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Microprogramming in 1970’s
Technology

- ROMs were faster than DRAMs

Instructions
- For complex instruction sets (CISC), datapath and controller were 
cheaper and simpler
- New instructions (e.g., floating point) supported without datapath 
modifications

Compatibility 
- ISA compatibility across machine models were cheaper and simpler
- Fixing bugs in the controller was easier

In the 1970s , except for cheapest and fastest 
machines, all computers were microprogrammed
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Microprogramming in 1980’s
Increasing Complexity

- CISC ISAs led to subroutine and call stacks in microcode
- Fixing bugs in control conflicts with read-only nature of ROMs

Technology
- Advent of VLSI technology
- Assumptions about ROM vs RAM speed became invalid

Instructions
- Better compilers made complex instructions less important
- Compilers had difficulty using complex instructions

Microarchitecture
- Microarchitectural innovations: pipelining, caches and buffers, etc.
- Make multiple-cycle execution of reg-reg instructions unattractive



Modern Microprogramming
Microprogramming is far from extinct

- Played crucial role in microprocessors of 1980’s (e.g., Intel 386, 486)
- Plays assisting role in modern microprocessors

Important role in early microprocessors (1980s)
- Example: Intel 386, 486

Assisting role in modern microprocessors
- Example: AMD Athlon, Intel Core 2 Duo, IBM Power PC
- Most instructions executed directly (hardwired control)
- Infrequently-used, complicated instructions invoke microcode engine

Assisting role in modern microprocessors
- Patchable microcode common for post-fabrication bug  fixes
- Example: Intel Pentiums load microcode patches at bootup
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CISC to RISC
Instruction Management

- Shift away from fixed hardware microcode, microroutines
- Exploit fast RAM to build instruction cache of user-visible instructions
- Adapt contents of fast instruction memory to fit what application 
needs at the moment. 

Simple Instruction Set
- Shift away from complex CISC instructions, which are rarely used
- Enable hardwired, pipelined implementation

Greater Integration
- In early 1980s, able to fit 32-bit datapath and small cache on die
- Allow faster operation by avoiding chip crossings in common case
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CDC 6600
Seymore Cray, 1964

- Fast, pipelined machine with 60-bit words
- Ten functional units (floating-point, integer, etc.)

Control
- Hardwired control, no microcoding
- Dynamic instruction scheduling with a scoreboard

System Organization
- Ten peripheral processors for input/output
- Fast time-shared 12-bit integer ALU
- Very fast clock, 10MHz
- Novel Freon-based technology for cooling
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CDC 6600: Datapath

Address Regs         Index Regs
8 x 18-bit                8 x 18-bit

Operand Regs
8 x 60-bit

Inst. Stack
8 x 60-bit

IR

10 Functional
Units

Central
Memory

128K words,
32 banks,
1ms cycle

result
addr

result

operand

operand
addr
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CDC 6600: Load/Store Architecture
Separate instructions manipulate three register types

- 8, 60-bit data registers
- 8, 18-bit address registers
- 8, 18-bit index registers

Arithmetic and logic instructions are reg-to-reg
- Hardwired control, no microcoding
- Dynamic instruction scheduling with a scoreboard

Only load and store instructions refer to memory

6 3        3       3 
opcode i        j       k  Ri(Rj) op (Rk)

6      3 3                  18 
opcode i     j                disp Ri M[(Rj) + disp]



CDC 6600: Instruction Set
Simplified Pipeline Implementation

- Three-address, register-register ALU instructions
- No implicit dependencies between inputs and outputs

Multiple Outstanding Memory Accesses
- Decouple (a) setting of address register from (b) retreiving value from 
data register
- SW can schedule load for address register before use of loaded value
- SW can interleave independent instructions

Multiple parallel functional units
- Example: two separate multipliers
- Functional units initially unpipelined
- CDC7600 pipelines functional units (foreshadowing later RISC machines)
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Performance Factors
Latency = (Instructions / Program) x (Cycles / Instruction) / (Seconds / Cycle)

- Instructions per program depends on source code, compiler technology, ISA
- Cycles per instruction (CPI) depends on the ISA and the microarchitecture
- Time per cycle depends on the microarchitecture, underlying technology

Microarchitecture CPI Cycle Time
Microcoded >1 short
Single-cycle unpipelined 1 long
Pipelined 1 short

- This lecture presents single-cycle unpipelined microarchitecture
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Hardware Elements

Combinational Circuits
- Mux, Decoder, ALU, ...

Synchronous State Elements
- Flipflop, Register, Register file, SRAM, DRAM
- Edge-triggered elements where data is sampled on rising edge
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Register Files
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Register File Implementation

reg 31

ws clk

reg 1

wd

we

rs1
rd1 rd2

reg 0

…

32

…

5 32 32

…

rs25
5

Highly ported register files difficult to design
- Almost all MIPS instructions have exactly 2 register source operands 
- Intel’s Itanium, GPR File has 128 registers with 8 read ports, 4 write ports!!! 
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Simple Memory Model

MAGIC
RAM

ReadData

WriteData

Address

WriteEnable
Clock

Reads, Writes complete in one cycle
- Read can be done any time (i.e. combinational)
- Write is performed at the rising clock edge if it is enabled     
- Write address and data must be stable at the clock edge



MIPS Instruction Set Architecture
Processor State

- 32 32-bit GPRs, R0 always contains a 0
- 32 single precision FPRs, may also be viewed as16 double precision FPRs
- FP status register, used for FP compares & exceptions
- PC, the program counter
- some other special registers

Data types
- 8-bit byte, 16-bit half word 
- 32-bit word for integers
- 32-bit word for single precision floating point
- 64-bit word for double precision floating point

Load/Store style instruction set
- data addressing modes- immediate & indexed
- branch addressing modes- PC relative & register indirect
- byte addressable memory- big endian mode

All instructions are 32 bits
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Instruction Execution
1. Instruction Fetch
2. Decode and register access
3. ALU operation
4. Memory operation (optional)
5. Write back

And the computation of  the address of the next 
instruction
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Reg-Reg ALU Instructions
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6 5 5       5       5          6
0 rs rt       rd       0       func       rd  (rs) func (rt)

31        26  25      21 20     16 15       11             5             0
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Reg-Imm ALU Instructions
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6 5 5 16
opcode rs rt immediate rt  (rs) op immediate

31         26 25       2120      16 15                                     0
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Conflicts in Merging Datapath
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ALU Instructions
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<31:26>, <5:0>

opcode rs rt immediate rt  (rs) op immediate

6 5 5       5       5          6
0 rs rt       rd       0       func    rd  (rs) func (rt)
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Load/Store Instructions (Harvard)
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WBSrc
ALU / Mem

rs is the base register
rt is the destination of a Load or the source for a Store

6 5 5               16                   addressing mode
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MIPS Control Instructions
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Conditional PC-relative branch

Unconditional register-indirect jumps

Unconditional absolute jumps

• PC-relative branches add offset4 to PC+4 to calculate the target address 
(offset is in words): 128 KB range

• Absolute jumps append target4 to PC<31:28> to calculate the target address: 
256 MB range

• jump-&-link stores PC+4 into the link register (R31)
• All Control Transfers are delayed by 1 instruction

we will worry about the branch delay slot later

6 5 5 16
opcode rs offset BEQZ, BNEZ

6                  26
opcode target J, JAL

6 5 5                     16
opcode rs JR, JALR



Conditional Branches (BEQZ, BNEZ)
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Register-Indirect Jumps (JR)
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Jump & Link (JALR)
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Absolute Jumps (J, JAL)
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Harvard Datapath for MIPS
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Hardwired Control
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combinational 
logic

op code

zero?

ExtSel
BSrc
OpSel
MemWrite
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RegDst
RegWrite
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Hardware control is pure combinational logic



ALU Control, Immediate Extension
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Inst<31:26> (Opcode) 

Decode Map

Inst<5:0> (Func)

ALUop
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Hardwired Control Table
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Opcode ExtSel BSrc OpSel MemW RegW WBSrc RegDst PCSrc

ALU
ALUi
ALUiu
LW
SW
BEQZz=0

BEQZz=1

J
JAL
JR
JALR

BSrc = Reg / Imm WBSrc = ALU / Mem / PC    
RegDst = rt / rd / R31 PCSrc = pc+4 / br / rind / jabs

* * * no yes rindPC R31
rind* * * no no * *
jabs* * * no yes PC R31

jabs* * * no no * *
pc+4sExt16 * 0? no no * *
brsExt16 * 0? no no * *
pc+4sExt16 Imm + yes no * *

pc+4Imm Op no yes ALU rt

pc+4* Reg Func no yes ALU rd
sExt16 Imm Op pc+4no yes ALU rt

pc+4sExt16 Imm + no yes Mem rt
uExt16



Harvard Control for MIPS
Assumptions

- Clock period is sufficiently long to complete:
1. instruction fetch
2. decode and register access
3. ALU operation
4. data fetch if required
5. register write-back setup time

- tC >  tIFetch + tRFetch + tALU+ tDMem+ tRWB

Update at end of Cycle
- Updates occur on rising edge of following clock
- Update architectural state
- Program counter (PC), register file, memory
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An Ideal Pipeline

All objects go through the same stages

No sharing of resources between any two stages

Propagation delay through all pipeline stages is equal

Scheduling of an object entering the pipeline is not 
affected by objects in other stages

These conditions hold for industrial assembly lines but do 
they hold for an instruction pipeline?
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Pipelining for MIPS
Strategy

- First, build MIPS without pipelining, CPI = 1
- Then, add pipeline registers to reduce cycle time, maintaining CPI=1
- Clock period reduced by dividing the execution of an instruction into 
multiple cycles, tC > max {tIM, tRF, tALU, tDM, tRW} ( = tDM probably)
- However, CPI will increase unless instructions are pipelined
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Dividing Datapath into Stages
Suppose memory is slower than other stages. 

Since slowest stage determines the clock, it may be 
possible to combine stages without loss of 
performance
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tIM = 10 units
tDM = 10 units
tALU = 5 units
tRF = 1 unit
tRW = 1 unit



Pipelining Example

- Write-back requires much less time, combine with memory access
- tC > max {tIM, tRF + tALU, tDM + tRW}   =  tDM+ tRW
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Pipelining Speedup
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Assumptions Unpipelined tC Unpipelined tC Speedup

tIM tDM = 10; 27 10 2.7
tALU = 5, 
tRF = tRW= 1
4-stage pipeline 

tIM = tDM = tALU = tRF = tRW = 5 25 10 2.5
4-stage pipeline 

tIM = tDM = tALU = tRF = tRW = 5 25 5 5.0
5-stage pipeline

Higher speedup possible w/ more pipeline stages



Summary
Microcoding became less attractive as gap 
between RAM and ROM speeds

Complex instruction sets difficult to pipeline, so it 
was difficult to increase performance as gate count 
grew

Processor performance depends on (a) instructions 
per program, (b) cycles per instruction and (c) time 
per cycle

Load/Store RISC instruction sets designed for 
efficient, pipelined implementations
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