ECE 252 / CPS 220
Advanced Computer Architecture |

Lecture 6
Pipelining - Part 1

Benjamin Lee
Electrical and Computer Engineering
Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252falll1.html



ECE252 Administrivia

29 September — Homework #2 Due
- Use blackboard forum for questions
- Attend office hours with questions
- Email for separate meetings

4 October — Class Discussion
Roughly one reading per class. Do not wait unfil the day before!

1. Srinivasan et al. "*Optimizing pipelines for power and performance”

2. Mahlke et al. “A comparison of full and partial predicated execution
support for ILP processors”

3. Palacharla et al. *Complexity-effective superscalar processors”
4. Yeh et al. “Two-level adaptive training branch prediction”

® ECE 252 / CPS 220 2



Pipelining

Latency = (Instructions / Program) x (Cycles / Instruction) x (Seconds / Cycle)

Performance Enhancement

- Increases number of cycles per instruction
- Reduces number of seconds per cycle

Instruction-Level Parallelism
- Begin with multi-cycle design

- When one instruction advances from stage-1 to stage=2, allow next
instruction to enter stage-1.

- Individual instructions require the same number of stages
- Multiple instructions in-flight, entering and leaving at faster rate

Multi-cycle

Pipelined

insn0.fetch insn0.dec insn0.exec
insn1.fetch insnl.dec insnl.exec
insn0.fetch insn0.dec insn0.exec
insn1.fetch insnl.dec insnl.exec
3

® ECE 252 / CPS 220




gp Ideal Pipelining

stage stage stage stage

1 2

- All objects go through the same stages

- No resources shared between any two stages

- Equal propagation delay through all pipeline stages

- An object entering the pipeline is not affected by objects in other stages

- These conditions generally hold for industrial assembly lines
- But can an instruction pipeline satisfy the last condition?

Technology Assumptions

- Small, very fast memory (caches) backed by large, slower memory
- Multi-ported register file, which is slower than a single-ported one
- Consider 5-stage pipelined Harvard architecture

® ECE 252 / CPS 220 o4



gp Practical Pipelining

stage stage stage stage

1 2

Pipeline Overheads

- Each stage requires registers, which hold state/data communicated from one
stage to next, incurring hardware and delay overheads

- Each stage requires partitioning logic into Yequal” lengths
- Introduces diminishing marginal returns from deeper pipelines

Pipeline Hazards

- Instructions do not execute independently

- Instructions entering the pipeline depend on in-flight instructions or contend
for shared hardware resources

® ECE 252 / CPS 220 ®5



Pipelining MIPS

First, build MIPS without pipelining
- Single-cycle MIPS datapath

Then, pipeline into multiple stages
- Multi-cycle MIPS datapath
- Add pipeline registers to separate logic into stages

- MIPS partitions into 5 stages
- 1: Instruction Fetch (IF)

- 2. Instruction Decode (ID)

- 3. Execute (EX)

- 4: Memory (MEM )

- 5: Write Back (WB)

® ECE 252 / CPS 220

6



| 5-Stage Plpelmed Daiqpath (MIPS)

Figure A.17, Page A- 29

5 Execute/ 3 :
Instruction decode/ : address : Memory © Write

ingtpiclion ch register fetch : calculation : access i back
M
u
= x
Add |—=|NPC 4 _ o
: . r x
4 — Zero? lair::'T Condi
. é |y .
emoy [P [Peeses] Nyl e
L () output ;
il e o | o
[ "
o (s [
. @ ~ lmm—zJ
IF/ID ID/EX EX/MEM  MEM/WB

© 2007 Elsavier, Inc. All rights resarved.

IR € mem[PC]; PC & PC + 4; Reg[IR,y] € Reg[IR,] 0prop, RE[IR]

® ECE 252 / CPS 220 o7



| 5-Stage Plpelmed Daiqpath (MIPS)

Figure A.17, Page A- 29

5 Execute/ 3 :
Instruction decode/ : address : Memory © Write

ingtpiclion ch register fetch : calculation : access i back
M
u
. = x
Add [—=|NPC |- : o
4 — Zero? l::::'T Cond
. é |y .
emoy [P [Peeses] Nyl e
L () output ;
ol ol e o | 1
[ "
o (s [
< @ > lmm—zJ
IF/ID ID/EX EX/MEM MEM/WB

© 2007 Elsavier, Inc. All rights resarved.

A € Regd[IR,]; B € ReglIRy]; Result € A ope, B
WB & Resulf; ReglIR,4] € WB

® ECE 252 / CPS 220 eg



Visualizing the Pipeline

Figure A.2, Page A-8

Time (in clock cycles) -

cct { ©cc2 i ecca i cc4 i ccs i cCce i cC7? i ccs P cCo

Program execution order (in instructions)

© 2007 Elsavier, Inc. All rights resarved.

® ECE 252 / CPS 220

o9



Hazards and Limits to Pipelining

Hazards prevent next instruction from executing
during its designated clock cycle

Structural Hazards

- Hardware cannot support this combination of instructions.
- Example: Limited resources required by multiple instructions (e.g. FPU)

Data Hazards

- Instruction depends on result of prior instruction still in pipeline
- Example: An integer operation is waiting for value loaded from memory

Control Hazards

- Instruction fetch depends on decision about control flow
- Example: Branches and jumps change PC

® ECE 252 / CPS 220 ®10



Structural Hazards

Figure A4, A-14

Time (in clock cycles)

i il
. ' - .\'\ ’

D -
Witig

6ol i Gce ¢ 68 ¢ icca | cos ( oocom ooy o
Load Mem
Instruction 1 Mem
Instruction 2 i | Mem
Instruction 3 Reg
Instruction 4 Mem

© 2007 Elsevier, Inc. All rights resarved.

A single memory port causes structural hazard during data load, instr fetch

® ECE 252 / CPS 220



gp Structural Hazards

Figure A4, A-14

Time (in clock cycles)

AP

cc1i { o©c2 i occs i occa i ocs i cce i co7 i ccs

Load Mem [T

Instruction 1 Mem [T ¢

Instruction 2

Stall

Instruction 3

Instruction 4

Stall the pipeline, creating bubbles, by freezing earlier stages - interlocks
Use Harvard Architecture (separate instruction, data memories)

® ECE 252 / CPS 220 12



Data Hazards

Figure A.6, A-16

Time (in clock cycles)

ap

uiti gt RS

CC1 cCz2 CC3 CC4 CC5s CCs

DADD R1,R2,R3 | M

DSUB R4, R1, RS

AND A6, R1, R7

Program execution order (in instructions)

OR R8, R1, R9

XOR R10, R1, R11

£2007 Elsevier, Inc. All rights

Instruction depends on result of prior instruction still in pipeline

® ECE 252 / CPS 220

®]3



Data Hazards

Read After Write (RAW)
- Caused by a dependence, need for communication
- Instr-] tries to read operand before Instr-I writes it
iaddrl, r2,r3
j:subr4, rl, 43

Write After Read (WAR)
- Caused by an anti-dependence and the re-use of the name “r1”
- Instr-] writes operand (r1) before Insir-I reads it
iaddr4,rl,r3
j;addrl, r2,r3
k:mulré, rl, r7

Write After Write (WAW)
- Caused by an output dependence and the re-use of the name “r1”
- Instr-] writes operand (r1) before Instr-I writes it
isubrl, r4,r3
j;addrl, r2,r3

k:mulré, rl, r7
® ECE 252 / CPS 220

e14



up Resolving Data Hazards

FB, <+ FB, FBy FB,

R e A Rl O By

stage |stage |stage| | |stage
] 2 3 4

A 4

Strategy 1 — Interlocks and Pipeline Stalls

- Later stages provide dependence information to earlier stages, which can
stall or kill instructions

- Works as long as instruction at stage i+1 can complete without any
interference from instructions In stages 1 through | (otherwise, deadlocks may
occur)

® ECE 252 / CPS 220 e15



gp Interlocks & Pipeline Stalls

fime
to t1 12 3 t4 &5 16 {17
)r1 & (r0) +10 IF, 1D, EX, MA, WB,
Jrd & (r1) +17 IF, “ID, 1D, ID, ID, EX, MA, WB,
3) IFs IF; IF; IF; ID; EX; MA; WB,
4) stalled stages IF, 1Dy EX, MA, WB,
5) IF;  1Ds EXs MA; WB;
fime
to t1 t2 3 14 15 16 1/
IF P P S . 1, s
ID I | I | I | I |
ROSOUICe EX ", noproproply, I L I
Usage MA l, nop nop nop |, |5 |4 |5
WB l; nop nop nop |, |5 4 |5

® ECE 252 / CPS 220 e1é6



gp Interlocks & Pipeline Stalls

Example Dependence

Stall Condition r <r0O+ 10
r4&<rl+17
Ox4 Nop 'r‘LI ‘I ‘I
I/I 13
VWE Lr
= >rs1
»|rs2 3
I > Oddr. rd1 A
st JWerra2 —e—sl addr
Inst GPRs . rdata
Memory, g Data
»| Imm Memory
Ext Plwdata
MDIT MD2

® ECE 252 / CPS 220 e17



ap Interlock Control Logic

Sl =t M

- Compare the source registers of instruction in
decode stage with the destination registers of
uncommitted instructions

- Stall if a source register in decode matches some
destination registere

- No, not every instruction writes to a register
- No, not every instruction reads from a register

Derive stall signal from conditions in the pipeline

® ECE 252 / CPS 220 18



\ A 4

addr

v

INst

\ 4

v

Memory

® ECE 252 / CPS 220

MD1

Compare the source registers of the instruction in the decode stage with the
destination register of the uncommitted instructions.

v

v

\ 4

Memory

\ 4




v

A 4

addr
inst

Inst

Memory

® ECE 252 / CPS 220

MD1

WS o
we .
IS 2 j‘ | ‘
/ rt h we | WS  we WS
T re2 Cgest
SEEN I I 1
y
V-we
»|rs]
»rs2 v
rdl Vo owe
» WS
olwd rd2 f——e—s addr
GPRs - rdata
g Data
o Imm Memory >
Ext Plwdata

Should we always stall if RS/RT matches some RD? No, because not every
instruction writes/reads a register. Infroduce write/read enable signals (we/re)




Source and Destination Registers

R-type: op IS rt rd func
I-type: op s rt immediatel6
J-type: op immediate26
instruction source(s) destination
ALU rd € (rs) func (rt) rs, rt rd
ALUi < (rs) op imm s rt
LW rt < MI(rs) +imm] s rt
SW M [(rs) + imm] < (rt) rs, rt
BZ cond (rs)
true: PC < (PC) +imm rs
false: PC < (PC) +4 rs
J PC <« (PC) +imm
JAL r31 &« (PC), PC « (PC) +imm R31
JR PC < (rs) rs
JALR r31 & (PC), PC & (rs) rs R31

® ECE 252 / CPS 220

2]



v

A 4

addr
inst

Inst

Memory

® ECE 252 / CPS 220

MD1

WS o
we .
IS 2 j‘ | ‘
/ rt h we | WS  we WS
T re2 Cgest
SEEN I I 1
y
V-we
»|rs]
»rs2 v
rdl Vo owe
» WS
olwd rd2 f——e—s addr
GPRs - rdata
g Data
o Imm Memory >
Ext Plwdata

Should we always stall if RS/RT matches some RD? No, because not every
instruction writes/reads a register. Infroduce write/read enable signals (we/re)




Cdest

® ECE 252 / CPS 220

WS

we

rel

re2

Case(opcode)
ALU:

ALUi:

JAL, JALR:

Case(opcode)
ALU, ALUI, LW
JAL, JALR
otherwise

Case(opcode)
ALU, ALUi

LW, SW, BZ

JR, JALR

J, JAL

Case(opcode)

Deriving the Stall Signal

ws €< rd
ws € rt
ws € R3]

we € (ws 1=0)
we € 1
we € 0

rel €1
rel €1
rel €1
rel <0

<< same asrel but for register rt>>

®23



Deriving the Stall Signal

Xrs denote register rs for instruction in pipeline stage X
Xrt denote register rt for instruction in pipeline stage X
Xws denote destination register for instruction in pipeline stage X

Cstall stall-1 € (Drs == Ews) & Ewe |
(Drs == Mws) & Mwe |
(Drs == Wws) & Wwe

) & Dre]
stall-2 € (Drt == Ews) & Ewe |
(Drt == Mws) & Mwe |
(Drt == Wws) & Wwe
) & Dre2

stall < stall-1 | stall-2

® ECE 252 / CPS 220

024



Load/Store Data Hazards

M[(r1)+7] €< (r2)
r4 & M[(r3)+5]

What is the problem here?
What if (r1)+7 == (r3+5)¢

Load/Store hazards may be resolved in the pipeline or may be resolved in
the memory system. More later.

® ECE 252 / CPS 220 25



Resolving Data Hazards

Strategy 2 — Forwarding (aka Bypasses)

- Route data as soon as possible to earlier stages in the pipeline
- Example: forward ALU output to its input

(I,) r1 €r0O+10
(I,)rd <r1 +17
(1)
(14)
(I5)

fime
)r1 €r0+10
SJrd&rl +17

)
)
)
)

AW

(I
(1
(1
(1
(1

(€,

® ECE 252 / CPS 220

t0
IF,

t0
IF,

]
D,
IF,

]
D,
IF,

2
EX,
D,

2
EX,
D,

13

t4

MA, WB.

D,
IF,

D,
IF,

t5

D,
IF,

stalled stages

3
M
EX,
IF,

t4
Bl

MA, WB,

D,
IF,

t5

EX,
D,
IFe

t6 17
EX, MA, WB,
F, D, EX; MA,
F, ID, EX,
Fs  IDs
t6 17
MA, WB,
EX, MA, WB,

ID; EX; MA, WB,

026



Example Forwarding Path

stall
l E M w
L - 3 -
ASrc | h
vV we
v p|rs1
»|rs2 > J
. »|addr D rd1 =
inst —»|Ws / addr
»lWwd rd2 p——y—p
Inst GPRs data .
Memory Lt Data |
Memo
1 Imm ry
Ext »lwdata
MD1 MD2

® ECE 252 / CPS 220 027



Deriving Forwarding Signals

»' \ /“ -
SIS ,\’;
L ey ol

This forwarding path only applies to the ALU operations...

Eforward Case(Eopcode)
ALU, ALUi Eforward < (ws = 0)
otherwise Eforward < O

...and all other operations will need to stall as before

Estall Case(Eopcode)
LW Estall &« (ws 1= 0)
JAL, JALR Estall < 1
otherwise Estall < O

Asrc € (Drs == Ews) & Drel & Eforward

Remember to update stall signal, removing case covered
by this forwarding path

® ECE 252 / CPS 220

28



up Multiple Forwarding Paths

S Figure A7, Page A-18

Time (in clock cycles)

CC1 cCcz2 CCs

DADD R1, R2, R3 IM

DSUB R4, R1, RS M

AND R6, R1, R7

Program execution order (in instructions)

OR R8, R1, R9 M

XOR R10, A1, R11

© 2007 Elsavier, Inc. All rights resarved.

® ECE 252 / CPS 220 29



Multiple Forwarding Paths

stall

PC for JAL,

® ECE 252 / CPS 220

MD1

MD2

i E
Ox4 nop _I\I I
ASrc I/I 31
y &
AVARRVYZ=
A4 »rs1
»|rs2 J'
»ladar rdl o - VARG
inst WS »| addr
plwd rd2 b =
Inst GPRs I rdata
Memory - c Data
Imm 1 Memory R
Ext Im »lwdata
BSrc

©30



ID/EX EX/MEM MEM/WB

NextPC—p| | i ii

Zero?

—>

Registers

Data :
memory > PEuree

—

Immediate —p

® ECE 252 / CPS 220 ®3]



Program execution order (in instructions)

w

Tuditio A

i) § iLl

Figure A.8, Page A-19

Forwarding Loads/Stores

Time (in clock cycles)

CC4

CcC 1 cc2 cc3
=
DADD R1, R2, R3[ M © Reg §
-
LD R4, O(R1) M : Reg
SD R4,12(R1) IM

CCé

oM

© 2007 Elsavier, Inc. Al rights resarved.

® ECE 252 / CPS 220

ALU

32



gp Data Hazard Despite Forwarding

Figure A.9, Page A-20

Time (in clock cycles) -
CC1 CC2 CC3 CC4 CC5
LD Ri1, 0(R2) IM : Reg -, DM R:g :

ALU
2

DSUB R4, R1, RS M Reg

Program execution order (in instructions)

AND Re6, R1, R7 IM

OR R8, R1, R9

© 2007 Elsavier, Inc. Al rights resarved.

LD cannot forward (backwards in time) to DSUB. What is the solution?

® ECE 252 / CPS 220 ©33



Data Hazards and Scheduling

Try producing faster code for
-A=B+C;D=E-F
- Assume A, B, C, D, E, and F are in memory
- Assume pipelined processor

Slow Code Fast Code

LW Rb, b LW Rb, b

LW Rc, C LW Rc, C
ADD Ra, Rb, Rc LW Re, e

SW a, Ra ADD Ra, Rb, Rc
LW Re e LW Rf, f

LW Rf, f SW a, Ra

SUB Rd, Re, Rf SUB Rd, Re, Rf
SW d, RD SW d, RD

® ECE 252 / CPS 220 34



Acknowledgements

\! )/
Saing ..y“f

These slides contain material developed and copyright by
- Arvind (MIT)

- Krste Asanovic (MIT/UCB)

- Joel Emer (Intel/MIT)

- James Hoe (CMU)

- John Kubiatowicz (UCB)

- Alvin Lebeck (Duke)

- David Patterson (UCB)

- Daniel Sorin (Duke)

® ECE 252 / CPS 220 35



