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ECE252 Administrivia 

20 October – Project Proposals Due 
 One page proposal 

1. What question are you asking? 

2. How are you going to answer that question? 

3. Talk to me if you are looking for project ideas. 

 

25 October – Homework #3 Due 

25 October – Class Discussion 
 Roughly one reading per class. Do not wait until the day before! 

1. Jouppi. “Improving direct-mapped cache performance by the addition 

of a small fully-associative cache and prefetch buffers.” 

2. Kim et al. “An adaptive, non-uniform cache structure for wire-delay 

dominated on-chip caches.” 

3. Fromm et al. “The energy efficiency of IRAM architectures” 

4. Lee et al. “Phase change memory architecture and the quest for 

scalability” 
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Last Time 

Caches 
• Quantify cache/memory hierarchy with AMAT 

• Three types of cache misses: (1) compulsory, (2) capacity, (3) conflict 

• Cache structure and data placement policies determine miss rates 

• Write buffers improve performance 

 

Prefetching 
• Identify and exploit spatial locality 

• Prefetchers can be implemented in hardware, software, both 

 

Caches and Code 
• Restructuring SW code can improve HW cache performance 

• Data re-use can improve with code structure (e.g., matrix multiply) 
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Physical Addresses 

One program runs at a time. Program has 

unrestricted access to machine (RAM, I/O) 

 

Program addresses depend on where program is 

loaded into memory 

 

But programmers do not think about memory 

addresses when writing sub-routines… 
- How is location independence achieved? Loader/Linker 

- (1) loads sub-routines into memory, determines physical addresses,  

- (2) links multiple sub-routines,  

- (3) resolves physical addresses so jumps to sub-routines go to correct 

memory locations 
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Machine with Physical Addresses 

With unrestricted access to a machine, program uses 

physical addresses. 
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Address Translation 

Motivation 
- In early machines, I/O is slow and requires processor support 

- Increase throughput by over-lapping I/O for multiple programs 

- Eliminate processor support with direct memory access (DMA)  

- DMA: (1) Processor initiates I/O, (2) Processor does other 

operations during transfer, (3) Processor receives interrupt from 

DMA controller when transfer is complete 
 

Location-Independent Programs 
- Simplify program and storage management 
 

Protection 
- Independent programs should not affect others (isolated 

memory spaces) 

- Multi-programming requires “supervisor” to schedule 

programs, manage context switches between programs 
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Virtual and Physical Memory 

Programs receive allocations of physical memory at specific physical addresses. 

Program operates in virtual memory with virtual addresses. 

Memory Management Unit (MMU) – performs address translation to map virtual 

addresses to physical addresses. 

Virtual Memory 
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1 - Base & Bound 

Base register – Identifies a program’s allocation in physical memory. 

Bound register – Provides protection and isolation between programs 

Base, Bound registers visible only when processor is running in “supervisor” mode 

Virtual Memory 
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Machine with Virtual Addresses 

Every access to memory requires translating virtual addresses to physical 

addresses. Efficient adder implementations are possible for (base+offset). 

PC 
Inst. 

Cache D Decode E M 

Data 
Cache W + 

Main Memory (DRAM) 

Memory Controller 

Physical 
Address 

Physical 
Address 

Physical 
Address 

Physical Address 

Data Bound 
Register 

Data Base 
Register 

 

+ 

Logical 
Address 

Bounds Violation? 

Physical 
Address 

Prog. Bound 
Register 

Program Base 
Register 

 

+ 

Logical 
Address 

Bounds Violation? 



ECE 252 / CPS 220 10 

 

 

Base & Bounds Implementation 

Hardware Cost 
- Two registers, adder, comparator 

- Fast logic 

 

Context Switch 
- Save/restore base, bound registers 
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2 - Segmentation 

Motivation 
- Separate virtual address space into several segments. 

- Each segment is contiguous but segments may be fragmented. 

- Segmentation does not require fully contiguous address space (i.e., allow 

holes in address space) 

 

Idea 
- Generalize Base & Bounds 

- Implement a table of base-bound pairs 

 

Virtual Segment # Physical Segment Base Segment Size 

Code  (00) 0x4000   0x700 

Data  (01) 0x0000   0x500 

-  (10) 0   0 

Stack (11) 0x2000   0x1000 
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Data & Program Segments 

What is the advantage of this separation? 
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Segmentation Implementation 

Virtual Address 
- Partition into segment and offset 

- Segment – Specifies segment number, 

which indexes table 

- Offset – Specifies offset within a 

segment 

 

Segment Table 
- Segment – Provides segment base 

- Size – Provides segment bound 

 

Translation 
- Compute physical address from 

segment base, offset, and bound 



ECE 252 / CPS 220 14 

 

 

Fragmentation 

- As programs enter and leave the system, physical memory is fragmented. 

- Fragmentation occurs because segments are variable size 
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3 - Paging 

Motivation 
- Branch&Bounds, Segmentation require fancy memory management 

- Example: What mechanism coalesces free fragments? 

 

Idea 
- Constrain segmentation with fixed-size segments (e.g., pages) 

- Paging simplifies memory management 

 

- Example: free page management is a simple bitmap 

- 00111111100000011100 

- Each bit represents on page of physical memory 

- 1 means allocated, 0 means free 
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Paging Implementation 

Virtual Address 
- Partition into page and offset 

- Page – Specifies virtual page number, 

which indexes table 

- Offset – Specifies offset within a page 
 

Page Table 
- Page – Provides a physical page number 

- Size – No longer required, all pages equal 

size (e.g., 4KB) 
 

Translation 
- Compute physical address from physical 

page number, offset 
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4 – Segmentation & Paging 

Motivation 
- Assume 32-bit virtual addresses, 4KB page size 

- 4KB = 4096 bytes = 212 bytes per page 

- 212 bytes per page requires a 12-bit offset 

- Remaining address bits used for page number, 20-bit page number 

 

- Page tables can be very large. 

- With 20-bit page number, 220 pages 

- Each program in multi-programmed machine requires its own page table 

- Total size of page tables = [# of programs] x 220 

 

Idea 
- Combine segmentation with paging 

- Adds indirection to reduce size of page table 
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Segmented Page Tables 

Virtual Address 

- Partition into segment, page, offset 

- Segment –Specifies segment#, which 

indexes Table 1 

- Page – Specifies virtual page # 
number, which indexes Table 2 

- Offset – Specifies offset in page 

 

Table 1 

- Segment – Points to a page table 

- Size – Specifies number of pages in 
segment 

 

Table 2 

- Page – Provides a physical page# 

 

Translation 

- Compute physical address from 

physical page number, offset 

What about paged page tables? 
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Address Translation & Protection 

- Every access to instruction/data memory requires (1) address translation 

and (2) protection checks 

- A good virtual memory system must be fast (completing in approximately 

1 cycle) and space efficient 

Physical Address 

Virtual Address 

Address 
Translation 

Virtual Page No. (VPN) offset 

Physical Page No. (PPN) offset 

  Protection 
Check 

Exception? 

Kernel/User Mode 

Read/Write 



ECE 252 / CPS 220 20 

 

 

Translation Lookaside Buffer (TLB) 

Address Translation is Expensive 
- In a two-level page table, each reference requires several memory 

accesses.  

 

Solution 
- Cache translations.  We use a data structure called a TLB. 

- TLB Hit – single cycle translation 

- TLB Miss – walk page table to translate, update TLB 

VPN            offset 

 tag                 PPN 

physical address 

PPN      offset 

virtual address 

hit? 

(VPN = virtual page number) 

(PPN = physical page number) 
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TLB Design 

32-128 entries, fully associative 
- Each entry maps a large page. Little spatial locality across 4KB pages. 

Conflicts are more likely. 

- Larger TLBs (e.g., 256-512 entries) may be 4-8 way set-associative 

- Even larger systems may have multi-level TLBs 
 

Random or FIFO replacement policies 
 

Definition – TLB Reach 
- Size of largest virtual address space that can be simultaneously mapped 

- 64 entries, 4KB pages, 1 page per entry 

- TLB Reach = [64 entries] x [4KB] = 256KB (if pages contiguous in memory) 
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TLB Misses 

Software (MIPS, Alpha) 
- TLB miss causes an exception 

- Operating system walks page table and reloads TLB 

- Requires privileged processor mode. Why? 
 

Hardware (SPARC v8, x86, PowerPC) 
- Memory management unit (MMU) walks page table and reloads TLB 

- If MMU encounters missing page, MMU causes an exception 

 

- Operating system handles page fault, which requires transferring page 

from disk to memory. 
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Machine with Virtual Memory 
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Summary 

Virtual Memory 
• Enables multi-programming 

• Programs operate in virtual memory space 

• Programs are protected from each other 

 

Virtual to Physical Address Translation 
• Base&Bound 

• Segmentation 

• Paging 

• Multi-level Translation (segmented paging, paged paging) 

 

Translation Lookaside Buffer 
• Accelerates virtual memory, address translation 
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