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ECE252 Administrivia 

20 October – Project Proposals Due 
 One page proposal 

1. What question are you asking? 

2. How are you going to answer that question? 

3. Talk to me if you are looking for project ideas. 

 

25 October – Homework #3 Due 

25 October – Class Discussion 
 Roughly one reading per class. Do not wait until the day before! 

1. Jouppi. “Improving direct-mapped cache performance by the addition 

of a small fully-associative cache and prefetch buffers.” 

2. Kim et al. “An adaptive, non-uniform cache structure for wire-delay 

dominated on-chip caches.” 

3. Fromm et al. “The energy efficiency of IRAM architectures” 

4. Lee et al. “Phase change memory architecture and the quest for 

scalability” 
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Last Time 

History of Memory 
• Williams tubes were unreliable. Core memory reliable but slow 

• Semiconductor memory competitive in 1970s.  

 

DRAM Operation 
• DRAM accesses require (1) activates, (2) reads/writes, (3) precharges 

• Performance gap between processor and memory is growing. 

 

Managing the Memory Hierarchy 
1. Predictable patterns provide (1) temporal and (2) spatial locality 

2. Exploit predictable patterns with small, fast caches.  

3. Cache data placement policies include (1) fully-associative, (2) set-

associative, and direct-mapped.  Choice of policy determines cache 

effectiveness. 
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Datapath – Cache Interaction 
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Average Memory Access Time 

AMAT = [Hit Time] + [Miss Prob.] x [Miss Penalty] 
- Miss Penalty equals AMAT of next cache/memory/storage level.  

- AMAT is recursively defined 

 

To improve performance 
- Reduce the hit time (e.g., smaller cache) 

- Reduce the miss rate (e.g., larger cache) 

- Reduce the miss penalty (e.g., optimize the next level) 

 

Simple design strategy 
- Observe that hit time increases with cache size 

- Design the largest possible cache with a hit time of 1-2 cycles. 

- For example, design 8-32KB of cache in modern technology 

- Design trade-offs are more complex with superscalar architectures and 

multi-ported memories 
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Example: Serial vs Parallel Access 

Serial Access 

- Check cache for addressed data.  If miss (probability 1-p), go to memory 

- AMAT = Tcache + (1-p) x Tmem 

 

 

 

 

 

 
Parallel Access 

- Check cache and memory for addressed data.  

- AMAT = p x Tcache + (1-p) x Tmem 

- AMAT reductions from parallel access often small. Tmem >> Tcache and 

p is high. Parallel access consumes memory bandwidth Parallel access 

increases cache complexity and Tcache. 
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Cache Misses and Causes (3C’s) 

Compulsory 
- First reference to a block. May be caused by “cold” caches as 

application begins execution. 

- Compulsory misses would occur even with infinitely sized cache 

 

Capacity 
- Cache is too small and cannot hold all data needed by the program. 

- Capacity misses would occur even under perfect replacement policy. 

 

Conflict 
- Cache line replacement policy causes collisions 

- Conflict misses would not occur with full associativity 
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Cache Performance 

Larger Cache Size 
- Benefit: reduces capacity and conflict misses 

- Cost: increases hit time 

 

Higher Associativity 
- Benefit: reduces conflict misses 

- Cost: increases hit time 

 

Larger Line Size 
- Benefit: reduces compulsory and capacity misses 

- Cost: increases conflict misses and increases miss penalty 
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Cache Write Policy Alternatives 

What happens when a cache line is written? 

If write hits in cache (i.e., line already cached) 
- Write-Through: Write data to both cache and memory.  Increases 

memory traffic but allows simpler datapath and cache controllers. 

- Write-Back: Write data to cache only. Write data to memory only when 

cache line is replaced (e.g., conflict).  

- Write-Back Optimization: Insert “dirty bit” per cache line, which indicates 

whether line is modified. Write-back only if replaced cache line is dirty.  
 

If write misses in cache 
- No Write Allocate: Write data to memory only. 

- Write Allocate: Fetch data into cache.  Write data into cache. Also 

known as fetch-on-write. 
 

Common combinations 
- Write-through and no-write allocate 

- Write-back and write allocate. 
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Write Performance 

Writes must (1) check for 

HIT and (2) perform write 

only after HIT signal 

resolves. Steps are serial, 

which harms 
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Reducing Write Time 

Problem: Writes take two cycles in memory 
- Access cache and compare tags to generate HIT signal (1 cycle) 

- Perform cache write if HIT enables a write (1 cycle) 
 

Solutions 
- Design data SRAM that can perform read/write in one cycle, restoring 

old value if HIT is false. 

- Design content-addressable data SRAM (CAM), which enables word line 

only if HIT is true. 

- Pipeline writes with a write buffer.  Write the cache for j-th store instruction 

during the tag check for (j+1)-th store instruction 
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Pipelining Cache Writes 

Introduce buffers for delayed write address, 

write data. Write cache for j-th store during 

tag check for (j+1)-th store.  Note that loads 

must check buffers for latest data. 
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Buffering Writes 

With buffers, writes do not stall datapath 
- Introduce a write buffer between adjacent levels in cache hierarchy. 

- After writes enter buffer, computation proceeds.  

- For example: Reads bypass writes.  
 

Problem 
- Write buffer may hold latest value for a read instruction’s address 

 

Solutions 
- Option 1: If a read misses in cache, wait for the write buffer to empty 

- Option 2: Compare read address with write buffer addresses.  If no 

match, allow read to bypass writes.  Else, return value in write buffer.  
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Cache Hierarchy 

Problem 
- Memory technology imposes trade-off between speed and size. 

- A memory cannot be both large and fast.  
 

Solution 
- Introduce a multi-level cache hierarchy. 

- As distance from datapath increases, increase cache size. 
 

CPU L1$ L2$ DRAM 
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L1-L2 Cache Interactions 

Use smaller L1 cache if L2 cache is present 
- Reduce L1 hit time, but increase L1 miss rate.   

- L2 mitigates higher L1 miss rate by reducing L1 miss penalty 

- May reduce average time (AMAT) and energy (AMAE) 
 

Use write-through L1 if write-back L2 cache is present 
- Write-through L1 simplifies pipeline, cache controller.  

- No write-backs for dirty lines reduces complexity.  

- Write-back L2 absorbs write traffic. Writes do not go off-chip to DRAM. 

 

Inclusion Policies 
- Inclusive Multi-level Cache: Smaller cache (e.g., L1) holds copies of data 

in larger cache (e.g., L2). Simpler policies. 

- Exclusive Multi-level Cache: Smaller cache (e.g., L1) holds data not in 

larger cache (e.g., L2).  Example: AMD Athlon with 64KB primary and 

256KB secondary.  Reduces duplication. 
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Power7 On-Chip Caches (2009) 

32KB L1 I$/core 

32KB L1 D$/core 

3-cycle latency 

256KB Unified L2$/core 

8-cycle latency 

32MB Unified Shared L3$ 

Embedded DRAM 

25-cycle latency to local 

slice 
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Prefetching 

Speculate about future memory accesses 
- Predict likely instruction and data accesses.  

- Pre-emptively fetch instructions and data into caches. 

- Instructions accesses likely easier to predict than data accesses.  

- Mechanisms might be implemented in HW, SW or both. 

- What type of misses does prefetching affect? 
 

Challenges in Prefetching 
- Prefetching should be useful. Prefetches should reduce misses. 

- Prefetching should be timely. Prefetches will pollute the cache if too early 

and will be useless if too late.  

- Prefetching may pollute caches and consume memory bandwidth. 
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Hardware Instruction Prefetching 

Example: Alpha AXP 21064 
- Prefetch instructions 

- Fetch two lines on a cache miss.  Fetch the requested line (i) and the 

next consecutive line (i+1).  

- Place requested line in instruction L1 cache. Place next line in an 

instruction stream buffer.  

- If an instruction fetch misses in L1 cache but hits in stream buffer, move 

stream buffer line into L1 cache. And prefetch next line (i+2) 
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Hardware Data Prefetching 

Prefetch after a cache miss 
- Prefetch line (i+1) if an access for line (i) misses in the cache 

 

One Block Look-ahead (OBL)  
- Blocks also known as lines.  

- Initiate prefetch for block (i+1) when block (i) is accessed. 

- Generalizes to N-block look-ahead 

- How is this different from increasing the block or line size by N times? 

 

Strided Prefetch 
- Observe sequence of accesses to cache lines. 

- Suppose a sequence (i), (i+N), (i+2N) is observed. Prefetch (i+3N). 

- N is the stride.  

- Example: IBM Power 5 (2003) supports eight independent streams of 

strided prefetches per processor, prefetching 12 lines ahead of the 

current access. 
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Software Prefetching 
 

  for(i=0; i < N; i++) { 

    prefetch( &a[i + P] ); 

    prefetch( &b[i + P] ); 

    SUM = SUM + a[i] * b[i]; 

 } 

Challenges in Software Prefetching 
- Timing is the biggest difficulty, not predictability. 

- Prefetch too late if prefetch instruction too  close to data use.  

- Prefetch too early and cause cache/bandwidth pollution. 

- Requires estimating prefetch latency: time from issuing prefetch to filling 

L1 cache line.  

- Why is this hard to do?  What is the correct value of P above? 
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Caches and Code 

Restructuring code affects data access sequences 
- Group data accesses together to improve spatial locality 

- Re-order data accesses to improve temporal locality 
 

Prevent data from entering the cache 
- Useful for variables that are only accessed once 

- Requires SW to communicate hints to HW.  

- Example: “no-allocate” instruction hints 

 

Kill data that will never be used again 
- Streaming data provides spatial locality but not temporal locality 

- If particular lines contain dead data, use them in replacement policy. 

- Toward software-managed caches 

 

 

 

 



  for(j=0; j < N; j++) { 
    for(i=0; i < M; i++) { 
       x[i][j] = 2 * x[i][j]; 
    } 
 } 

 

 
  for(i=0; i < M; i++) { 
    for(j=0; j < N; j++) { 
       x[i][j] = 2 * x[i][j]; 
    } 
 } 
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Loop Interchange 

What type of locality does this improve?   

What does it assume about x? 
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Loop Fusion 

 

What type of locality does this improve? 

for(i=0; i < N; i++) 

    a[i] = b[i] * c[i]; 

 

for(i=0; i < N; i++) 

     d[i] = a[i] * c[i]; 

  for(i=0; i < N; i++) 

{ 

       a[i] = b[i] * c[i];  

       d[i] = a[i] * c[i]; 

  } 
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Matrix Multiply (X=YZ) – Naïve  

 for(i=0; i < N; i++) 
    for(j=0; j < N; j++) { 
       r = 0; 
       for(k=0; k < N; k++)   
         r = r + y[i][k] * z[k][j]; 
       x[i][j] = r; 
    } 

Not touched Old access New access 

x j 

i 

y k 

i 

z j 

k 

Notes 
1. Iterate through matrix (y) by row.  
2. Iterate through matrix (z) by col. 
3. Update matrix (x) by col.  
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Matrix Multiply (X=YZ) – Blocked 
 for(jj=0; jj < N; jj=jj+B) 

   for(kk=0; kk < N; kk=kk+B) 

      for(i=0; i < N; i++) 

          for(j=jj; j < min(jj+B,N); j++) { 

             r = 0; 

             for(k=kk; k < min(kk+B,N); k++)  

                r = r + y[i][k] * z[k][j]; 

             x[i][j] = x[i][j] + r; 

          } 

 

y k 

i 

z j 

k 

x j 

i 

Notes 
1. Organize matrix into BxB sub-

matrices.  
2. Iterate through blocks (jj, kk). 

3. For each block, iterate through its 
elements (i, j). 

 
What type of locality does this 
improve?  Hint: Track the re-use of 
matrix elements during computation.  

 

Not touched Old access New access 
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Summary 

Caches 
• Quantify cache/memory hierarchy performance with AMAT 

• Three types of cache misses: (1) compulsory, (2) capacity, (3) conflict 

• Cache structure and data placement policies determine miss rates 

• Write buffers improve performance.  

 

Prefetching 
• Identify and exploit spatial locality 

• Prefetchers can be implemented in hardware, software, or both 

 

Caches and Code 
• Restructuring SW code can improve HW cache performance 

• Data re-use can improve with code structure (e.g., matrix-multiply) 
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