
ECE 252 / CPS 220

 Advanced Computer Architecture I

Lecture 10

Instruction-Level Parallelism – Part 4

Benjamin Lee

Electrical and Computer Engineering

Duke University

www.duke.edu/~bcl15

www.duke.edu/~bcl15/class/class_ece252fall11.html

ECE 252 / CPS 220 2

ECE252 Administrivia

4 October – Homework #2 Due
- Use blackboard forum for questions

- Attend office hours with questions

- Email for separate meetings

4 October – Class Discussion
 Roughly one reading per class. Do not wait until the day before!

1. Srinivasan et al. “Optimizing pipelines for power and performance”

2. Mahlke et al. “A comparison of full and partial predicated execution

support for ILP processors”

3. Palacharla et al. “Complexity-effective superscalar processors”

4. Yeh et al. “Two-level adaptive training branch prediction”

ECE 252 / CPS 220 3

ECE252 Administrivia

6 October – Midterm Exam
- 75 minutes, in-class

- Closed book, closed notes exam

1. Performance metrics – performance, power, yield

2. Technology – trends that changed architectural design

3. History – Instruction sets (accumulator, stack, index, general-purpose)

4. CISC – microprogramming, writing microprogram fragments

5. Pipelining – Performance, hazards and ways to resolve them

6. Instruction-level Parallelism – mechanisms to dynamically detect data

dependences and to manage instruction flow (Scoreboard, Tomasulo,

Physical Register File)

7. Speculative Execution – exception handling, branch prediction

8. Readings – High-level questions, not details

ECE 252 / CPS 220 4

Branch Prediction

Motivation
 -- Branch penalties limit performance of deeply pipelined processors

 -- Modern branch predictors have high accuracy (>95%) and can

significantly reduce branch penalties

Hardware Support
 -- Prediction structures: branch history tables, branch target buffer, etc.

 -- Mispredict recovery mechanisms:

 -- Separate instruction execution and instruction commit

 -- Kill instructions following branch in pipeline

 -- Restore architectural state to correct path of execution

ECE 252 / CPS 220 5

Static Branch Prediction

On average, probability a branch is taken is 60-70%.

But branch direction is a good predictor.

ISA can attach preferred direction semantics to branches (e.g., Motorola

MC8810, bne0 prefers taken, beq0 prefers not taken).

ISA can allow choice of statically predicted direction (e.g., Intel IA-64). Can be

80% accurate.

JZ

JZ
backward
90%

forward
50%

ECE 252 / CPS 220 6

Dynamic Branch Prediction

Learn from past behavior

Temporal Correlation -- The way a branch resolves

may be a good predictor of the way it will resolve

at the next execution

Spatial Correlation -- Several branches may resolve in

a highly correlated manner (preferred path of

execution in the application)

ECE 252 / CPS 220 7

2-bit Branch Predictor

Use two-bit saturating counter.

Changes prediction after two consecutive mistakes.
 - Temporal Correlation

 - Branch can be taken (T), not-taken (N)

 - 4 states (0, 1, 2, 3), each with corresponding prediction (T/N)

 - Arcs correspond to resolved branch decision (T/N)

ECE 252 / CPS 220 8

Branch History Table (BHT)

BHT is an array of 2-bit branch predictors, indexed by branch PC

4K-entry branch history table, 80-90% accurate

0 0 Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset

Instruction

k

BHT Index

2k-entry
BHT,
2 bits/entry

Taken/¬Taken?

ECE 252 / CPS 220 9

Two-Level Branch Prediction
Spatial Correlation: Pentium Pro uses the result from the last two branches

to select one of the four sets of BHT bits (~95% correct)

0 0

k Fetch PC

Shift in

Taken/¬Taken

results of each

branch

2-bit global branch

history shift register

Taken/¬Taken?

ECE 252 / CPS 220 10

Branch Target Buffer (BTB) – v1

BHT only predicts branch direction (taken, not taken). Cannot redirect instruction

flow until after branch target determined.

Store target with branch predictions.

During fetch: If (BP == taken) then nPC=target, else nPC=PC+4

Later: update BHT, BTB

IMEM

PC

Branch
Target
Buffer
(2k entries)

k

BPb predicted

target BP

 target

ECE 252 / CPS 220 11

Branch Target Buffer (BTB) – v2

Keep both branch PC and target PC in the BTB

If match fails, PC+4 is fetched

Only taken branches and jumps held in BTB

I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

ECE 252 / CPS 220 12

Mispredict Recovery

In-order execution

No instruction following branch can commit

before branch resolves

Kill all instructions in pipeline behind mis-predicted

branch

Out-of-order execution

Multiple instructions following branch can

complete before one branch resolves

ECE 252 / CPS 220 13

In-order Commit

-- Instructions fetched, decoded in-order (entering the reorder buffer -- ROB)

-- Instructions executed out-of-order

-- Instructions commit in-order (write back to architectural state)

-- Temporary storage needed in ROB to hold results before commit

Fetch Decode

Execute

Commit Reorder Buffer

In-order In-order Out-of-order

Kill

Kill Kill

Exception? Inject handler PC

ECE 252 / CPS 220 14

Branch Misprediction in Pipeline

-- Can have multiple unresolved branches in reorder buffer -- ROB

-- Can resolve branches out-of-order by killing all instructions in ROB that

follow a mispredicted branch

Fetch Decode

Execute

Commit Reorder Buffer

Kill

Kill Kill

Branch
Resolution

Inject correct PC

Branch
Prediction

PC

Complete

ECE 252 / CPS 220 15

Mispredict Recovery

Take snapshot of register rename table at each predicted branch, recover

earlier snapshot if branch mispredicted

t v t v t v
Register

File

Reorder

Buffer
Load

 Unit
FU FU FU

Store

 Unit

< t, result >

t1

t2

.

.

tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename

Table r1

t v

r2

Rename

Snapshots

Ptr2

next to commit

Ptr1

next available

rollback

next available

ECE 252 / CPS 220 16

Acknowledgements

These slides contain material developed and copyright by

- Arvind (MIT)

- Krste Asanovic (MIT/UCB)

- Joel Emer (Intel/MIT)

- James Hoe (CMU)

- John Kubiatowicz (UCB)

- Alvin Lebeck (Duke)

- David Patterson (UCB)

- Daniel Sorin (Duke)

