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ECE252 Administrivia 

29 September – Homework #2 Due 
- Use blackboard forum for questions 

- Attend office hours with questions 

- Email for separate meetings 

 

4 October – Class Discussion 
 Roughly one reading per class. Do not wait until the day before! 

 

1. Srinivasan et al. “Optimizing pipelines for power and performance” 

2. Mahlke et al. “A comparison of full and partial predicated execution 

support for ILP processors” 

3. Palacharla et al. “Complexity-effective superscalar processors” 

4. Yeh et al. “Two-level adaptive training branch prediction” 
 



ECE 252 / CPS 220 3 

In-Order Issue Pipeline 

IF ID WB 

ALU Mem 

Fadd 

Fmul 

Fdiv 

Issue 

GPR‟s 

FPR‟s 
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Scoreboard 

Busy[FU#]: a bit-vector to indicate functional unit 

availability (FU = Int, Add, Mutl, Div) 
 

 

WP[#regs]:  a bit-vector to record the registers to 

which writes are pending 
 - Bits are set to true by issue logic 

 - Bits are set to false by writeback stage 

- Each functional unit‟s pipeline registers must carry „dest‟ field and a 

flag to indicate if it‟s valid: “the (we, ws) pair” 

 

Issue logic checks instruction (opcode, dest, src1, 

src2) against scoreboard (busy, wp) to dispatch 
 - FU available?  Busy[FU#] 

 - RAW?   WP[src1] or WP[src2] 

 - WAR?   Cannot arise 

 - WAW?   WP[dest] 
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Limitations of In-Order Issue 

Instruction Operands Latency 

1: LD  F2, 34(R2) 1 

2: LD  F4, 45(R3) long 

3: MULTD F6, F4, F2 3 

4: SUBD  F8, F2, F2 1 

5: DIVD  F4, F2, F8 4 

6: ADDD F10, F6, F4 1 

 

In-order: 1 (2 1) …………2 3 4 4 3 5 ….5 6 6  

 

 

 

In-order restriction keeps instruction 4 from issuing 
 

1 2 

3 4 

5 

6 
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Out-of-Order Issue 

- Issue stage buffer holds multiple instructions waiting to issue 

- Decode stage adds next instruction to buffer if there is space and 

the instruction does not cause a WAR or WAW hazard 

- Any instruction in buffer whose RAW hazards are satisfied can issue 

- When instruction commits in write-back stage, a new instruction can 

issue 

IF ID WB 

ALU Mem 

Fadd 

Fmul 

Issue 
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Limitations of Out-of-Order Issue 

Instruction Operands Latency 

1: LD  F2, 34(R2) 1 

2: LD  F4, 45(R3) long 

3: MULTD F6, F4, F2 3 

4: SUBD  F8, F2, F2 1 

5: DIVD  F4, F2, F8 4 

6: ADDD F10, F6, F4 1 

 

In-order:  1 (2 1) …………2 3 4 4 3 5 ….5 6 6  

Out-of-order:  1 (2 1) 4 4 …….2 3…... 3 5 ….5 6 6  

 

Out-of-order execution has no gain. 

Why did we not issue instruction 5? 
 

1 2 

3 4 

5 

6 
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Instructions In-Flight 

What features of an ISA limit the number of 

instructions in the pipeline? Number of registers 
 

What features of a program limit the number of 

instructions in the pipeline? Control transfers 

 

Out-of-order issue does not address these other 

limitations.  
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Mitigating Limited Register Names 

Floating point pipelines often cannot be filled with 

small number of registers 
 - IBM 360 had only 4 floating-point registers 

 

Can a microarchitecture use more registers than 

specified by the ISA without loss of ISA compatibility? 
 - In 1967, Robert Tomasulo‟s solution was dynamic register renaming. 
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Little’s Law  

Throughput (T) = Number-in-flight (N) / Latency (L) 
 - Example: 4 floating-point registers, 8 cycles per floating-point op 

 - Little‟s Law  ½ issue per cycle 

 

WB Issue Execution 
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ILP via Renaming 

Instruction Operands Latency 

1: LD  F2, 34(R2) 1 

2: LD  F4, 45(R3) long 

3: MULTD F6, F4, F2 3 

4: SUBD  F8, F2, F2 1 

5: DIVD  F4, F2, F8 4 

6: ADDD F10, F6, F4 1 

 

In-order:  1 (2 1) …………2 3 4 4 3 5 ….5 6 6  

Out-of-order:  1 (2 1) 4 4 5 ….2 (3, 5) 3 6 6 

 

Any anti-dependence can be eliminated by 

renaming (requires additional storage). Renaming 

can be done in hardware! 
 

1 2 

3 4 

5 

6 

X 
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Register Renaming 

- Decode stage renames registers and adds instructions to the reorder 

buffer (ROB). 

- Renaming eliminates WAR or WAW hazards 

- Instructions in ROB whose RAW hazards are resolved can issue 

- Out-of-order or dataflow execution 

IF ID WB 

ALU Mem 

Fadd 

Fmul 

Issue 
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Dataflow Execution 

Instruction slot is candidate for execution when… 
- Instruction is valid (“use” bit is set) 

- Instruction is not already executing (“exec” bit is clear) 

- Operands are available (“p1” and “p2” are set for “src1” and “src2”) 

 

 

Reorder buffer 

t1 

t2 

. 

. 

. 

 

 

 

 

tn 

 

ptr2  

next to  

deallocate 

 prt1 

next 

available 

Ins#   use exec   op   p1     src1   p2    src2 
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Renaming and the ROB 

1. Insert instruction into ROB (after decoding it) 
i. ROB entry is used, set “use=1” 

ii. Instruction is not yet executing, set “exec=0” 

iii. Specify operation in ROB entry 
 

2. Update renaming table 
i. Identify instruction‟s destination register (e.g., F1) 

ii. Look up register (e.g., F1) in renaming table 

iii. Insert pointer from renaming table to instruction‟s ROB entry 
 

3. When instruction executes, update “exec=1” 
 

4. When instruction writes-back, replace pointer to 

ROB with value produced by instruction 
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Example 

1: LD F2, 34 (R2) 

2: LD F4, 45 (R3) 

3: MUTLD F6, F4, F2 

4: SUBD F8, F2, F2 

5: DIVD F4, F2, F8 

6: ADDD F10, F6, F4 

When are names in sources replaced 

by data? When a functional unit 

produces data 

 

When can a name be re-used? When 

an instruction completes 

Renaming table Reorder buffer 

Ins#      use  exec   op       p1    src1      p2      src2 

t1 

t2 

t3 

t4 

t5 

. 

. 

data / ti 

     p        data 

F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 

t1 

   1          1        0        LD      

t2 

   2          1        0        LD      

   5          1        0        DIV       1        v1           0         t4      

   4          1        0        SUB     1        v1           1         v1 

t4 

   3          1        0        MUL     0        t2            1         v1 

t3 

t5 

v1 

   1          1        1        LD                     0 

   4          1        1        SUB     1        v1           1         v1    4           0 

v4 

   5          1        0        DIV       1        v1           1         v4      

   2          1        1        LD         2           0      

   3          1        0        MUL     1        v2            1         v1 
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Register Renaming 

- Decode stage allocates instruction template (i.e., tag t) and stores 

tag  in register file. 

- When instruction completes, tag is de-allocated. 

 

Load 
 Unit 

FU FU 
Store 
 Unit 

< t, result > 

Ins#  use  exec   op    p1    src1   p2   src2 t1 
t2 
. 
. 
tn 

Renaming  Table 

& Register File 

Reorder Buffer 
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Allocating/Deallocating Templates 

- Reorder buffer is managed circularly. 

- Field “exec” is set when instruction begins execution. 

- Field “use” is cleared when instruction completes 

- Ptr2 increments when “use” bit is cleared. 

Reorder buffer 

t1 
t2 
. 
. 
. 
 
 
 
 

ptr2  
next to  

deallocate 

 prt1 
next 

available 

Ins#   use exec   op   p1     src1   p2    src2 
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IBM 360/91 Floating-Point Unit 

Mult 

  p data  p data 1 
2 
 
 

 p data 1 
2 
3 
4 
5 
6 

data load 
buffers 

(from  

memory) 

1 
2 
3 
4 

Adder 

  p data  p data 1 
2 
3 
 

Floating-point 

Register 

store buffers 

(to memory) 

... 

instructions 

Common bus ensures that  data is made available 

immediately to all the instructions waiting for it 

Distribute instruction 
templates (ROB) by 

functional units 

< t, result > 

 p data 
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Effectiveness 

History 
 - Renaming/out-of-order execution first introduction in 360/91 in 1969 

 - However, implementation did not re-appear until mid-90s 

 - Why? 

 

Limitations 
 - Effective on a very small class of problems 

 - Memory latency was a much bigger problem in the 1960s 

 - Problem-1: Exceptions were not precise 

 - Problem-2: Control transfers 
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Precise Interrupts 

Definition 
 - It must appear as if an interrupt is taken between two instructions  

 - Consider instructions k, k+1 

 - Effect of all instructions up to and including k is totally complete 

 - No effect of any instruction after k has taken place 

 

Interrupt Handler 
 - Aborts program or restarts at instruction k+1 
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Out-of-Order & Interrupts 

Out-of-order Completion 
 - Precise interrupts are difficult to implement at high performance 

 - Want to start execution of later instructions before exception checks are 

finished on earlier instructions 

  
I1 DIVD  f6,  f6, f4 
I2 LD  f2, 45(r3) 
I3 MULTD  f0, f2, f4 
I4 DIVD  f8, f6, f2 
I5 SUBD  f10, f0, f6 
I6 ADDD  f6, f8, f2 

out-of-order comp 1   2   2   3   1   4   3   5   5   4   6   6 

           restore f2     restore f10 

      interrupts 
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Interrupt Handling (in-order) 

-- Hold exception flags in pipeline until commit point 

-- Exceptions in earlier pipe stages override later exceptions 

-- Inject external interrupts, which over-ride others, at commit point 

-- If exception at commit: (1) update Cause and EPC registers, (2) kill all stages,  

(3) inject handler PC into fetch stage 

Asynchronous 
Interrupts 

Exc 
D 

PC 
D 

PC 
Inst. 
Mem D Decode E M 

Data 
Mem W + 

Exc 
E 

PC 
E 

Exc 
M 

PC 
M 

Cause 

EPC 

Kill D 
Stage 

Kill F 
Stage 

Kill E 
Stage 

Illegal 
Opcode Overflow 

Data Addr 
Except 

PC Address 
Exceptions 

Kill 
Writeback Select 

Handler 
PC 

Commit Point 
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Phases of Instruction Execution 

Fetch: Instruction bits retrieved from 

cache. 
I-cache 

Fetch 

Buffer 

Issue 

Buffer 

Func. 

Units 

Arch. 

State 

Execute: Instructions and operands sent to 

execution units. When execution completes, 

all results and exception flags are available. 

Decode: Instructions placed in appropriate 

issue (aka “dispatch”) stage buffer 

Result 

Buffer Commit: Instruction irrevocably updates 

architectural state (aka “graduation” or 

“completion”). 

PC 
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Supporting Precise Exceptions 

In-Order Commit 
 - Instructions fetched, decoded into re-order buffer (ROB) in-order 

 - Instructions executed, completed out-of-order 

 - Instructions committed in-order 

 - Instruction commit writes to architectural state (e.g., register file, memory) 
 

Temporary storage needed to hold results before 

commit (e.g., shadow registers, store buffers) 

Fetch Decode 

Execute 

Commit Reorder Buffer 

In-order In-order Out-of-order 

Kill 

Kill Kill 

Exception? Inject handler PC 
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Supporting Precise Exceptions 

- Add <pd, dest, data, cause> fields to instruction template 

- Commit instructions to register file and memory in-order 

- On exception, clear re-order buffer (reset ptr-1 = ptr-2) 

- Store instructions must commit before modifying memory 

ptr2 

next to 

commit 

ptr1 

next 

available 

Inst#    use   exec  op      p1  src1        p2  src2         pd  dest   data     cause 
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Renaming and Rollbacks 

Register file no longer contains renaming tags. How does decode stage find 

tag of a source register? Search the „dest‟ field in reorder buffer (ROB). 

Register File 

(now holds only 

committed state) 

Reorder 

buffer 

Load 

 Unit 
FU FU FU 

Store 

 Unit 

< t, result > 

t1 

t2 

. 

. 

tn 

Ins#     use  exec   op    p1    src1      p2    src2      pd  dest       data 

Commit 
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Renaming Table 

Register File 

Reorder  

Buffer 

Load 

 Unit 
FU FU FU 

Store 

 Unit 

< t, result > 

t1 

t2 

. 

. 

tn 

Ins#    use  exec   op      p1    src1      p2    src2       pd  dest     data 

Commit 

Rename  

Table 

Renaming table is a cache, speeds up register name look-up. Table is cleared after 

each exception. When else are valid bits cleared? Control transfers. 

r1  t v 

r2  

tag 

valid bit 
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Control Transfer Penalty 

I-cache 

Fetch 

Buffer 

Issue 

Buffer 

Func. 

Units 

Arch. 

State 

Execute 

Decod

e 

Result 

Buffer Commit 

PC 

Fetch 

Branch 

executed 

Next fetch 

started 
Modern processors may have >10 

pipeline stages between next 

PC calculation and branch 

resolution. 

 

How much work is lost if pipeline 

does not follow correct 

instruction flow? 

 

[Loop Length] x [Pipeline Width] 
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Branches and Jumps 

Each instruction fetch depends on 1-2 pieces of 

information from preceding instruction: 

 1. Is preceding instruction a branch? 

 2. If so, what is the target address? 

 

Instruction  Taken known? Target known? 

J    after decode after decode 

JR    after decode after fetch 

BEQZ/BNEZ  after fetch*  after decode 

 

*assuming zero? detect when register read 
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Reducing Control Flow Penalty 

Software Solutions 
 1. Eliminate branches -- loop unrolling increases run length before branch 

 2. Reduce resolution time – instruction scheduling moves instruction that 

produces condition earlier (of limited value) 

 

Hardware Solutions 
 1. Find other work – delay slots and software cooperation 

 2. Speculate – predict branch result and execute instructions beyond 

branch 
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Branch Prediction 

Motivation 
 -- Branch penalties limit performance of deeply pipelined processors 

 -- Modern branch predictors have high accuracy (>95%) and can 

significantly reduce branch penalties 

 

Hardware Support 
 -- Prediction structures: branch history tables, branch target buffer, etc. 

 

 -- Mispredict recovery mechanisms: 

 -- Separate instruction execution and instruction commit 

 -- Kill instructions following branch in pipeline 

 -- Restore architectural state to correct path of execution 
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Static Branch Prediction 

On average, probability a branch is taken is 60-70%. 

But branch direction is a good predictor. 

 

ISA can attach preferred direction semantics to branches (e.g., Motorola 

MC8810, bne0 prefers taken, beq0 prefers not taken). 

 

ISA can allow choice of statically predicted direction (e.g., Intel IA-64). Can be 

80% accurate. 

JZ 

JZ 
backward 
90% 

forward 
50% 
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Dynamic Branch Prediction 

Learn from past behavior 

 

Temporal Correlation -- The way a branch resolves 

may be a good predictor of the way it will resolve 

at the next execution 

 

Spatial Correlation -- Several branches may resolve in 

a highly correlated manner (preferred path of 

execution in the application) 
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2-bit Branch Predictor 

Use two-bit saturating counter. 

Changes prediction after two consecutive mistakes. 
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Branch History Table (BHT) 

BHT is an array of 2-bit branch predictors, indexed by branch PC 

4K-entry branch history table, 80-90% accurate 

0 0 Fetch PC 

Branch? Target PC 

+ 

I-Cache 

Opcode offset 

Instruction 

k 

BHT Index 

2k-entry 
BHT, 
2 bits/entry 

Taken/¬Taken? 
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Two-Level Branch Prediction 
Pentium Pro uses the result from the last two branches 

to select one of the four sets of BHT bits (~95% correct) 

0 0 

k Fetch PC 

Shift in  

Taken/¬Taken  

results of each 
branch 

2-bit global branch 

history shift register 

Taken/¬Taken? 
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Branch Target Buffer (BTB) 

BHT only predicts branch direction (taken, not taken). Cannot redirect instruction 

flow until after branch target determined. 

Store target with branch predictions. 

During fetch – if (BP == taken) then nPC=target, else nPC=PC+4 

Later – update BHT, BTB 

IMEM 

PC 

Branch  
Target  
Buffer  
(2k entries) 

k 

BPb predicted 

target BP 

 target 
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Branch Target Buffer (BTB) – v2 

Keep both branch PC and target PC in the BTB 

If match fails, PC+4 is fetched 

Only taken branches and jumps held in BTB 

 

I-Cache PC 

k 

Valid 

valid 

Entry PC 

= 

match 

predicted 

target 

target PC 
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Mispredict Recovery  

In-order execution 

No instruction following branch can commit 

before branch resolves 

Kill all instructions in pipeline behind mis-predicted 

branch 

 

Out-of-order execution 

Multiple instructions following branch can 

complete before one branch resolves 
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In-order Commit 

-- Instructions fetched, decoded in-order (entering the reorder buffer -- ROB) 

-- Instructions executed out-of-order 

-- Instructions commit in-order (write back to architectural state) 

-- Temporary storage needed in ROB to hold results before commit 

Fetch Decode 

Execute 

Commit Reorder Buffer 

In-order In-order Out-of-order 

Kill 

Kill Kill 

Exception? Inject handler PC 
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Branch Misprediction in Pipeline 

-- Can have multiple unresolved branches in reorder buffer -- ROB 

-- Can resolve branches out-of-order by killing all instructions in ROB that 

follow a mispredicted branch 

Fetch Decode 

Execute 

Commit Reorder Buffer 

Kill 

Kill Kill 

Branch 
Resolution 

Inject correct PC 

Branch 
Prediction 

PC 

Complete 
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Mispredict Recovery  

Take snapshot of register rename table at each predicted branch, recover 

earlier snapshot if branch mispredicted 

t v t v t v 
Register 

File 

Reorder 
Buffer 

Load 

 Unit 
FU FU FU 

Store 
 Unit 

< t, result > 

t1 
t2 
. 

. 
tn 

Ins#      use   exec      op     p1       src1       p2     src2        pd    dest         data 

Commit 

Rename  
Table r1  

t v 

r2 

Rename  
Snapshots 

Ptr2  

next to commit 

Ptr1  

next available 

rollback  

next available 
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