
ECE 252 / CPS 220

 Advanced Computer Architecture I

Lecture 14

Very Long Instruction Word Machines

Benjamin Lee
Electrical and Computer Engineering

Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall11.html

ECE 252 / CPS 220 2

ECE252 Administrivia

15 November – Homework #4 Due
Will be posted by end of week.

Project Proposals
Should have received comments already.

ECE 299 – Energy-Efficient Computer Systems
- www.duke.edu/~bcl15/class/class_ece299fall10.html

- Technology, architectures, systems, applications

- Seminar for Spring 2012.

- Class is paper reading, discussion, research project

- In Fall 2010, students read >35 research papers.

- In Fall 2012, read research papers.

- In Fall 2012, also considering textbook “The Datacenter as a Computer:

An Introduction to the Design of Warehouse-scale Machines.”

http://www.duke.edu/~bcl15/class/class_ece299fall10.html

ECE 252 / CPS 220 3

Last Time

Virtual Memory
• Enables multi-programming

• Programs operate in virtual memory space

• Programs are protected from each other

Virtual to Physical Address Translation
• Base&Bound

• Segmentation

• Paging

• Multi-level Translation (segmented paging, paged paging)

Translation Lookaside Buffer
• Accelerates virtual memory, address translation

ECE 252 / CPS 220 4

OoO Superscalar Complexity

Out-of-order Superscalar
- Objective: Increase instruction-level parallelism.

- Cost: Hardware logic/mechanisms to track dependencies and

dynamically schedule independent instructions.

Hardware Complexity
- Instructions can issue, complete out-of-order.

- Instructions must commit in-order

- Implement Tomasulo’s algorithm with a variety of structures

- Example: Reservation stations, reorder buffer, physical register file

Very Long Instruction Word (VLIW)
- Objective: Increase instruction-level parallelism.

- Cost: Software compilers/mechanisms to track dependencies and

statically schedule independent instructions.

ECE 252 / CPS 220 5

Review of Fetch/Decode

Fetch
- Load instruction by accessing memory at program counter (PC)

- Update PC using sequential address (PC+4) or branch prediction (BTB)

Decode/Rename
- Take instruction from fetch buffer

- Allocate resources, which are necessary to execute instruction:

(1) Destination physical register – if instruction writes a register, rename

(2) Reorder buffer (ROB) entry – support in-order commit

(3) Issue queue entry – hold instruction as it waits for execution

(4) Memory buffer entry – resolve dependencies through memory (next slide)

- Stall if resources unavailable

- Rename source/destination registers

- Update reorder buffer, issue queue, memory buffer

ECE 252 / CPS 220 6

Review of Memory Buffer

Allocate memory buffer entry

Store Instructions
- Calculate store-address and place in buffer

- Take store-data and place in buffer

- Instruction commits in-order when store-address, store-data ready

Load Instructions
- Calculate load-address and place in buffer

- Instruction searches memory buffer for stores with matching address

- Forward load data from in-flight stores with matching address

- Stall load if buffer contains stores with un-resolved addresses

ECE 252 / CPS 220 7

Review of Issue/Execute

Issue
- Instruction commits from reorder buffer

- A commit wakes-up an instruction by marking its sources ready

- Select logic determines which ready instructions should execute

- Issue when by sending instructions to functional unit

Execute
- Read operands from physical register file and/or forwarding path

- Execute instruction in functional unit

- Write result to physical register file, store buffer

- Produce exception status

- Write to reorder buffer

ECE 252 / CPS 220 8

Review of Commit

Commit
- Instructions can complete and update reorder buffer out-of-order

- Instructions commit from reorder buffer in-order

Exceptions
- Check for exceptions

- If exception raised, flush pipeline

- Jump to exception handler

Release Resources
- Free physical register used by last writer to same architected register

- Free reorder buffer slot

- Free memory buffer slot

ECE 252 / CPS 220 9

Control Logic Scaling

- Lifetime (L) – number of cycles an instruction spends in pipeline

- Lifetime depends on pipeline latency, time spent in reorder buffer

- Issue width (W) – maximum number of instructions issued per cycle

- As W increases, issue logic must find more instructions to execute in parallel

and keep pipeline busy.

- More instructions must be fetched, decoded, and queued.

- W x L instructions can impact any of the W issuing instructions (e.g. forwarding)

and growth in hardware proportional to W x (W x L)

Lifetime L

Issue Group

Previously Issued

Instructions

Issue Width W

ECE 252 / CPS 220 10

Control Logic (MIPS R10000)

Control

Logic

ECE 252 / CPS 220 11

Sequential Instruction Sets

Check instruction
dependencies

Superscalar processor

a = foo(b);
for (i=0, i<

Sequential

source code
Superscalar compiler

Find independent
operations

Schedule operations

Sequential
machine code

Schedule execution

ECE 252 / CPS 220 12

Sequential Instruction Sets

Superscalar Compiler
- Takes sequential code (e.g., C, C++)

- Check instruction dependencies

- Schedule operations to preserve dependencies

- Produces sequential machine code (e.g., MIPS)

Superscalar Processor
- Takes sequential code (e.g., MIPS)

- Check instruction dependencies

- Schedule operations to preserve dependencies

Inefficiency of Superscalar Processors
- Performs dependency, scheduling dynamically in hardware

- Expensive logic rediscovers schedules that a compiler could have found

ECE 252 / CPS 220 13

VLIW – Very Long Instruction Word

- Multiple operations packed into one instruction format

- Instruction format is fixed, each slot supports particular instruction type

- Constant operation latencies are specified (e.g., 1 cycle integer op)

- Software schedules operations into instruction format, guaranteeing

(1)Parallelism within an instruction – no RAW checks between ops

(2)No data use before ready – no data interlocks/stalls

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency Two Floating-Point Units,

Four Cycle Latency

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2 Int Op 1

ECE 252 / CPS 220 14

VLIW Compiler Responsibilities

Schedule operations to maximize parallel execution
- Fill operation slots

Guarantee intra-instruction parallelism
- Ensure operations within same instruction are independent

Schedule to avoid data hazards
- Separate options with explicit NOPs

ECE 252 / CPS 220 15

Loop Execution

for (i=0; i<N; i++)

 B[i] = A[i] + C; Int1 Int 2 M1 M2 FP+ FPx

loop: ld add r1

fadd

sd add r2 bne

loop: ld f1, 0(r1)

 add r1, 8

 fadd f2, f0, f1

 sd f2, 0(r2)

 add r2, 8

 bne r1, r3, loop

Compile

Schedule

- The latency of each instruction is fixed (e.g., 3 cycle ld, 4 cycle fadd)

- Instr-1: Load A[i] and increment i (r1) in parallel

- Instr-2: Wait for load

- Instr-3: Wait for add. Store B[i], increment i (r2), branch in parallel

- How many flops / cycle? 1 fadd / 8 cycles = 0.125

ECE 252 / CPS 220 16

Loop Unrolling

- Unroll inner loop to perform k iterations

of computation at once.

- If N is not a multiple of unrolling factor

k, insert clean-up code

- Example: unroll inner loop to perform 4

iterations at once

for (i=0; i<N; i++)
 B[i] = A[i] + C;

for (i=0; i<N; i+=4)
{
 B[i] = A[i] + C;
 B[i+1] = A[i+1] + C;
 B[i+2] = A[i+2] + C;
 B[i+3] = A[i+3] + C;
}

ECE 252 / CPS 220 17

Scheduling Unrolled Loops

loop: ld f1, 0(r1)

 ld f2, 8(r1)

 ld f3, 16(r1)

 ld f4, 24(r1)

 add r1, 32

 fadd f5, f0, f1

 fadd f6, f0, f2

 fadd f7, f0, f3

 fadd f8, f0, f4

 sd f5, 0(r2)

 sd f6, 8(r2)

 sd f7, 16(r2)

 sd f8, 24(r2)

 add r2, 32

 bne r1, r3, loop

schedule

Int1 Int 2 M1 M2 FP+ FPx

loop: ld f1

ld f2

ld f3

ld f4 add r1 fadd f5

fadd f6

fadd f7

fadd f8

sd f5

sd f6

sd f7

sd f8 add r2 bne

- Unroll loop to execute 4 iterations

- Reduces number of empty operation slots

- How many flops/cycle? 4 fadds / 11 cycles = 0.36

ECE 252 / CPS 220 18

Software Pipelining

Exploit independent loop iterations
- If loop iterations are independent, then get more parallelism by

scheduling instructions from different iterations

- Example: Loop iterations are independent in the code sequence below.

- Construct the data-flow graph for one iteration

load A[i] C

+

store B[i]

for (i=0; i<N; i++)
 B[i] = A[i] + C;

ECE 252 / CPS 220 19

Software Pipelining (Illustrated)
Not pipelined
load A[0] C

+

store B[0]

load A[1] C

+

store B[1]

load A[2] C

+

store B[2]

load A[3] C

+

store B[3]

F
ill

S
te

a
d

y
 S

ta
te

D

ra
in

Pipelined

Load A[0] C

+ load A[1] C

store B[0] + load A[2] C

store B[1] + load A[3] C

store B[2] + load A[4] C

store B[3] + load A[5] C

store B[4] +

store B[5]

ECE 252 / CPS 220 20

Scheduling SW Pipelined Loops
Unroll the loop to perform 4 iterations at
once. Then SW pipeline.
for (i=0; i<N; i++)
 B[i] = A[i] + C;

 loop: ld f1, 0(r1)

 ld f2, 8(r1)

 ld f3, 16(r1)

 ld f4, 24(r1)

 add r1, 32

 fadd f5, f0, f1

 fadd f6, f0, f2

 fadd f7, f0, f3

 fadd f8, f0, f4

 sd f5, 0(r2)

 sd f6, 8(r2)

 sd f7, 16(r2)

 add r2, 32

 sd f8, -8(r2)

 bne r1, r3, loop

Int1 Int 2 M1 M2 FP+ FPx

ld f1

ld f2

ld f3

ld f4

fadd f5

fadd f6

fadd f7

fadd f8

sd f5

sd f6

sd f7

sd f8

add r1

add r2

bne

ld f1

ld f2

ld f3

ld f4

fadd f5

fadd f6

fadd f7

fadd f8

sd f5

sd f6

sd f7

sd f8

add r1

add r2

bne

ld f1

ld f2

ld f3

ld f4

fadd f5

fadd f6

fadd f7

fadd f8

sd f5

add r1

loop:
steady
state

fill

drain

ECE 252 / CPS 220 21

Unrolling versus Pipelining
- Unrolled loops pay fill and drain costs once per loop iteration.

- SW pipelined loops pay (a.k.a. prologue) and drain (a.k.a. epilogue)

costs only once per loop.

time

performance

time

performance

Loop Unrolled

Software Pipelined

Wind-down overhead

Loop Iteration

Loop
Iteration

ECE 252 / CPS 220 22

What if there are no loops?

- Basic block defined by

sequence of consecutive

instructions. Every basic

block ends with a branch.

- Instruction-level parallelism is

hard to find in basic blocks

- Basic blocks illustrated by

control flow graph

Basic block

ECE 252 / CPS 220 23

Trace Scheduling

- A trace is a sequence of basic blocks

(a.k.a., long string of straight-line

code)

- Trace Selection: Use profiling or

compiler heuristics to find common

sequences/paths

- Trace Compaction: Schedule whole

trace into few VLIW instructions.

- Add fix-up code to cope with

branches jumping out of trace. Undo

instructions if control flower diverges

from trace.

ECE 252 / CPS 220 24

Problems with “Classic” VLIW

Object Code Challenges
- Compatibility: Need to recompile code for every VLIW machine, even

across generations.

- Compatibility: Code specific to operation slots in instruction format and

latencies of operations

- Code Size: Instruction padding wastes instruction memory/cache with

nops for unfilled slots.

- Code Size: Loop unrolling, software pipelining increases code footprint.

Scheduling Variable Latency Operations
- Effective schedules rely on known instruction latencies

- Caches, memories produce unpredictable variability

ECE 252 / CPS 220 25

Problems with “Classic” VLIW

Object Code Challenges
- Compatibility: Need to recompile code for every VLIW machine, even

across generations.

- Compatibility: Code specific to operation slots in instruction format and

latencies of operations

- Code Size: Instruction padding wastes instruction memory/cache with

nops for unfilled slots.

- Code Size: Loop unrolling, software pipelining increases code footprint.

Scheduling Variable Latency Operations
- Effective schedules rely on known instruction latencies

- Caches, memories produce unpredictable variability

ECE 252 / CPS 220 26

Intel Itanium, EPIC IA-64

Explicitly Parallel Instruction Computing (EPIC)
- Computer architecture style (e.g., CISC, RISC, EPIC)

IA-64
- Instruction set architecture (e.g., x86, MIPS, IA-64)

- IA-64 – Intel Architecture 64-bit

Implementations
- Merced, first implementation, 2001

- McKinley, second implementation, 2002

- Poulson, recent implementation, 2011

ECE 252 / CPS 220 27

Intel Itanium, EPIC IA-64

- Eight cores

- 1-cycle 16KB L1 I&D caches

- 9-cycle 512KB L2 I-cache

- 8-cycle 256KB L2 D-cache

- 32 MB shared L3 cache

- 544mm2 in 32nm CMOS

- 3 billion transistors

- Cores are 2-way multithreaded

- Each VLIW word is 128-bits, containing 3 instructions (op slots)

- Fetch 2 words per cycle  6 instructions (op slots)

- Retire 4 words per cycle  12 instructions (op slots)

ECE 252 / CPS 220 28

Intel Itanium, EPIC IA-64

-Template bits describe grouping of these instructions with

others in adjacent bundles

- Each group contains instructions that can execute in

parallel

Instruction 2 Instruction 1 Instruction 0 Template

128-bit instruction bundle

group i group i+1 group i+2 group i-1

bundle j bundle j+1 bundle j+2 bundle j-1

ECE 252 / CPS 220 29

VLIW and Control Flow Challenges

Challenge
- Mispredicted branches limit ILP

- Trace selection groups basic blocks into larger ones

- Trace compaction schedules instructions into a single VLIW

- Requires fix-up code for branches that exit trace

Solution – Predicated Execution
- Eliminate hard to predict branches with predicated execution

- IA-64 instructions can be executed conditionally under predicate

- Instruction becomes a NOP if predicate register is false

ECE 252 / CPS 220 30

VLIW and Control Flow Challenges

Inst 1
Inst 2
br a==b, b2

Inst 3
Inst 4
br b3

Inst 5
Inst 6

Inst 7
Inst 8

b0:

b1:

b2:

b3:

if

else

then

Four basic blocks

Inst 1

Inst 2

p1,p2 <- cmp(a==b)

(p1) Inst 3 || (p2) Inst 5

(p1) Inst 4 || (p2) Inst 6

Inst 7

Inst 8

Predication

One basic block

On average >50% branches

removed. Mahlke et al. 1995.

ECE 252 / CPS 220 31

Limits of Static ILP

Software Instruction-level Parallelism (VLIW)
- Compiler complexity

- Code size explosion

- Unpredictable branches

- Variable memory latency and unpredictable cache behavior

Current Status
- Despite several attempts, VLIW has failed in general-purpose computing

- VLIW hardware complexity similar to in-order, superscalar hardware

complexity. Limited advantage on large, complex applications

- Successful in embedded digital signal processing; friendly code

ECE 252 / CPS 220 32

Summary

Out-of-order Superscalar
• Hardware complexity increases super-linearly with issue-width.

Very Long Instruction Word (VLIW)
• Compiler explicitly schedules parallel instructions

• Unrolling and software pipelining loops

Predication
• Mitigates branches in VLIW machines

• Add predicates to operations.

• If predicate is false, instruction does not affect architected state

• Mahlke et al. “A comparison of full and partial predicated execution

support for ILP processors” 1995.

ECE 252 / CPS 220 33

Acknowledgements

These slides contain material developed and copyright by

- Arvind (MIT)

- Krste Asanovic (MIT/UCB)

- Joel Emer (Intel/MIT)

- James Hoe (CMU)

- Arvind Krishnamurthy (U. Washington)

- John Kubiatowicz (UCB)

- Alvin Lebeck (Duke)

- David Patterson (UCB)

- Daniel Sorin (Duke)

