
ECE 252 / CPS 220

 Advanced Computer Architecture I

Lecture 10

Instruction-Level Parallelism – Part 3

Benjamin Lee
Electrical and Computer Engineering

Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall11.html

ECE 252 / CPS 220 2

ECE252 Administrivia

4 October – Homework #2 Due
- Use blackboard forum for questions

- Attend office hours with questions

- Email for separate meetings

4 October – Class Discussion
 Roughly one reading per class. Do not wait until the day before!

1. Srinivasan et al. “Optimizing pipelines for power and performance”

2. Mahlke et al. “A comparison of full and partial predicated execution

support for ILP processors”

3. Palacharla et al. “Complexity-effective superscalar processors”

4. Yeh et al. “Two-level adaptive training branch prediction”

ECE 252 / CPS 220 3

ECE252 Administrivia

6 October – Midterm Exam
- 75 minutes, in-class

- Closed book, closed notes exam

1. Performance metrics – performance, power, yield

2. Technology – trends that changed architectural design

3. History – Instruction sets (accumulator, stack, index, general-purpose)

4. CISC – microprogramming, writing microprogram fragments

5. Pipelining – Performance, hazards and ways to resolve them

6. Instruction-level Parallelism – mechanisms to dynamically detect data
dependences and to manage instruction flow (Scoreboard, Tomasulo,

Physical Register File)

7. Speculative Execution – exception handling, branch prediction

8. Readings – High-level questions, not details

ECE 252 / CPS 220 6

Tomasulo Implementation

- Decode stage allocates instruction template (i.e., tag t) and stores

tag in register file.

- When instruction completes, tag is de-allocated.

Load
 Unit

FU FU
Store
 Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 t1
t2
.
.
tn

Renaming Table

& Register File

Reorder Buffer

ECE 252 / CPS 220 7

Tomasulo’s Structures

Reorder Buffer (ROB) -- buffers in-flight instructions in program order

 -- supports in-order commit, precise exceptions

 -- e.g., instruction#, use, exec, op

Reservation Stations -- tracks renamed source operands

 -- if operands ready, contains value (e.g., v1)

 -- if operands pending, contains tag (e.g., t1)

 -- may be combined with ROB (e.g., our example)

 -- may be distributed across functional units

Renaming Table -- if write committed, points to register file (e.g., F1)

 -- if write pending, points to ROB entry (e.g., t1)

 -- Rename registers (e.g., F1) with ROB tags (e.g., t1)

Register File -- contains architected state, committed values

Common Data Bus (CDB) -- functional units broadcast computed values

 -- broadcast includes <tag, result>

ECE 252 / CPS 220 8

Tomasulo’s Pipeline

1. Fetch

2. Dispatch -- Decode instruction

 -- Stall if structural hazard in ROB

 -- Allocate ROB entry and rename using ROB tags

 -- Read source operands when they are ready

3. Execute -- Issue instruction when all operands ready

 -- Instructions may issue out-of-order

4. Complete -- Stall if structural hazard on the common data bus

 -- Broadcast tag and completed result

 -- Mark ROB entry as complete

 -- Instructions may complete out-of-order

5. Retire -- Stall if oldest instruction (head of ROB) not complete

 -- Handle any interrupts

 -- Write-back value for oldest instruction to register file or mem

 -- Free ROB entry

 -- Instructions retire in-order

ECE 252 / CPS 220 9

Physical Register File

Tomasulo Performance Limitations
 -- Too much data movement on common data bus

 -- Multi-input multiplexors, long buses impact clock frequency

Alternative Approach to Register Renaming
 -- Eliminate architectural register file (e.g., R0-R31, F1-F8)

 -- Add larger physical register file, which holds all values (e.g., P0-Pn, n>>32)

 -- Modify rename table to map architected registers to physical registers

 -- Add free list to manage unallocated physical registers

 -- Reorder buffer tracks ready operands, supports in-order retire, supports free

list management

ECE 252 / CPS 220 10

Lifetime of Physical Registers

-- Architected registers are those defined by the instruction set architecture

-- Register renaming can be implemented in two ways

-- Rename with buffer tags -- insert speculatively computed values into ROB

-- Rename with physical registers – hold committed and speculative values

 With Architected Registers With Physical Registers

 1. ld R1, (R3) ld P1, (Px)

 2. add R3, R1, 4 add P2, P1, 4

 3. sub R6, R7, R9 sub P3, Py, Pz

 4. add R3, R3, R6 add P4, P2, P3

 5. ld R6, (R1) ld P5, (P1)

 6. add R6, R6, R3 add P6, P5, P4

 7. st R6, (R1) st P6, (P1)

 8. ld R6, (R11) ld P7, (Pw)

-- Every instruction’s destination register R* renamed to physical register P*

-- When do we reuse physical register? When next write of same architected

register commits. Example: Reuse P2 when instruction 4 commits

ECE 252 / CPS 220 11

Physical Register Management

Rename Table

-- Maps architected registers (e.g., R*) to physical registers (e.g., P*)

-- Rename table identifies physical register P* that contains the value of R*

-- Example: MIPS has 32 architected registers so rename table has 32 entries.

-- Microarchitecture might have N >> 32 physical registers.

Physical Registers

-- Contain N>>32 registers that can hold committed data.

-- Committed data is present when “p” flag is set.

Free List

-- List of physical registers available for renaming.

-- Stall pipeline if there are insufficient physical registers

Reorder Buffer

-- Issue logic checks state of instructions to determine if operand values present

-- Tracks sequence of renamings for the same architected register

ECE 252 / CPS 220 12

Physical Register Management

-- After the fetch stage, instruction enters decode stage.

-- Decode stage (1) extracts architected registers, (2) renames to physical

registers, and (3) inserts instruction into reorder buffer.

Every instruction’s destination register is renamed! Eliminates WAW/WAR hazards.

Renaming for instruction “op Rd, R1, R2” requires the following steps:

i. Lookup source registers (R1,R2) in rename table.

 Insert corresponding physical register (P<y>,P<z>) into ROB.

ii. If values for P<y>, P<z> are present, set “p” flag in ROB.

iii. Lookup destination register (Rd) in rename table.

 Suppose Rd already renamed to P<w>.

 Because we rename Rd in step iii, this is the last instruction for which P<w> is valid.

 Denote as last physical register (LPRd) in ROB. Required for managing free list.

iv. Rename Rd to P<x>, which is next available register from free list.

 Denote as current physical register (PRd) in ROB.

Issue logic sends instruction to execution units when both source registers present

ECE 252 / CPS 220 13

Renaming R1 to P0

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

1. ld R1, 0(R3)

2. add R3, R1, 4

3. sub R6, R7, R6

4. add R3, R3, R6

5. ld R6, 0(R1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

X ld p P7 R1 P0

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8
PR1/2: src physical regs

p1/2: set when physical reg
values are present

Rd: dest architected reg

LPRd: last dest physical reg

PRd: new dest physical reg

ECE 252 / CPS 220 14

Renaming R3 to P1

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

1. ld R1, 0(R3)

2. add R3, R1, 4

3. sub R6, R7, R6

4. add R3, R3, R6

5. ld R6, 0(R1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

x ld p P7 R1 P0

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8
P7

P1

x add P0 R3 P1

PR1/2: src physical regs

p1/2: set when physical reg
values are present

Rd: dest architected reg

LPRd: last dest physical reg

PRd: new dest physical reg

ECE 252 / CPS 220 15

Renaming R6 to P3

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

1. ld R1, 0(R3)

2. add R3, R1, 4

3. sub R6, R7, R6

4. add R3, R3, R6

5. ld R6, 0(R1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

x ld p P7 R1 P0

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8
P7

P1

x add P0 R3 P1
P5

P3

x sub p P6 p P5 R6 P3

PR1/2: src physical regs

p1/2: set when physical reg
values are present

Rd: dest architected reg

LPRd: last dest physical reg

PRd: new dest physical reg

ECE 252 / CPS 220 16

Renaming R3 to P2

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

1. ld R1, 0(R3)

2. add R3, R1, 4

3. sub R6, R7, R6

4. add R3, R3, R6

5. ld R6, 0(R1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

x ld p P7 R1 P0

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8
P7

P1

x add P0 R3 P1
P5

P3

x sub p P6 p P5 R6 P3
P1

P2

x add P1 P3 R3 P2

PR1/2: src physical regs

p1/2: set when physical reg
values are present

Rd: dest architected reg

LPRd: last dest physical reg

PRd: new dest physical reg

ECE 252 / CPS 220 17

Renaming R6 to P4

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

1. ld R1, 0(R3)

2. add R3, R1, 4

3. sub R6, R7, R6

4. add R3, R3, R6

5. ld R6, 0(R1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

x ld p P7 R1 P0

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8
P7

P1

x add P0 R3 P1
P5

P3

x sub p P6 p P5 R6 P3
P1

P2

x add P1 P3 R3 P2
x ld P0 R6 P4 P3

P4

PR1/2: src physical regs

p1/2: set when physical reg
values are present

Rd: dest architected reg

LPRd: last dest physical reg

PRd: new dest physical reg

ECE 252 / CPS 220 18

Physical Register Management

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

x ld p P7 R1 P0
x add P0 R3 P1
x sub p P6 p P5 R6 P3

x ld p P7 R1 P0

1. ld R1, 0(R3)

2. add R3, R1, 4

3. sub R6, R7, R6

4. add R3, R3, R6

5. ld R6, 0(R1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

<R1> P8 p

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8
P7

P1

P5

P3

P1

P2

x add P1 P3 R3 P2
x ld P0 R6 P4 P3

P4

Execute &
Commit

p

p

p <R1>

P8

x

ECE 252 / CPS 220 19

Physical Register Management

op p1 PR1 p2 PR2 ex use Rd PRd LPRd

ROB

x sub p P6 p P5 R6 P3
x add P0 R3 P1 x add P0 R3 P1

1. ld R1, 0(R3)

2. add R3, R1, 4

3. sub R6, R7, R6

4. add R3, R3, R6

5. ld R6, 0(R1)

Free List
P0
P1
P3
P2
P4

<R6> P5
<R7> P6
<R3> P7

P0

Pn

P1
P2
P3
P4

Physical Regs

p
p
p

P8

x x ld p P7 R1 P0

R5
P5 R6
P6 R7

R0
P8 R1

R2
P7 R3

R4

Rename
Table

P0

P8
P7

P1

P5

P3

P1

P2

x add P1 P3 R3 P2
x ld P0 R6 P4 P3

P4

Execute &
Commit p

p

p <R1>

P8

x

p

p <R3>

P7

ECE 252 / CPS 220 20

Active Instruction Window in ROB

ld r1, (r3)

add r3, r1, r2

sub r6, r7, r9

add r3, r3, r6

ld r6, (r1)

add r6, r6, r3

st r6, (r1)

ld r6, (r1)

(newer instructions)

(older instructions)

Cycle (t)

…

ld r1, (r3)

add r3, r1, r2

sub r6, r7, r9

add r3, r3, r6

ld r6, (r1)

add r6, r6, r3

st r6, (r1)

ld r6, (r1)

…

Commit

Fetch

Cycle (t + 1)

Execute

ECE 252 / CPS 220 21

Superscalar Register Renaming

-- During decode, instruction is allocated new physical register for dest

-- Instruction’s source registers renamed to physical register with newest value

-- Execution unit only sees physical register numbers.

-- Does this work?

Rename Table

Op Src1 Src2 Dest Op Src1 Src2 Dest

Register
Free List

Op PSrc1 PSrc2 PDest Op PSrc1 PSrc2 PDest

Update
Mapping

Inst 1 Inst 2

Read Addresses

Read Data

W
ri

te

P
o
rt

s

ECE 252 / CPS 220 22

Superscalar Register Renaming

Rename Table

Op Src1 Src2 Dest Op Src1 Src2 Dest

Register
Free List

Op PSrc1 PSrc2 PDest Op PSrc1 PSrc2 PDest

Update
Mapping

Inst 1 Inst 2

Read Addresses

Read Data

W
ri

te

P
o
rt

s

=? =?

Must check for RAW
hazards between
instructions issuing
in same cycle. If
RAW hazard, pass
Inst1’s Pdest to
Inst2’s PSrc1 or
PSrc2.

ECE 252 / CPS 220 23

Memory Dependencies

st r1, j(r2)

ld r3, k(r4)

When can we execute the load?

ECE 252 / CPS 220 24

In-Order Memory Queue

Execute all loads and stores in program order

Load and store cannot leave ROB and commit

architected state until all previous loads and stores

have completed execution

Can still execute loads speculatively and out-of-order

with respect to other instructions.

ECE 252 / CPS 220 25

Out-of-order Loads

Conservative out-of-order load execution

st r1, j(r2)

ld r3, k(r4)

-- Split execution of store instruction into two phases

-- Address calculation and data write

-- Can execute load before store if addresses known and j(r2) != k(r4)

-- Each load address compared with addresses of previous uncommitted stores

-- Don’t execute load if any previous store address not known

ECE 252 / CPS 220 26

Load Address Speculation

st r1, j(r2)

ld r3, k(r4)

-- Guess that j(r4) != k(r2)

-- Execute load before store address is known

-- Need to hold all completed but uncommitted load/store addresses in

program order

-- Later, if we find r4 == r2, squash load and all following instructions

-- Large penalty for inaccurate address speculation

ECE 252 / CPS 220 27

Speculative Loads/Stores

Just like register updates, stores should not modify the

memory until after the instruction is committed.

A speculative store buffer is a structure introduced to

hold speculative store data

ECE 252 / CPS 220 28

Speculative Store Buffer

-- On store execute: mark entry valid (V) and speculative (S), save data and tag

of instruction

-- On store commit: clear speculative bit and eventually move data to cache

-- On store abort: clear valid bit

Data

Load Address

Tags

 Store Commit Path

L1 Data Cache

Load Data

Tag Data S V

Tag Data S V

Tag Data S V

Tag Data S V

Tag Data S V

Tag Data S V

ECE 252 / CPS 220 29

Speculative Store Buffer

-- If data in both store buffer and cache, which should we use?

-- Speculative store buffer

-- If same address in store buffer twice, which should we use?

-- Youngest store that is older than load

Data

Load Address

Tags

 Store Commit Path

L1 Data Cache

Load Data

Tag Data S V

Tag Data S V

Tag Data S V

Tag Data S V

Tag Data S V

Tag Data S V

ECE 252 / CPS 220 30

Speculative Datapath

Fetch
Decode &
Rename

Reorder Buffer PC

Branch
Prediction

Update predictors

Commit

Branch
Resolution

Branch
Unit

ALU

Reg. File

MEM
Store

Buffer
D$

Execute

kill

kill

kill
kill

ECE 252 / CPS 220 31

Branch Prediction

Motivation
 -- Branch penalties limit performance of deeply pipelined processors

 -- Modern branch predictors have high accuracy (>95%) and can

significantly reduce branch penalties

Hardware Support
 -- Prediction structures: branch history tables, branch target buffer, etc.

 -- Mispredict recovery mechanisms:

 -- Separate instruction execution and instruction commit

 -- Kill instructions following branch in pipeline

 -- Restore architectural state to correct path of execution

ECE 252 / CPS 220 32

Static Branch Prediction

On average, probability a branch is taken is 60-70%.

But branch direction is a good predictor.

ISA can attach preferred direction semantics to branches (e.g., Motorola

MC8810, bne0 prefers taken, beq0 prefers not taken).

ISA can allow choice of statically predicted direction (e.g., Intel IA-64). Can be

80% accurate.

JZ

JZ
backward
90%

forward
50%

ECE 252 / CPS 220 33

Dynamic Branch Prediction

Learn from past behavior

Temporal Correlation -- The way a branch resolves

may be a good predictor of the way it will resolve

at the next execution

Spatial Correlation -- Several branches may resolve in

a highly correlated manner (preferred path of

execution in the application)

ECE 252 / CPS 220 34

2-bit Branch Predictor

Use two-bit saturating counter.

Changes prediction after two consecutive mistakes.

ECE 252 / CPS 220 35

Branch History Table (BHT)

BHT is an array of 2-bit branch predictors, indexed by branch PC

4K-entry branch history table, 80-90% accurate

0 0 Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset

Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

ECE 252 / CPS 220 36

Two-Level Branch Prediction
Pentium Pro uses the result from the last two branches

to select one of the four sets of BHT bits (~95% correct)

0 0

k Fetch PC

Shift in
Taken/¬Taken

results of each

branch

2-bit global branch

history shift register

Taken/¬Taken?

ECE 252 / CPS 220 37

Branch Target Buffer (BTB)

BHT only predicts branch direction (taken, not taken). Cannot redirect instruction

flow until after branch target determined.

Store target with branch predictions.

During fetch – if (BP == taken) then nPC=target, else nPC=PC+4

Later – update BHT, BTB

IMEM

PC

Branch
Target
Buffer
(2k entries)

k

BPb predicted

target BP

 target

ECE 252 / CPS 220 38

Branch Target Buffer (BTB) – v2

Keep both branch PC and target PC in the BTB

If match fails, PC+4 is fetched

Only taken branches and jumps held in BTB

I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

ECE 252 / CPS 220 39

Mispredict Recovery

In-order execution

No instruction following branch can commit

before branch resolves

Kill all instructions in pipeline behind mis-predicted

branch

Out-of-order execution

Multiple instructions following branch can

complete before one branch resolves

ECE 252 / CPS 220 40

In-order Commit

-- Instructions fetched, decoded in-order (entering the reorder buffer -- ROB)

-- Instructions executed out-of-order

-- Instructions commit in-order (write back to architectural state)

-- Temporary storage needed in ROB to hold results before commit

Fetch Decode

Execute

Commit Reorder Buffer

In-order In-order Out-of-order

Kill

Kill Kill

Exception? Inject handler PC

ECE 252 / CPS 220 41

Branch Misprediction in Pipeline

-- Can have multiple unresolved branches in reorder buffer -- ROB

-- Can resolve branches out-of-order by killing all instructions in ROB that

follow a mispredicted branch

Fetch Decode

Execute

Commit Reorder Buffer

Kill

Kill Kill

Branch
Resolution

Inject correct PC

Branch
Prediction

PC

Complete

ECE 252 / CPS 220 42

Mispredict Recovery

Take snapshot of register rename table at each predicted branch, recover

earlier snapshot if branch mispredicted

t v t v t v
Register

File

Reorder
Buffer

Load
 Unit

FU FU FU
Store
 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table r1

t v

r2

Rename
Snapshots

Ptr2

next to commit

Ptr1

next available

rollback

next available

ECE 252 / CPS 220 43

Acknowledgements

These slides contain material developed and copyright by

- Arvind (MIT)

- Krste Asanovic (MIT/UCB)

- Joel Emer (Intel/MIT)

- James Hoe (CMU)

- John Kubiatowicz (UCB)

- Alvin Lebeck (Duke)

- David Patterson (UCB)

- Daniel Sorin (Duke)

