous multithreading alone.

In the single-thread experiments, all of the benchmarks are run
to completion using the default data set(s) specified by SPEC. The
multithreaded experiments are more complex; to reduce the effect
of benchmark difference, a single data point is composed of B
runs, each T * 500 million instructions in length, where T is the
number of threads and B is the number of benchmarks. Each of
the B runs uses a different ordering of the benchmarks, such that
each benchmark is run once in each priority position. To limit the
number of permutations, we use a subset of the benchmarks equal
to the maximum number of threads (8).

We compile each program with the Multiflow trace scheduling
compiler, modified to produce Alpha code scheduled for our target
machine. The applications were each compiled with several differ-
ent compiler options; the executable with the lowest single-thread
execution time on our target hardware was used for all experiments.
By maximizing single-thread parallelism through our compilation
system, we avoid overstating the increases in parallelism achieved
with simultaneous multithreading.

3 Superscalar Bottlenecks: Where Have All
the Cycles Gone?

This section provides motivation for simultaneous multithreading
by exposing the limits of wide superscalar execution, identifying
the sources of those limitations, and bounding the potential im-
provement possible from specific latency-hiding techniques.

Using the base single-hardware-context machine, we measured
the issue utilization, i.e., the percentage of issue slots that are filled
eachcycle, for most of the SPEC benchmarks. We also recorded the
cause of each empty issue slot. For example, if the next instruction
cannot be scheduled in the same cycle as the current instruction,
then the remaining issue slots this cycle, as well as all issue slots
for idle cycles between the execution of the current instruction and
the next (delayed) instruction, are assigned to the cause of the delay.
When there are overlapping causes, all cycles are assigned to the
cause that delays the instruction the most; if the delays are additive,
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Figure 2: Sourcesof all unused issue cyclesin an 8-issue super scalar processor. Processor busy representsthe utilized issue dots; all

othersrepresent wasted issuedots.

such as an | tlb miss and an | cache miss, the wasted cycles are
divided up appropriately. Table 3 specifies all possible sources
of wasted cyclesin our model, and some of the latency-hiding or
latency-reducing techniques that might apply to them. Previous
work [32, 5, 18], in contrast, quantified some of these same effects
by removing barriers to paralelism and measuring the resulting
increasesin performance.

Our results, shown in Figure 2, demonstrate that the functional
units of our wide superscalar processor are highly underutilized.
From the composite results bar on the far right, we see a utilization
of only 19% (the “processor busy” component of the composite bar
of Figure 2), which represents an average execution of lessthan 1.5
instructions per cycle on our 8-issue machine.

These results also indicate that there is no dominant source of
wasted issue bandwidth. Although there are dominant items in
individual applications (e.g., mdljsp2, swm, fpppp), the dominant
causeis different in each case. In the composite results we see that
the largest cause (short FP dependences) is responsible for 37% of
the issue bandwidth, but there are six other causesthat account for

at least 4.5% of wasted cycles. Even completely eliminating any
one factor will not necessarily improve performance to the degree
that this graph might imply, because many of the causes overlap.

Not only is there no dominant cause of wasted cycles — there
appearsto benodominant solution. Itisthusunlikely that any single
latency-tolerating techniquewill produce adramatic increasein the
performance of these programs if it only attacks specific types of
latencies. Instruction schedulingtargets several important segments
of the wasted issue bandwidth, but we expect that our compiler
has already achieved most of the available gains in that regard.
Current trends have been to devote increasingly larger amounts of
on-chip areato caches, yet even if memory latenciesare completely
eliminated, we cannot achieve 40% utilization of this processor. If
specific latency-hiding techniques are limited, then any dramatic
increasein parallelism needsto comefrom ageneral latency-hiding
solution, of which multithreading isan example. Thedifferent types
of multithreading have the potential to hide all sources of latency,
but to different degrees.

Thisbecomesclearer if weclassfy wasted cyclesaseither vertical



Source of Wasted

Issue Slots Possible L atency-Hiding or Latency-Reducing Technique

instruction tlb miss, data || decreasethe TLB missrates(e.g., increasethe TLB sizes); hardwareinstruction prefetching; hardware

tlb miss or software data prefetching; faster servicing of TLB misses

| cachemiss larger, more associative, or faster instruction cache hierarchy; hardwareinstruction prefetching

D cachemiss larger, more associétive, or faster data cache hierarchy; hardware or software prefetching; improved
instruction scheduling; more sophisticated dynamic execution

branch misprediction improved branch prediction scheme; lower branch misprediction penalty

control hazard

specul ative execution; more aggressive if-conversion

load delays (first-level
cachehits)

shorter load latency; improved instruction scheduling; dynamic scheduling

short integer delay

improved instruction scheduling

long integer, short fp, long
fp delays

(multiply isthe only long integer operation, divide is the only long floating point operation) shorter
latencies; improved instruction scheduling

memory conflict

(accessesto the same memory location in asingle cycle) improved instruction scheduling

Table 3: All possible causes of wasted issue slots, and latency-hiding or latency-reducing techniquesthat can reduce the number of

cycleswasted by each cause.

waste (completely idle cycles) or horizontal waste (unused issue
slots in a non-idle cycle), as shown previously in Figure 1. In our
measurements, 61% of the wasted cycles are vertical waste, the
remainder are horizontal waste. Traditional multithreading (coarse-
grain or fine-grain) can fill cyclesthat contribute to vertical waste.
Doing so, however, recovers only a fraction of the vertical waste;
becauseof theinability of asinglethread to completely fill theissue
slots each cycle, traditional multithreading converts much of the
vertical wasteto horizontal waste, rather than eliminating it.

Simultaneous multithreading hasthe potential to recover all issue
slots lost to both horizontal and vertical waste. The next section
provides details on how effectively it does so.

4 Simultaneous Multithreading

This section presents performance results for simultaneous multi-
threaded processors. We begin by defining several machine models
for simultaneous multithreading, spanning arange of hardware com-
plexities. We then show that simultaneous multithreading provides
significant performance improvement over both single-thread su-
perscalar and fine-grain multithreaded processors, both in the limit,
and also under less ambitious hardware assumptions.

4.1 TheMachine Models

The following models reflect several possible design choicesfor a
combined multithreaded, superscalar processor. The models differ
in how threads can use issue slots and functional units each cycle;
in all cases, however, the basic machine is a wide superscalar with
10 functiona units capable of issuing 8 instructions per cycle (the
same core machine as Section 3). The modelsare:

¢ Fine-Grain Multithreading. Only one thread issuesinstruc-
tions each cycle, but it can use the entire issue width of the
processor. Thishidesall sourcesof vertical waste, but doesnot
hidehorizontal waste. It isthe only model that doesnot feature
simultaneous multithreading. Among existing or proposed ar-

chitectures, thisismost similar to the Teraprocessor [3], which
issues one 3-operation LIW instruction per cycle.

e SM:Full Simultaneous Issue. Thisis a completely flexible
simultaneousmultithreaded superscalar: all eight threadscom-
pete for each of the issue slots each cycle. This is the least
realistic model in terms of hardware complexity, but provides
insight into the potential for simultaneousmultithreading. The
following models each represent restrictions to this scheme
that decrease hardware complexity.

¢ SM:Singlelssue, SM:Dual | ssue, and SM: Four Issue. These
three models limit the number of instructions each thread can
issue, or have activein the schedulingwindow, each cycle. For
example, in aSM:Dual Issue processor, each thread can issue
amaximum of 2 instructions per cycle; therefore, a minimum
of 4 threads would be required to fill the 8 issue slotsin one

cycle.

e SM:Limited Connection. Each hardware context is directly
connected to exactly one of each type of functional unit. For
example, if the hardware supports eight threads and there are
four integer units, each integer unit could receive instructions
from exactly two threads. The partitioning of functiona units
among threads is thus less dynamic than in the other models,
but each functional unit is still shared (the critical factor in
achieving high utilization). Since the choice of functional
unitsavailableto asinglethread isdifferent thanin our original
target machine, we recompiled for a4-issue (one of each type
of functional unit) processor for this model.

Some important differences in hardware implementation com-
plexity are summarized in Table 4. Noticethat the fine-grain model
may not necessarily represent the cheapest implementation. Many
of these complexity issues are inherited from our wide superscalar
design rather than from multithreading, per se. Evenin the SM:full
simultaneousissue model, the inter-instruction dependence check-
ing, the ports per register file, and the forwarding logic scale with
the issue bandwidth and the number of functional units, rather than



Inter-inst Instruction

Register | Dependence | Forwarding | Scheduling
Model Ports Checking Logic ontoFUs | Notes
Fine-Grain H H H/L* L Scheduling independent of other threads.
SM:Single Issue L None H H
SM:Dual Issue M L H H
SM:Four Issue M M H H
SM:Limited M M M M No forwarding between FUs of same type;
Connection scheduling is independent of other FUs
SM:Full Simultane- H H H H Most complex, highest performance
ous Issue

* We have modeled this schemewith all forwarding intact, but forwarding could be eliminated, requiring more threads for maximum performance

Table 4: A comparison of key hardware complexity features of the variousmodels (H=high complexity). We consider the number of
portsneeded for each register file, thedependencecheckingfor asinglethread toissuemultiple instructions, theamount of forwarding
logic, and the difficulty of schedulingissued instructionsonto functional units.

the number of threads. Our choiceof ten functional unitsseemsrea-
sonable for an 8-issue processor. Current 4-issue processors have
between 4 and 9 functional units. The number of ports per register
file and the logic to select instructions for issue in the four-issue
and limited connection modelsare comparableto current four-issue
superscalars; the single-issue and dual-issue are less. The schedul-
ing of instructions onto functional units is more complex on all
types of simultaneous multithreaded processors. TheHirata, et al.,
design [16] is closest to the single-issue model, although they sim-
ulate a small number of configurations where the per-thread issue
bandwidth isincreased. Others [34, 17, 23, 6] implement models
that are more similar to full simultaneousissue, but the issue width
of the architectures, and thus the complexity of the schemes, vary
considerably.

4.2 The Performance of Simultaneous M ultithreading

Figure 3 showsthe performance of the variousmodels asafunction
of the number of threads. The segments of each bar indicate the
throughput component contributed by each thread. The bar-graphs
show threeinteresting pointsin the multithreaded design space: fine-
grained multithreading (only one thread per cycle, but that thread
can use all issue slots), SM: Single Issue (many threads per cycle,
but each can use only oneissue slot), and SM: Full Simultaneous
Issue (many threads per cycle, any thread can potentialy use any
issueslot).

The fine-grain multithreaded architecture (Figure 3(a)) provides
a maximum speedup (increase in instruction throughput) of only
2.1 over single-thread execution (from 1.5 IPC to 3.2). The graph
showsthat thereislittle advantageto adding more than four threads
in this model. In fact, with four threads, the vertical waste has
been reduced to less than 3%, which bounds any further gains
beyondthat point. Thisresultissimilar to previousstudies[2, 1, 19,
14, 33, 31] for both coarse-grain and fine-grain multithreading on
single-issue processors, which have concluded that multithreading
isonly beneficial for 2 to 5 threads. These limitations do not apply
to simultaneous multithreading, however, because of its ability to
exploit horizontal waste.

Figures 3(b,c,d) show the advantage of the simultaneous multi-
threading models, which achieve maximum speedups over single-

thread superscalar execution ranging from 3.2 to 4.2, with an issue
rate as high as 6.3 IPC. The speedups are cal culated using the full
simultaneous issue, 1-thread result to represent the single-thread
superscalar.

With SM, it is not necessary for any single thread to be able to
utilizethe entire resourcesof the processor in order to get maximum
or near-maximum performance. The four-issue model gets nearly
the performance of the full simultaneousissue model, and even the
dual-issuemodel isquite competitive, reaching 94% of full simulta-
neousissue at 8 threads. Thelimited connection model approaches
full simultaneousissue more slowly dueto its less flexible schedul-
ing. Each of these models becomes increasingly competitive with
full simultaneousissueastheratio of threadsto issueslotsincreases.

With the results shown in Figure 3(d), we see the possibility of
trading the number of hardware contexts agai nst hardware compl ex-
ity in other areas. For example, if we wish to execute around four
instructionsper cycle, we can build afour-issue or full simultaneous
machinewith 3to 4 hardware contexts, adual -issuemachinewith 4
contexts, alimited connection machinewith 5 contexts, or asingle-
issue machine with 6 contexts. Tera[3] is an extreme example of
trading pipeline complexity for more contexts; it has no forward-
ing in its pipelines and no data caches, but supports 128 hardware
contexts.

Theincreasesin processor utilization areadirect result of threads
dynamically sharing processor resources that would otherwise re-
main idle much of the time; however, sharing also has negative
effects. We see (in Figure 3(c)) the effect of competition for is-
sue slots and functional unitsin the full simultaneousissue model,
where the lowest priority thread (at 8 threads) runs at 55% of the
speed of the highest priority thread. We can al so observetheimpact
of sharing other system resources (caches, TLBs, branch predic-
tion table); with full simultaneousissue, the highest priority thread,
whichisfairly immuneto competition for issue slotsand functional
units, degradessignificantly asmore threadsare added (a 35% slow-
down at 8 threads). Competition for non-execution resources, then,
plays nearly as significant arole in this performance region as the
competition for execution resources.

Others have observed that caches are more strained by a multi-
threaded workload than asingle-thread workload, due to adecrease
in locality [21, 33, 1, 31]. Our data (not shown) pinpoints the ex-
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act areas where sharing degrades performance. Sharing the caches
is the dominant effect, as the wasted issue cycles (from the per-
spective of the first thread) due to | cache misses grows from 1%
at one thread to 14% at eight threads, while wasted cycles due to
data cache misses grows from 12% to 18%. The data TLB waste
also increases, from less than 1% to 6%. In the next section, we
will investigate the cache problem. For the data TLB, we found
that, with our workload, increasing the shared data TLB from 64 to
96 entries brings the wasted cycles (with 8 threads) down to 1%,
while providing private TLBs of 24 entries reducesit to under 2%,
regardless of the number of threads.

It is not necessary to have extremely large caches to achieve
the speedups shown in this section. Our experiments with signif-
icantly smaller caches (not shown here) reveal that the size of the
caches affects 1-thread and 8-thread results equally, making the to-
tal speedupsrelatively constant across awide range of cache sizes.
That is, while 8-thread execution results in lower hit rates than 1-
thread execution, therel ative effect of changingthe cachesizeisthe
samefor each.

In summary, our results show that simultaneous multithreading
surpasseslimits on the performance attainable through either single-
thread execution or fine-grain multithreading, when run on a wide

superscalar. We have also seen that simplified implementations of
SM with limited per-thread capabilities can still attain high instruc-
tion throughput. Theseimprovements comewithout any significant
tuning of the architecture for multithreaded execution; in fact, we
havefound that theinstruction throughput of the various SM models
is somewhat hampered by the sharing of the cachesand TLBs. The
next section investigatesdesignsthat are more resistant to the cache
effects.

5 Cache Design for a Simultaneous Multi-
threaded Processor

Our measurements show a performance degradation due to cache
sharing in simultaneous multithreaded processors. In this section,
we explore the cache problem further. Our study focuses on the
organization of the first-level (L1) caches, comparing the use of
private per-thread cachesto shared cachesfor both instructions and
data. (We assume that L2 and L3 caches are shared among all
threads.) All experimentsusethe4-issuemodel with upto 8threads.

The caches are specified as [total | cache size in KB][private or
shared].[D cache size][private or shared] in Figure 4. For instance,



64p.64s has eight private 8 KB | caches and a shared 64 KB data
cache. Not al of the private cacheswill be utilized when fewer than
eight threads are running.

Figure 4 exposes severa interesting properties for multithreaded
caches. We see that shared caches optimize for a small number of
threads (where the few threads can use all available cache), while
private caches perform better with a large number of threads. For
example, the 64s.64scacheranksfirst among all modelsat 1 thread
and last at 8 threads, while the 64p.64p cache gives nearly the
opposite result. However, the tradeoffs are not the same for both
instructions and data. A shared data cache outperforms a private
data cacheover al numbers of threads (e.g., compare 64p.64swith
64p.64p), while instruction caches benefit from private cachesat 8
threads. One reason for thisisthe differing accesspatterns between
instructions and data. Private | caches eliminate conflicts between
different threads in the | cache, while a shared D cache alows
a single thread to issue multiple memory instructions to different
banks.
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Figure 4: Resultsfor the simulated cache configur ations, shown
relativeto thethroughput (instructionsper cycle) of the 64s.64p
cacheresults.

There are two configurations that appear to be good choices.
Becausethere islittle performance difference at 8 threads, the cost
of optimizing for asmall number of threadsissmall, making 64s.64s
an attractive option. However, if we expect to typically operatewith
all or most thread slots full, the 64p.64s gives the best performance
inthat region and is never worse than the second best performer with
fewer threads. The shared data cache in this scheme allows it to
take advantageof moreflexible cache partitioning, whilethe private
instruction cachesmake each thread less sensitive to the presence of
other threads. Shared data cachesalso have a significant advantage
in adata-sharing environment by allowing sharing at thelowest level
of the data cache hierarchy without any special hardware for cache
coherence.

6 SimultaneousMultithreading versusSingle-
Chip Multiprocessing

As chip densities continue to rise, single-chip multiprocessors will
provide an obviousmeans of achieving parallelismwiththeavailable
real estate. This section comparesthe performance of simultaneous
multithreading to small-scal e, single-chip multiprocessing (MP). On
the organizational level, the two approaches are extremely similar:
both have multiple register sets, multiple functional units, and high
issue bandwidth on a single chip. The key differenceisin the way
those resources are partitioned and scheduled: the multiprocessor
statically partitions resources, devoting afixed number of functional
units to each thread; the SM processor allows the partitioning to
change every cycle. Clearly, scheduling is more complex for an
SM processor; however, we will show that in other areas the SM
model requiresfewer resources, relative to multiprocessing, in order
to achieve adesired level of performance.

For these experiments, we tried to choose SM and MP configu-
rations that are reasonably equivalent, although in several caseswe
biased in favor of the MP. For most of the comparisonswe keep all
or most of the following equal: the number of register sets(i.e, the
number of threadsfor SM and the number of processorsfor MP), the
total issue bandwidth, and the specific functional unit configuration.
A consequence of the last item is that the functional unit configu-
ration is often optimized for the multiprocessor and represents an
inefficient configuration for simultaneous multithreading. All ex-
periments use 8 KB private instruction and data caches (per thread
for SM, per processor for MP), a 256 KB 4-way set-associative
shared second-level cache, and a 2 MB direct-mapped third-level
cache. We want to keep the caches constant in our comparisons,
and this (private | and D caches) is the most natural configuration
for the multiprocessor.

We evaluate MPs with 1, 2, and 4 issues per cycle on each pro-
cessor. We evaluate SM processors with 4 and 8 issues per cycle;
however we use the SM:Four Issue model (defined in Section 4.1)
for all of our SM measurements (i.e., each thread is limited to four
issuesper cycle). Using this model minimizes some of theinherent
complexity differences between the SM and MP architectures. For
example, an SM:Four Issue processor is similar to asingle-threaded
processor with 4 issues per cycle in terms of both the number of
ports on each register file and the amount of inter-instruction de-
pendence checking. In each experiment we run the same version
of the benchmarksfor both configurations (compiled for a 4-issue,
4 functional unit processor, which most closely matches the MP
configuration) on both the MP and SM models; thistypically favors
theMP.

We must note that, while in general we have tried to bias the
testsin favor of the MP, the SM results may be optimistic in two
respects—theamount of time required to schedul einstructions onto
functiona units, and the shared cacheaccesstime. Theimpact of the
former, discussedin Section 2.1, issmall. The distancebetweenthe
load/store units and the data cache can have alarge impact on cache
accesstime. The multiprocessor, with private caches and private
load/store units, can minimize the distances between them. Our
SM processor cannot do so, even with private caches, because the
load/store units are shared. However, two alternate configurations
could eliminate this difference. Having eight load/store units (one
private unit per thread, associated with a private cache) would still
allow us to match MP performance with fewer than half the total
number of MP functional units (32 vs. 15). Or with 4 load/store
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Figure 5: Resultsfor the various multiprocessor vs. simultaneous multithreading comparisons. The multiprocessor always has one
functional unit of each type per processor. In most casesthe SM processor hasthe sametotal number of each FU type asthe MP.

units and 8 threads, we could statically share a single cache/load-
store combination among each set of 2 threads. Threads 0 and
1 might share one load/store unit, and all accesses through that
load/store unit would go to the same cache, thus alowing us to
minimize the distance between cache and | oad/store unit, while still
allowing resource sharing.

Figure 5 showsthe results of our SM/M P comparison for various
configurations. Tests A, B, and C compare the performance of the
two schemes with an essentialy unlimited number of functional
units (FUs); i.e, thereis afunctional unit of each type availableto
every issueslot. The number of register sets and total issue band-
width are constant for each experiment, e.g., in Test C, a4 thread,
8-issue SM and a 4-processor, 2-issue-per-processor MP both have
4register setsand issueup to 8 instructions per cycle. Inthese mod-
els, theratio of functional units (and threads) to issue bandwidth is
high, so both configurations should be able to utilize most of their
issue bandwidth. Simultaneous multithreading, however, does so
more effectively.

Test D repeats test A but limits the SM processor to a more
reasonable configuration (the same 10 functional unit configura-
tion used throughout this paper). This configuration outperforms
the multiprocessor by nearly as much as test A, even though the
SM configuration has 22 fewer functional units and requires fewer
forwarding connections.

In tests E and F, the MP is allowed a much larger total issue
bandwidth. In test E, each MP processor can issue 4 instructions
per cyclefor atotal issue bandwidth of 32 across the 8 processors;
each SM thread can also issue 4 instructions per cycle, but the 8
threads share only 8 issue slots. The results are similar despite
the disparity in issue dots. In test F, the 4-thread, 8-issue SM
slightly outperforms a4-processor, 4-issue per processor M P, which

has twice the total issue bandwidth. Simultaneous multithreading
performswell in thesetests, despiteits handicap, becausethe MPis
constrained with respect to which 4 instructions a single processor
canissueinasingle cycle.

Test G shows the greater ability of SM to utilize a fixed number
of functional units. Here both SM and MP have 8 functional units
and 8 issues per cycle. However, while the SM is allowed to have
8 contexts (8 register sets), the MP is limited to two processors (2
register sets), becauseeach processor must have at least 1 of each of
the4 functional unit types. Simultaneousmultithreading’s ability to
drive up the utilization of afixed number of functional unitsthrough
the addition of thread contexts achieves more than 2 £ times the
throughput.

These comparisons show that simultaneous multithreading out-
performs single-chip multiprocessing in avariety of configurations
because of the dynamic partitioning of functional units. More im-
portant, SM requires many fewer resources (functional units and
instruction issue slots) to achieve a given performance level. For
example, asingle8-thread, 8-issue SM processor with 10 functional
unitsis 24% faster than the 8-processor, single-issue MP (Test D),
whichhasidentical issuebandwidth but requires 32 functional units;
to equal the throughput of that 8-thread 8-issue SM, an MP system
requires eight 4-issue processors (Test E), which consume 32 func-
tional units and 32 issue slots per cycle.

Finally, there are further advantagesof SM over MP that are not
shown by the experiments:

¢ Performance with few threads — These results show only the
performance at maximum utilization. The advantage of SM
(over MP) is greater as some of the contexts (processors) be-
come unutilized. An idle processor leaves 1/p of an MP idle,



while with SM, the other threads can expand to use the avail-
ableresources. Thisisimportant when (1) werun parallel code
wherethedegree of parallelism variesover time, (2) the perfor-
mance of a small number of threadsis important in the target
environment, or (3) the workload is sized for the exact size of
the machine (e.g., 8 threads). In thelast case, a processor and
all of itsresourcesis lost when a thread experiences alatency
orders of magnitude larger than what we have simulated (e.g.,
10).

e Granularity and flexibility of design— Our configuration op-
tions are much richer with SM, because the units of design
have finer granularity. That is, with a multiprocessor, we
would typically add computing in units of entire processors.
With simultaneousmultithreading, we can benefit from the ad-
dition of a single resource, such asafunctional unit, aregister
context, or an instruction issue slot; furthermore, all threads
would beableto sharein using that resource. Our comparisons
did not take advantage of this flexibility. Processor designers,
taking full advantage of the configurability of simultaneous
multithreading, should be able to construct configurationsthat
even further out-distance multiprocessing.

For these reasons, as well as the performance and complexity
results shown, we believe that when component densities permit
us to put multiple hardware contexts and wide issue bandwidth
on a single chip, simultaneous multithreading represents the most
efficient organization of those resources.

7 Reated Work

We have built on work from a large number of sources in this
paper. In this section, we note previous work on instruction-level
paralelism, on several traditional (coarse-grain and fine-grain) mul-
tithreaded architectures, and on two architectures (the M-Machine
and the Multiscalar architecture) that have multiple contexts active
simultaneously, but do not have simultaneous multithreading. We
also discuss previous studies of architectures that exhibit simulta-
neous multithreading and contrast our work with thesein particular.

The data presented in Section 3 provides a different perspective
from previous studies on ILP, which remove barriers to parallelism
(i.e. apply real or ideal latency-hiding techniques) and measure
the resulting performance. Smith, et al., [28] focus on the effects
of fetch, decoding, dependence-checking, and branch prediction
limitations on ILP; Butler, et al., [5] examinethese limitations plus
scheduling window size, scheduling policy, and functional unit con-
figuration; Lam and Wilson [18] focus on theinteraction of branches
and ILP; and Wall [32] examines scheduling window size, branch
prediction, register renaming, and aliasing.

Previous work on coarse-grain [2, 27, 31] and fine-grain [28, 3,
15, 22, 19] multithreading provides the foundation for our work on
simultaneous multithreading, but none features simultaneous issu-
ing of instructions from different threads during the same cycle. In
fact, most of these architectures are single-issue, rather than super-
scalar, although Tera has LIW (3-wide) instructions. In Section 4,
we extended these resultsby showing how fine-grain multithreading
runs on a multiple-issue processor.

In the M-Machine [7] each processor cluster schedulesLIW in-
structions onto execution units on a cycle-by-cycle basissimilar to
the Tera scheme. There is no simultaneous issue of instructions

from multiple threadsto functional unitsin the same cycle onindi-
vidual clusters. Franklin’s Multiscalar architecture [13, 12] assigns
fine-grain threads to processors, so competition for execution re-
sources (processorsin this case) is at thelevel of atask rather than
anindividual instruction.

Hirata, et al., [16] present an architecture for a multithreaded
superscalar processor and simulate its performance on a paralel
ray-tracing application. They do not simulate cachesor TLBs, and
their architecture has no branch prediction mechanism. They show
speedups as high as 5.8 over a single-threaded architecture when
using 8 threads. Yamamoto, et al., [34] present an analytical model
of multithreaded superscalar performance, backedup by simulation.
Their study models perfect branching, perfect cachesand a homo-
geneousworkload (all threadsrunning the sametrace). They report
increasesin instruction throughput of 1.3 to 3 with four threads.

Keckler and Dally [17] and Prasadh and Wu [23] describe archi-
tecturesthat dynamically interleave operationsfrom VLIW instruc-
tions onto individual functional units. Keckler and Daly report
speedups as high as 3.12 for some highly parallel applications.
Prasadh and Wu also examine the register file bandwidth require-
ments for 4 threads scheduled in this manner. They use infinite
caches and show a maximum speedup above 3 over single-thread
execution for parallel applications.

Daddis and Torng [6] plot increases in instruction throughput
as a function of the fetch bandwidth and the size of the dispatch
stack. Thedispatch stackistheglobal instruction window that issues
all fetched instructions. Their system has two threads, unlimited
functiona units, and unlimited issue bandwidth (but limited fetch
bandwidth). They report a near doubling of throughput.

In contrast to these studies of multithreaded, superscal ar architec-
tures, we use a heterogeneous, multiprogrammed workload based
on the SPEC benchmarks; we model all sources of latency (cache,
memory, TLB, branching, real instruction latencies) in detail. We
also extend the previous work in evaluating a variety of models of
SM execution. We look more closely at the reasons for the result-
ing performance and address the shared cache issue specifically.
We go beyond comparisonswith single-thread processorsand com-
pare simultaneous multithreading with other relevant architectures:
fine-grain, superscalar multithreaded architectures and single-chip
multiprocessors.

8 Summary

This paper examined simultaneous multithreading, a technique that
allows independent threads to issue instructions to multiple func-
tional unitsinasinglecycle. Simultaneous multithreading combines
facilities available in both superscalar and multithreaded architec-
tures. We have presented several models of simultaneous mul-
tithreading and compared them with wide superscalar, fine-grain
multithreaded, and single-chip, multiple-issue multiprocessing ar-
chitectures. Our eval uation used execution-driven simulation based
on amodel extended from the DEC Alpha 21164, running a multi-
programmed workload composed of SPEC benchmarks, compiled
for our architecture with the Multiflow trace scheduling compiler.

Our results show the benefits of simultaneous multithreading
when compared to the other architectures, namely:

1. Given our model, a simultaneous multithreaded architec-
ture, properly configured, can achieve 4 times the instruction



throughput of asingle-threaded wide superscal ar with the same
issuewidth (8 instructions per cycle, in our experiments).

2. Whilefine-grainmultithreading (i.e., switching to anew thread
every cycle) helpsclosethe gap, the simultaneous multithread-
ing architecture still outperforms fine-grain multithreading by
afactor of 2. Thisis due to the inability of fine-grain multi-
threading to utilize issue slots lost due to horizontal waste.

3. A simultaneous multithreaded architecture is superior in per-
formance to a multiple-issue multiprocessor, given the same
total number of register sets and functional units. Moreover,
achieving aspecific performance goal requiresfewer hardware
execution resources with simultaneous multithreading.

The advantage of simultaneous multithreading, compared to the
other approaches, is its ability to boost utilization by dynamically
scheduling functiona units among multiple threads. SM aso in-
creases hardware design flexibility; a simultaneous multithreaded
architecture can tradeoff functional units, register sets, and issue
bandwidth to achieve better performance, and can add resourcesin
afine-grained manner.

Simultaneous multithreading increasesthe complexity of instruc-
tion scheduling relative to superscalars, and causes shared resource
contention, particularly in the memory subsystem. However, we
have shown how simplified models of simultaneous multithreading
reach nearly the performance of the most general SM model with
complexity in key areas commensurate with that of current super-
scalars; we also show how properly tuning the cache organization
can both increase performance and make individual threads less
sengitive to multi-thread contention.
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