
ECE 252 / CPS 220

 Advanced Computer Architecture I

Lecture 9

Instruction-Level Parallelism – Part 2

Benjamin Lee
Electrical and Computer Engineering

Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall11.html

ECE 252 / CPS 220 2

ECE252 Administrivia

29 September – Homework #2 Due
- Use blackboard forum for questions

- Attend office hours with questions

- Email for separate meetings

4 October – Class Discussion
 Roughly one reading per class. Do not wait until the day before!

1. Srinivasan et al. “Optimizing pipelines for power and performance”

2. Mahlke et al. “A comparison of full and partial predicated execution

support for ILP processors”

3. Palacharla et al. “Complexity-effective superscalar processors”

4. Yeh et al. “Two-level adaptive training branch prediction”

ECE 252 / CPS 220 3

In-Order Issue Pipeline

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR‟s

FPR‟s

ECE 252 / CPS 220 4

Scoreboard

Busy[FU#]: a bit-vector to indicate functional unit

availability (FU = Int, Add, Mutl, Div)

WP[#regs]: a bit-vector to record the registers to

which writes are pending
 - Bits are set to true by issue logic

 - Bits are set to false by writeback stage

- Each functional unit‟s pipeline registers must carry „dest‟ field and a

flag to indicate if it‟s valid: “the (we, ws) pair”

Issue logic checks instruction (opcode, dest, src1,

src2) against scoreboard (busy, wp) to dispatch
 - FU available? Busy[FU#]

 - RAW? WP[src1] or WP[src2]

 - WAR? Cannot arise

 - WAW? WP[dest]

ECE 252 / CPS 220 5

Limitations of In-Order Issue

Instruction Operands Latency

1: LD F2, 34(R2) 1

2: LD F4, 45(R3) long

3: MULTD F6, F4, F2 3

4: SUBD F8, F2, F2 1

5: DIVD F4, F2, F8 4

6: ADDD F10, F6, F4 1

In-order: 1 (2 1) …………2 3 4 4 3 5 ….5 6 6

In-order restriction keeps instruction 4 from issuing

1 2

3 4

5

6

ECE 252 / CPS 220 6

Out-of-Order Issue

- Issue stage buffer holds multiple instructions waiting to issue

- Decode stage adds next instruction to buffer if there is space and

the instruction does not cause a WAR or WAW hazard

- Any instruction in buffer whose RAW hazards are satisfied can issue

- When instruction commits in write-back stage, a new instruction can

issue

IF ID WB

ALU Mem

Fadd

Fmul

Issue

ECE 252 / CPS 220 7

Limitations of Out-of-Order Issue

Instruction Operands Latency

1: LD F2, 34(R2) 1

2: LD F4, 45(R3) long

3: MULTD F6, F4, F2 3

4: SUBD F8, F2, F2 1

5: DIVD F4, F2, F8 4

6: ADDD F10, F6, F4 1

In-order: 1 (2 1) …………2 3 4 4 3 5 ….5 6 6

Out-of-order: 1 (2 1) 4 4 …….2 3…... 3 5 ….5 6 6

Out-of-order execution has no gain.

Why did we not issue instruction 5?

1 2

3 4

5

6

ECE 252 / CPS 220 8

Instructions In-Flight

What features of an ISA limit the number of

instructions in the pipeline? Number of registers

What features of a program limit the number of

instructions in the pipeline? Control transfers

Out-of-order issue does not address these other

limitations.

ECE 252 / CPS 220 9

Mitigating Limited Register Names

Floating point pipelines often cannot be filled with

small number of registers
 - IBM 360 had only 4 floating-point registers

Can a microarchitecture use more registers than

specified by the ISA without loss of ISA compatibility?
 - In 1967, Robert Tomasulo‟s solution was dynamic register renaming.

ECE 252 / CPS 220 10

Little’s Law

Throughput (T) = Number-in-flight (N) / Latency (L)
 - Example: 4 floating-point registers, 8 cycles per floating-point op

 - Little‟s Law  ½ issue per cycle

WB Issue Execution

ECE 252 / CPS 220 11

ILP via Renaming

Instruction Operands Latency

1: LD F2, 34(R2) 1

2: LD F4, 45(R3) long

3: MULTD F6, F4, F2 3

4: SUBD F8, F2, F2 1

5: DIVD F4, F2, F8 4

6: ADDD F10, F6, F4 1

In-order: 1 (2 1) …………2 3 4 4 3 5 ….5 6 6

Out-of-order: 1 (2 1) 4 4 5 ….2 (3, 5) 3 6 6

Any anti-dependence can be eliminated by

renaming (requires additional storage). Renaming

can be done in hardware!

1 2

3 4

5

6

X

ECE 252 / CPS 220 12

Register Renaming

- Decode stage renames registers and adds instructions to the reorder

buffer (ROB).

- Renaming eliminates WAR or WAW hazards

- Instructions in ROB whose RAW hazards are resolved can issue

- Out-of-order or dataflow execution

IF ID WB

ALU Mem

Fadd

Fmul

Issue

ECE 252 / CPS 220 13

Dataflow Execution

Instruction slot is candidate for execution when…
- Instruction is valid (“use” bit is set)

- Instruction is not already executing (“exec” bit is clear)

- Operands are available (“p1” and “p2” are set for “src1” and “src2”)

Reorder buffer

t1

t2

.

.

.

tn

ptr2

next to

deallocate

 prt1

next

available

Ins# use exec op p1 src1 p2 src2

ECE 252 / CPS 220 14

Renaming and the ROB

1. Insert instruction into ROB (after decoding it)
i. ROB entry is used, set “use=1”

ii. Instruction is not yet executing, set “exec=0”

iii. Specify operation in ROB entry

2. Update renaming table
i. Identify instruction‟s destination register (e.g., F1)

ii. Look up register (e.g., F1) in renaming table

iii. Insert pointer from renaming table to instruction‟s ROB entry

3. When instruction executes, update “exec=1”

4. When instruction writes-back, replace pointer to

ROB with value produced by instruction

ECE 252 / CPS 220 15

Example

1: LD F2, 34 (R2)

2: LD F4, 45 (R3)

3: MUTLD F6, F4, F2

4: SUBD F8, F2, F2

5: DIVD F4, F2, F8

6: ADDD F10, F6, F4

When are names in sources replaced

by data? When a functional unit

produces data

When can a name be re-used? When

an instruction completes

Renaming table Reorder buffer

Ins# use exec op p1 src1 p2 src2

t1

t2

t3

t4

t5

.

.

data / ti

 p data

F1
F2
F3
F4
F5
F6
F7
F8

t1

 1 1 0 LD

t2

 2 1 0 LD

 5 1 0 DIV 1 v1 0 t4

 4 1 0 SUB 1 v1 1 v1

t4

 3 1 0 MUL 0 t2 1 v1

t3

t5

v1

 1 1 1 LD 0

 4 1 1 SUB 1 v1 1 v1 4 0

v4

 5 1 0 DIV 1 v1 1 v4

 2 1 1 LD 2 0

 3 1 0 MUL 1 v2 1 v1

ECE 252 / CPS 220 16

Register Renaming

- Decode stage allocates instruction template (i.e., tag t) and stores

tag in register file.

- When instruction completes, tag is de-allocated.

Load
 Unit

FU FU
Store
 Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 t1
t2
.
.
tn

Renaming Table

& Register File

Reorder Buffer

ECE 252 / CPS 220 17

Allocating/Deallocating Templates

- Reorder buffer is managed circularly.

- Field “exec” is set when instruction begins execution.

- Field “use” is cleared when instruction completes

- Ptr2 increments when “use” bit is cleared.

Reorder buffer

t1
t2
.
.
.

ptr2
next to

deallocate

 prt1
next

available

Ins# use exec op p1 src1 p2 src2

ECE 252 / CPS 220 18

IBM 360/91 Floating-Point Unit

Mult

 p data p data 1
2

 p data 1
2
3
4
5
6

data load
buffers

(from

memory)

1
2
3
4

Adder

 p data p data 1
2
3

Floating-point

Register

store buffers

(to memory)

...

instructions

Common bus ensures that data is made available

immediately to all the instructions waiting for it

Distribute instruction
templates (ROB) by

functional units

< t, result >

 p data

ECE 252 / CPS 220 19

Effectiveness

History
 - Renaming/out-of-order execution first introduction in 360/91 in 1969

 - However, implementation did not re-appear until mid-90s

 - Why?

Limitations
 - Effective on a very small class of problems

 - Memory latency was a much bigger problem in the 1960s

 - Problem-1: Exceptions were not precise

 - Problem-2: Control transfers

ECE 252 / CPS 220 20

Precise Interrupts

Definition
 - It must appear as if an interrupt is taken between two instructions

 - Consider instructions k, k+1

 - Effect of all instructions up to and including k is totally complete

 - No effect of any instruction after k has taken place

Interrupt Handler
 - Aborts program or restarts at instruction k+1

ECE 252 / CPS 220 21

Out-of-Order & Interrupts

Out-of-order Completion
 - Precise interrupts are difficult to implement at high performance

 - Want to start execution of later instructions before exception checks are

finished on earlier instructions

I1 DIVD f6, f6, f4
I2 LD f2, 45(r3)
I3 MULTD f0, f2, f4
I4 DIVD f8, f6, f2
I5 SUBD f10, f0, f6
I6 ADDD f6, f8, f2

out-of-order comp 1 2 2 3 1 4 3 5 5 4 6 6

 restore f2 restore f10

 interrupts

ECE 252 / CPS 220 22

Interrupt Handling (in-order)

-- Hold exception flags in pipeline until commit point

-- Exceptions in earlier pipe stages override later exceptions

-- Inject external interrupts, which over-ride others, at commit point

-- If exception at commit: (1) update Cause and EPC registers, (2) kill all stages,

(3) inject handler PC into fetch stage

Asynchronous
Interrupts

Exc
D

PC
D

PC
Inst.
Mem D Decode E M

Data
Mem W +

Exc
E

PC
E

Exc
M

PC
M

Cause

EPC

Kill D
Stage

Kill F
Stage

Kill E
Stage

Illegal
Opcode Overflow

Data Addr
Except

PC Address
Exceptions

Kill
Writeback Select

Handler
PC

Commit Point

ECE 252 / CPS 220 23

Phases of Instruction Execution

Fetch: Instruction bits retrieved from

cache.
I-cache

Fetch

Buffer

Issue

Buffer

Func.

Units

Arch.

State

Execute: Instructions and operands sent to

execution units. When execution completes,

all results and exception flags are available.

Decode: Instructions placed in appropriate

issue (aka “dispatch”) stage buffer

Result

Buffer Commit: Instruction irrevocably updates

architectural state (aka “graduation” or

“completion”).

PC

ECE 252 / CPS 220 24

Supporting Precise Exceptions

In-Order Commit
 - Instructions fetched, decoded into re-order buffer (ROB) in-order

 - Instructions executed, completed out-of-order

 - Instructions committed in-order

 - Instruction commit writes to architectural state (e.g., register file, memory)

Temporary storage needed to hold results before

commit (e.g., shadow registers, store buffers)

Fetch Decode

Execute

Commit Reorder Buffer

In-order In-order Out-of-order

Kill

Kill Kill

Exception? Inject handler PC

ECE 252 / CPS 220 25

Supporting Precise Exceptions

- Add <pd, dest, data, cause> fields to instruction template

- Commit instructions to register file and memory in-order

- On exception, clear re-order buffer (reset ptr-1 = ptr-2)

- Store instructions must commit before modifying memory

ptr2

next to

commit

ptr1

next

available

Inst# use exec op p1 src1 p2 src2 pd dest data cause

ECE 252 / CPS 220 26

Renaming and Rollbacks

Register file no longer contains renaming tags. How does decode stage find

tag of a source register? Search the „dest‟ field in reorder buffer (ROB).

Register File

(now holds only

committed state)

Reorder

buffer

Load

 Unit
FU FU FU

Store

 Unit

< t, result >

t1

t2

.

.

tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

ECE 252 / CPS 220 27

Renaming Table

Register File

Reorder

Buffer

Load

 Unit
FU FU FU

Store

 Unit

< t, result >

t1

t2

.

.

tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename

Table

Renaming table is a cache, speeds up register name look-up. Table is cleared after

each exception. When else are valid bits cleared? Control transfers.

r1 t v

r2

tag

valid bit

ECE 252 / CPS 220 28

Control Transfer Penalty

I-cache

Fetch

Buffer

Issue

Buffer

Func.

Units

Arch.

State

Execute

Decod

e

Result

Buffer Commit

PC

Fetch

Branch

executed

Next fetch

started
Modern processors may have >10

pipeline stages between next

PC calculation and branch

resolution.

How much work is lost if pipeline

does not follow correct

instruction flow?

[Loop Length] x [Pipeline Width]

ECE 252 / CPS 220 29

Branches and Jumps

Each instruction fetch depends on 1-2 pieces of

information from preceding instruction:

 1. Is preceding instruction a branch?

 2. If so, what is the target address?

Instruction Taken known? Target known?

J after decode after decode

JR after decode after fetch

BEQZ/BNEZ after fetch* after decode

*assuming zero? detect when register read

ECE 252 / CPS 220 30

Reducing Control Flow Penalty

Software Solutions
 1. Eliminate branches -- loop unrolling increases run length before branch

 2. Reduce resolution time – instruction scheduling moves instruction that

produces condition earlier (of limited value)

Hardware Solutions
 1. Find other work – delay slots and software cooperation

 2. Speculate – predict branch result and execute instructions beyond

branch

ECE 252 / CPS 220 31

Branch Prediction

Motivation
 -- Branch penalties limit performance of deeply pipelined processors

 -- Modern branch predictors have high accuracy (>95%) and can

significantly reduce branch penalties

Hardware Support
 -- Prediction structures: branch history tables, branch target buffer, etc.

 -- Mispredict recovery mechanisms:

 -- Separate instruction execution and instruction commit

 -- Kill instructions following branch in pipeline

 -- Restore architectural state to correct path of execution

ECE 252 / CPS 220 32

Static Branch Prediction

On average, probability a branch is taken is 60-70%.

But branch direction is a good predictor.

ISA can attach preferred direction semantics to branches (e.g., Motorola

MC8810, bne0 prefers taken, beq0 prefers not taken).

ISA can allow choice of statically predicted direction (e.g., Intel IA-64). Can be

80% accurate.

JZ

JZ
backward
90%

forward
50%

ECE 252 / CPS 220 33

Dynamic Branch Prediction

Learn from past behavior

Temporal Correlation -- The way a branch resolves

may be a good predictor of the way it will resolve

at the next execution

Spatial Correlation -- Several branches may resolve in

a highly correlated manner (preferred path of

execution in the application)

ECE 252 / CPS 220 34

2-bit Branch Predictor

Use two-bit saturating counter.

Changes prediction after two consecutive mistakes.

ECE 252 / CPS 220 35

Branch History Table (BHT)

BHT is an array of 2-bit branch predictors, indexed by branch PC

4K-entry branch history table, 80-90% accurate

0 0 Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset

Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

ECE 252 / CPS 220 36

Two-Level Branch Prediction
Pentium Pro uses the result from the last two branches

to select one of the four sets of BHT bits (~95% correct)

0 0

k Fetch PC

Shift in

Taken/¬Taken

results of each
branch

2-bit global branch

history shift register

Taken/¬Taken?

ECE 252 / CPS 220 37

Branch Target Buffer (BTB)

BHT only predicts branch direction (taken, not taken). Cannot redirect instruction

flow until after branch target determined.

Store target with branch predictions.

During fetch – if (BP == taken) then nPC=target, else nPC=PC+4

Later – update BHT, BTB

IMEM

PC

Branch
Target
Buffer
(2k entries)

k

BPb predicted

target BP

 target

ECE 252 / CPS 220 38

Branch Target Buffer (BTB) – v2

Keep both branch PC and target PC in the BTB

If match fails, PC+4 is fetched

Only taken branches and jumps held in BTB

I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

ECE 252 / CPS 220 39

Mispredict Recovery

In-order execution

No instruction following branch can commit

before branch resolves

Kill all instructions in pipeline behind mis-predicted

branch

Out-of-order execution

Multiple instructions following branch can

complete before one branch resolves

ECE 252 / CPS 220 40

In-order Commit

-- Instructions fetched, decoded in-order (entering the reorder buffer -- ROB)

-- Instructions executed out-of-order

-- Instructions commit in-order (write back to architectural state)

-- Temporary storage needed in ROB to hold results before commit

Fetch Decode

Execute

Commit Reorder Buffer

In-order In-order Out-of-order

Kill

Kill Kill

Exception? Inject handler PC

ECE 252 / CPS 220 41

Branch Misprediction in Pipeline

-- Can have multiple unresolved branches in reorder buffer -- ROB

-- Can resolve branches out-of-order by killing all instructions in ROB that

follow a mispredicted branch

Fetch Decode

Execute

Commit Reorder Buffer

Kill

Kill Kill

Branch
Resolution

Inject correct PC

Branch
Prediction

PC

Complete

ECE 252 / CPS 220 42

Mispredict Recovery

Take snapshot of register rename table at each predicted branch, recover

earlier snapshot if branch mispredicted

t v t v t v
Register

File

Reorder
Buffer

Load

 Unit
FU FU FU

Store
 Unit

< t, result >

t1
t2
.

.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table r1

t v

r2

Rename
Snapshots

Ptr2

next to commit

Ptr1

next available

rollback

next available

ECE 252 / CPS 220 43

Acknowledgements

These slides contain material developed and copyright by

- Arvind (MIT)

- Krste Asanovic (MIT/UCB)

- Joel Emer (Intel/MIT)

- James Hoe (CMU)

- John Kubiatowicz (UCB)

- Alvin Lebeck (Duke)

- David Patterson (UCB)

- Daniel Sorin (Duke)

