
ECE 252 / CPS 220
Advanced Computer Architecture I

Lecture 4
Reduced Instruction Set Computers

Benjamin Lee
Electrical and Computer Engineering

Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall11.html

ECE 252 / CPS 220 2

Microprogramming in 1970’s
Technology

- ROMs were faster than DRAMs

Instructions
- For complex instruction sets (CISC), datapath and controller were
cheaper and simpler
- New instructions (e.g., floating point) supported without datapath
modifications

Compatibility
- ISA compatibility across machine models were cheaper and simpler
- Fixing bugs in the controller was easier

In the 1970s , except for cheapest and fastest
machines, all computers were microprogrammed

ECE 252 / CPS 220 3

Microprogramming in 1980’s
Increasing Complexity

- CISC ISAs led to subroutine and call stacks in microcode
- Fixing bugs in control conflicts with read-only nature of ROMs

Technology
- Advent of VLSI technology
- Assumptions about ROM vs RAM speed became invalid

Instructions
- Better compilers made complex instructions less important
- Compilers had difficulty using complex instructions

Microarchitecture
- Microarchitectural innovations: pipelining, caches and buffers, etc.
- Make multiple-cycle execution of reg-reg instructions unattractive

Modern Microprogramming
Microprogramming is far from extinct

- Played crucial role in microprocessors of 1980’s (e.g., Intel 386, 486)
- Plays assisting role in modern microprocessors

Important role in early microprocessors (1980s)
- Example: Intel 386, 486

Assisting role in modern microprocessors
- Example: AMD Athlon, Intel Core 2 Duo, IBM Power PC
- Most instructions executed directly (hardwired control)
- Infrequently-used, complicated instructions invoke microcode engine

Assisting role in modern microprocessors
- Patchable microcode common for post-fabrication bug fixes
- Example: Intel Pentiums load microcode patches at bootup

ECE 252 / CPS 220 4

ECE 252 / CPS 220 5

CISC to RISC
Instruction Management

- Shift away from fixed hardware microcode, microroutines
- Exploit fast RAM to build instruction cache of user-visible instructions
- Adapt contents of fast instruction memory to fit what application
needs at the moment.

Simple Instruction Set
- Shift away from complex CISC instructions, which are rarely used
- Enable hardwired, pipelined implementation

Greater Integration
- In early 1980s, able to fit 32-bit datapath and small cache on die
- Allow faster operation by avoiding chip crossings in common case

ECE 252 / CPS 220 6

CDC 6600
Seymore Cray, 1964

- Fast, pipelined machine with 60-bit words
- Ten functional units (floating-point, integer, etc.)

Control
- Hardwired control, no microcoding
- Dynamic instruction scheduling with a scoreboard

System Organization
- Ten peripheral processors for input/output
- Fast time-shared 12-bit integer ALU
- Very fast clock, 10MHz
- Novel Freon-based technology for cooling

ECE 252 / CPS 220 7

CDC 6600: Datapath

Address Regs Index Regs
8 x 18-bit 8 x 18-bit

Operand Regs
8 x 60-bit

Inst. Stack
8 x 60-bit

IR

10 Functional
Units

Central
Memory

128K words,
32 banks,
1ms cycle

result
addr

result

operand

operand
addr

ECE 252 / CPS 220 8

CDC 6600: Load/Store Architecture
Separate instructions manipulate three register types

- 8, 60-bit data registers
- 8, 18-bit address registers
- 8, 18-bit index registers

Arithmetic and logic instructions are reg-to-reg
- Hardwired control, no microcoding
- Dynamic instruction scheduling with a scoreboard

Only load and store instructions refer to memory

6 3 3 3
opcode i j k Ri(Rj) op (Rk)

6 3 3 18
opcode i j disp Ri M[(Rj) + disp]

CDC 6600: Instruction Set
Simplified Pipeline Implementation

- Three-address, register-register ALU instructions
- No implicit dependencies between inputs and outputs

Multiple Outstanding Memory Accesses
- Decouple (a) setting of address register from (b) retreiving value from
data register
- SW can schedule load for address register before use of loaded value
- SW can interleave independent instructions

Multiple parallel functional units
- Example: two separate multipliers
- Functional units initially unpipelined
- CDC7600 pipelines functional units (foreshadowing later RISC machines)

ECE 252 / CPS 220 9

ECE 252 / CPS 220 10

Performance Factors
Latency = (Instructions / Program) x (Cycles / Instruction) / (Seconds / Cycle)

- Instructions per program depends on source code, compiler technology, ISA
- Cycles per instruction (CPI) depends on the ISA and the microarchitecture
- Time per cycle depends on the microarchitecture, underlying technology

Microarchitecture CPI Cycle Time
Microcoded >1 short
Single-cycle unpipelined 1 long
Pipelined 1 short

- This lecture presents single-cycle unpipelined microarchitecture

ECE 252 / CPS 220 11

Hardware Elements

Combinational Circuits
- Mux, Decoder, ALU, ...

Synchronous State Elements
- Flipflop, Register, Register file, SRAM, DRAM
- Edge-triggered elements where data is sampled on rising edge

Clk

D

Q

En
ff

Q

D

Clk

En

OpSelect
- Add, Sub, ...
- And, Or, Xor, Not, ...
- GT, LT, EQ, Zero, ...

Result

Comp?

A

B

ALU

Sel

O
A0
A1

An-1

Mux
...

lg(n)

A

D
ec

od
er ...

O0
O1

On-1

lg(n)

ECE 252 / CPS 220 12

Register Files

ReadData1ReadSel1
ReadSel2

WriteSel

Register File
2R+1W

ReadData2

WriteData

WEClock

rd1rs1
rs2

ws
wd

rd2

we

ff

Q0

D0

Clk
En ff

Q1

D1

ff

Q2

D2

ff

Qn-1

Dn-1

...

...

...

Register

ECE 252 / CPS 220 13

Register File Implementation

reg 31

ws clk

reg 1

wd

we

rs1
rd1 rd2

reg 0

…

32

…

5 32 32

…

rs25
5

Highly ported register files difficult to design
- Almost all MIPS instructions have exactly 2 register source operands
- Intel’s Itanium, GPR File has 128 registers with 8 read ports, 4 write ports!!!

ECE 252 / CPS 220 14

Simple Memory Model

MAGIC
RAM

ReadData

WriteData

Address

WriteEnable
Clock

Reads, Writes complete in one cycle
- Read can be done any time (i.e. combinational)
- Write is performed at the rising clock edge if it is enabled
- Write address and data must be stable at the clock edge

MIPS Instruction Set Architecture
Processor State

- 32 32-bit GPRs, R0 always contains a 0
- 32 single precision FPRs, may also be viewed as16 double precision FPRs
- FP status register, used for FP compares & exceptions
- PC, the program counter
- some other special registers

Data types
- 8-bit byte, 16-bit half word
- 32-bit word for integers
- 32-bit word for single precision floating point
- 64-bit word for double precision floating point

Load/Store style instruction set
- data addressing modes- immediate & indexed
- branch addressing modes- PC relative & register indirect
- byte addressable memory- big endian mode

All instructions are 32 bits

ECE 252 / CPS 220 15

Instruction Execution
1. Instruction Fetch
2. Decode and register access
3. ALU operation
4. Memory operation (optional)
5. Write back

And the computation of the address of the next
instruction

ECE 252 / CPS 220 16

Reg-Reg ALU Instructions

ECE 252 / CPS 220 17

6 5 5 5 5 6
0 rs rt rd 0 func rd  (rs) func (rt)

31 26 25 21 20 16 15 11 5 0

0x4
Add

clk

addr
inst

Inst.
Memory

PC

inst<25:21>
inst<20:16>

inst<15:11>

inst<5:0>

OpCode

z
ALU

ALU
Control

RegWrite

clk

rd1

GPRs

rs1
rs2

ws
wd rd2

we

Reg-Imm ALU Instructions

ECE 252 / CPS 220 18

6 5 5 16
opcode rs rt immediate rt  (rs) op immediate

31 26 25 2120 16 15 0

Imm
Ext

ExtSel

inst<15:0>

OpCode

0x4
Add

clk

addr
inst

Inst.
Memory

PC

z
ALU

RegWrite

clk

rd1

GPRs

rs1
rs2

ws
wd rd2

weinst<25:21>

inst<20:16>

inst<31:26> ALU
Control

Conflicts in Merging Datapath

ECE 252 / CPS 220 19

Imm
Ext

ExtSelOpCode

0x4
Add

clk

addr
inst

Inst.
Memory

PC

z
ALU

RegWrite

clk

rd1

GPRs

rs1
rs2

ws
wd rd2

weinst<25:21>

inst<20:16>

inst<15:0>

inst<31:26> ALU
Control

inst<15:11>

inst<5:0>

opcode rs rt immediate rt  (rs) op immediate

6 5 5 5 5 6
0 rs rt rd 0 func rd  (rs) func (rt)

Introduce
muxes

ALU Instructions

ECE 252 / CPS 220 20

<31:26>, <5:0>

opcode rs rt immediate rt  (rs) op immediate

6 5 5 5 5 6
0 rs rt rd 0 func rd  (rs) func (rt)

Imm
Ext

0x4
Add

clk

addr
inst

Inst.
Memory

PC

z
ALU

RegWrite

clk

rd1

GPRs

rs1
rs2

ws
wd rd2

we<25:21>
<20:16>

<15:0>

ALU
Control

<15:11>

Load/Store Instructions (Harvard)

ECE 252 / CPS 220 21

WBSrc
ALU / Mem

rs is the base register
rt is the destination of a Load or the source for a Store

6 5 5 16 addressing mode
opcode rs rt displacement (rs) + displacement

31 26 25 21 20 16 15 0

RegDst BSrc

“base”

disp

ExtSelOpCode OpSel

ALU
Control

z
ALU

0x4
Add

clk

addr
inst

Inst.
Memory

PC

RegWrite

clk

rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

clk

MemWrite

addr

wdata

rdata
Data
Memory

we

MIPS Control Instructions

ECE 252 / CPS 220 22

Conditional PC-relative branch

Unconditional register-indirect jumps

Unconditional absolute jumps

• PC-relative branches add offset4 to PC+4 to calculate the target address
(offset is in words): 128 KB range

• Absolute jumps append target4 to PC<31:28> to calculate the target address:
256 MB range

• jump-&-link stores PC+4 into the link register (R31)
• All Control Transfers are delayed by 1 instruction

we will worry about the branch delay slot later

6 5 5 16
opcode rs offset BEQZ, BNEZ

6 26
opcode target J, JAL

6 5 5 16
opcode rs JR, JALR

Conditional Branches (BEQZ, BNEZ)

ECE 252 / CPS 220 23

0x4

Add

PCSrc

clk

WBSrcMemWrite

addr

wdata

rdata
Data
Memory

we

RegDst BSrcExtSelOpCode

z

OpSel

clk

zero?

clk

addr
inst

Inst.
Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

ALU

ALU
Control

Add

br

pc+4

RegWrite

Register-Indirect Jumps (JR)

ECE 252 / CPS 220 24

0x4

RegWrite

Add
Add

clk

WBSrcMemWrite

addr

wdata

rdata
Data
Memory

we

RegDst BSrcExtSelOpCode

z

OpSel

clk

zero?

clk

addr
inst

Inst.
Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

ALU

ALU
Control

PCSrc
br

pc+4

rind

Jump & Link (JALR)

ECE 252 / CPS 220 25

0x4

RegWrite

Add
Add

clk

WBSrcMemWrite

addr

wdata

rdata
Data
Memory

we

RegDst BSrcExtSelOpCode

z

OpSel

clk

zero?

clk

addr
inst

Inst.
Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

ALU

ALU
Control

31

PCSrc
br

pc+4

rind

Absolute Jumps (J, JAL)

ECE 252 / CPS 220 26

0x4

RegWrite

Add
Add

clk

WBSrcMemWrite

addr

wdata

rdata
Data
Memory

we

RegDst BSrcExtSelOpCode

z

OpSel

clk

zero?

clk

addr
inst

Inst.
Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

ALU

ALU
Control

31

PCSrc
br

pc+4

rind
jabs

Harvard Datapath for MIPS

ECE 252 / CPS 220 27

0x4

RegWrite

Add
Add

clk

WBSrcMemWrite

addr

wdata

rdata
Data
Memory

we

RegDst BSrcExtSelOpCode

z

OpSel

clk

zero?

clk

addr
inst

Inst.
Memory

PC rd1

GPRs

rs1
rs2

ws
wd rd2

we

Imm
Ext

ALU

ALU
Control

31

PCSrc
br
rind
jabs
pc+4

Hardwired Control

ECE 252 / CPS 220 28

combinational
logic

op code

zero?

ExtSel
BSrc
OpSel
MemWrite
WBSrc
RegDst
RegWrite
PCSrc

Hardware control is pure combinational logic

ALU Control, Immediate Extension

ECE 252 / CPS 220 29

Inst<31:26> (Opcode)

Decode Map

Inst<5:0> (Func)

ALUop

0?

+

OpSel
(Func, Op, +, 0?)

ExtSel
(sExt16, uExt16,
High16)

Hardwired Control Table

ECE 252 / CPS 220 30

Opcode ExtSel BSrc OpSel MemW RegW WBSrc RegDst PCSrc

ALU
ALUi
ALUiu
LW
SW
BEQZz=0

BEQZz=1

J
JAL
JR
JALR

BSrc = Reg / Imm WBSrc = ALU / Mem / PC
RegDst = rt / rd / R31 PCSrc = pc+4 / br / rind / jabs

* * * no yes rindPC R31
rind* * * no no * *
jabs* * * no yes PC R31

jabs* * * no no * *
pc+4sExt16 * 0? no no * *
brsExt16 * 0? no no * *
pc+4sExt16 Imm + yes no * *

pc+4Imm Op no yes ALU rt

pc+4* Reg Func no yes ALU rd
sExt16 Imm Op pc+4no yes ALU rt

pc+4sExt16 Imm + no yes Mem rt
uExt16

Harvard Control for MIPS
Assumptions

- Clock period is sufficiently long to complete:
1. instruction fetch
2. decode and register access
3. ALU operation
4. data fetch if required
5. register write-back setup time

- tC > tIFetch + tRFetch + tALU+ tDMem+ tRWB

Update at end of Cycle
- Updates occur on rising edge of following clock
- Update architectural state
- Program counter (PC), register file, memory

ECE 252 / CPS 220 31

An Ideal Pipeline

All objects go through the same stages

No sharing of resources between any two stages

Propagation delay through all pipeline stages is equal

Scheduling of an object entering the pipeline is not
affected by objects in other stages

These conditions hold for industrial assembly lines but do
they hold for an instruction pipeline?

ECE 252 / CPS 220 32

stage
1

stage
2

stage
3

stage
4

Pipelining for MIPS
Strategy

- First, build MIPS without pipelining, CPI = 1
- Then, add pipeline registers to reduce cycle time, maintaining CPI=1
- Clock period reduced by dividing the execution of an instruction into
multiple cycles, tC > max {tIM, tRF, tALU, tDM, tRW} (= tDM probably)
- However, CPI will increase unless instructions are pipelined

ECE 252 / CPS 220 33

write
-back
phase

fetch
phase

execute
phase

decode & Reg-fetch
phase

memory
phase

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Ext

0x4
Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

ws
wd rd2

we

IRPC

Dividing Datapath into Stages
Suppose memory is slower than other stages.

Since slowest stage determines the clock, it may be
possible to combine stages without loss of
performance

ECE 252 / CPS 220 34

tIM = 10 units
tDM = 10 units
tALU = 5 units
tRF = 1 unit
tRW = 1 unit

Pipelining Example

- Write-back requires much less time, combine with memory access
- tC > max {tIM, tRF + tALU, tDM + tRW} = tDM+ tRW

ECE 252 / CPS 220 35

write
-back
phase

fetch
phase

execute
phase

decode & Reg-fetch
phase

memory
phase

addr

wdata

rdata
Data
Memory

we
ALU

Imm
Ext

0x4
Add

addr
rdata

Inst.
Memory

rd1

GPRs

rs1
rs2

ws
wd rd2

we

IRPC

Pipelining Speedup

ECE 252 / CPS 220 36

Assumptions Unpipelined tC Unpipelined tC Speedup

tIM tDM = 10; 27 10 2.7
tALU = 5,
tRF = tRW= 1
4-stage pipeline

tIM = tDM = tALU = tRF = tRW = 5 25 10 2.5
4-stage pipeline

tIM = tDM = tALU = tRF = tRW = 5 25 5 5.0
5-stage pipeline

Higher speedup possible w/ more pipeline stages

Summary
Microcoding became less attractive as gap
between RAM and ROM speeds

Complex instruction sets difficult to pipeline, so it
was difficult to increase performance as gate count
grew

Processor performance depends on (a) instructions
per program, (b) cycles per instruction and (c) time
per cycle

Load/Store RISC instruction sets designed for
efficient, pipelined implementations

ECE 252 / CPS 220 37

ECE 252 / CPS 220 38

Acknowledgements
These slides contain material developed and copyright by
- Arvind (MIT)
- Krste Asanovic (MIT/UCB)
- Joel Emer (Intel/MIT)
- James Hoe (CMU)
- John Kubiatowicz (UCB)
- Alvin Lebeck (Duke)
- David Patterson (UCB)
- Daniel Sorin (Duke)

