ECE 252 / CPS 220
Advanced Computer Architecture |

Lecture 14
Very Long Insiruction Word Machines

Benjamin Lee
Electrical and Computer Engineering
Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall1l1.html

ECE252 Administrivia

15 November - Homework #4 Due
Will be posted by end of week.

Project Proposals
Should have received comments already.

ECE 299 — Energy-Efficient Computer Systems
www.duke.edu/~bcll15/class/class_ece299fall10.html
- Technology, architectures, systems, applications
- Seminar for Spring 2012.
- Class is paper reading, discussion, research project
- In Fall 2010, students read >35 research papers.
- In Fall 2012, read research papers.

- In Fall 2012, also considering textbook “The Datacenter as a Computer:

An Infroduction to the Design of Warehouse-scale Machines.”

® ECE 252 / CPS 220

o2

http://www.duke.edu/~bcl15/class/class_ece299fall10.html

Last Time

Virtual Memory

« Enables multi-programming
« Programs operate in virtual memory space
« Programs are protected from each other

Virtual to Physical Address Translation

 Base&Bound

« Segmentation

« Paging

« Multi-level Translation (segmented paging, paged paging)

Translation Lookaside Buffer
« Accelerates virtual memory, address franslation

® ECE 252 / CPS 220

3

000 Superscalar Complexity

Out-of-order Superscalar

- Objective: Increase instruction-level parallelism.

- Cost: Hardware logic/mechanisms to frack dependencies and
dynamically schedule independent instructions.

Hardware Complexity
- Instructions can issue, complete out-of-order.
- Instructions must commit in-order
- Implement Tomasulo’s algorithm with a variety of structures
- Example: Reservation stations, reorder buffer, physical register file

Very Long Instruction Word (VLIW)

- Objective: Increase instruction-level parallelism.

- Cost: Software compilers/mechanisms to tfrack dependencies and
statically schedule independent instructions.

® ECE 252 / CPS 220 04

Review of Fetch/Decode

Fetch

Load instruction by accessing memory at program counter (PC)
Update PC using sequential address (PC+4) or branch prediction (BTB)

Decode/Rename

Take instruction from fetch buffer

Allocate resources, which are necessary to execute instruction:
(1) Destination physical register — if instruction writes a register, rename
(2) Reorder buffer (ROB) entry — support in-order commit
(3) Issue queue entry — hold instruction as it waits for execution
(4) Memory buffer entry —resolve dependencies through memory (next slide)

Stall if resources unavailable
Rename source/destination registers
Update reorder buffer, issue queue, memory buffer

® ECE 252 / CPS 220

e5

Review of Memory Buffer

Allocate memory buffer entry

Store Instructions
- Calculate store-address and place in buffer
- Take store-data and place in buffer
- Instruction commits in-order when store-address, store-data ready

Load Instructions

- Calculate load-address and place in buffer

- Instruction searches memory buffer for stores with matching address
- Forward load data from in-flight stores with matching address

- Stall load if buffer contains stores with un-resolved addresses

® ECE 252 / CPS 220

056

Review of Issue/Execute

Yo SN
b 39S

- Instruction commits from reorder buffer

- A commit wakes-up an instruction by marking its sources ready
- Select logic determines which ready instructions should execute
- Issue when by sending instructions to functional unit

Execute
- Read operands from physical register file and/or forwarding path
- Execute instruction in functional unit
- Write result to physical register file, store buffer
- Produce exception status
- Write to reorder buffer

® ECE 252 / CPS 220 o7

Review of Commit

Yo SN
b 39S

Commit

- Instructions can complete and update reorder buffer out-of-order
- Instructions commit from reorder buffer in-order

Exceptions

- Check for exceptions
- If exception raised, flush pipeline
- Jump to exception handler

Release Resources

- Free physical register used by last writer to same architected register
- Free reorder buffer slot
- Free memory buffer slot

® ECE 252 / CPS 220

3

g Control Logic Scaling

Issue Width W

\ 4

A

Issue Group

Previously Issued N

Instructions ﬁ%ﬂ%

- Lifetime (L) — number of cycles an instruction spends in pipeline
- Lifetime depends on pipeline latency, time spent in reorder buffer
- Issue width (W) — maximum number of instructions issued per cycle

Lifetime L

v

- As Wincreases, issue logic must find more instructions to execute in parallel
and keep pipeline busy.

- More instructions must be fetched, decoded, and queued.

- W x Linstructions can impact any of the W issuing instructions (e.g. forwarding)
and growth in hardware proportional to W x (W x L)

® ECE 252 / CPS 220 09

Instittction

Cache

Data
Cache

Control ' r_
Lo glc \ addr

Cotidd. | ST
Unit Address

- Queue

Register T
Rename Integer

Quene

® ECE 252 / CPS 220 ®10

Sequential
source code

gp Sequential Instruction Sets

Superscalar compiler

a = foo(b);
for (i=0, i<

® ECE 252 / CPS 220

L2

Find independent
operations

-

Schedule operations

Superscalar processor

-

Check instruction
dependencies

Schedule execution

Sequential
machine code

—
—

1]

Sequential Instruction Sets

Superscalar Compiler

- Takes sequential code (e.g., C, C++)

- Check instruction dependencies

- Schedule operations to preserve dependencies
- Produces sequential machine code (e.g., MIPS)

Superscalar Processor

- Takes sequential code (e.g., MIPS)
- Check instruction dependencies
- Schedule operations to preserve dependencies

Inefficiency of Superscalar Processors

- Performs dependency, scheduling dynamically in hardware
- Expensive logic rediscovers schedules that a compiler could have found

® ECE 252 / CPS 220 12

VLIW - Very Long Insiruction Word

IntOp1 |IntOp2 |MemOp 1 Mem Op 2 FP Op 1 FP Op 2

' ' ' ' ' '
]]]]] .
Two Integer Units, L L - —
Single Cycle Latency 7]] []
] []

Two Load/Store Units,

Three Cycle Latency Two Floating-Point Units,
Four Cycle Latency

- Multiple operations packed into one instruction format

- Instruction format is fixed, each slot supports particular instruction type

- Constant operation latencies are specified (e.g., 1 cycle integer op)

- Software schedules operations into instruction format, guaranteeing
(1) Parallelism within an instruction — no RAW checks between ops
(2) No data use before ready — no data interlocks/stalls

® ECE 252 / CPS 220 13

VLIW Compiler Responsibilities

Schedule operations to maximize parallel execution
- Fill operation slots

Guarantee infra-instruction parallelism

- Ensure operations within same instruction are independent

Schedule to avoid data hazards
- Separate options with explicit NOPs

® ECE 252 / CPS 220 e14

Loop Execution

for (i=0; i<N; i++)

B[i] = Ali] + C; Intl Int2 M1 M2 FP+ FPx
Compile loop: Jadd ri1 Id
loop: Id 1, O(r1)

addrl, 8 fadd

fadd f2, 0, 1 Schedule 4

sd 12, 0(r2) /

addr2, 8 .

bnerl, r3, loop add r2 bne | sd

The latency of each instruction is fixed (e.g., 3 cycle Id, 4 cycle fadd)
Instr-1: Load Al[i] and increment i (r1) in parallel

Instr-2: Wait for load

Instr-3: Wait for add. Store BJi], increment i (r2), branch in parallel
How many flops / cycle?2 1 fadd / 8 cycles = 0.125

® ECE 252 / CPS 220

@15

Loop Unrolling

for (i=0; i<N; i++) - Unroll inner loop to perform k iterations
B[i] _ A[i' + C: of c.ompu’rohon.o’r once. |
I - If Nis not a multiple of unrolling factor
k, insert clean-up code

' - Example: unroll inner loop to perform 4
for (i=0; i<N; i+=4) iterations at once

{

y

B[i] = A[i] + C;

B[i+1] = A[i+1] + C;
B[i+2] = A[i+2] + C;
B[i+3] = A[i+3] + C;

® ECE 252 / CPS 220 el

loop: Id f1, Or1)

ld f2, 8(r1)

Id 3, 16(r1)
|d f4, 24(r1)
addrl, 32
fadd f5, fO, f1
fadd f6, O, 2
fadd f7, fO, 3
fadd f8, O, f4
sd 5, 0(r2)

sd 6, 8(r2)

sd 7, 16(r2)
sd 8, 24(r2)
add r2, 32
bnerl, r3, loop

Scheduling Unrolled Loops

Int1 Int2 M1 M2 FP+ FPx

® ECE 252 / CPS 220

loop: 1d ﬂ\J
1d £2 "\
1d £3 I
add rl 1d {4 ,fadd b
/ fadd f6
schedule // iaig g
g a {
sd £5
sd f6
sd {7

add r2 bne | sd {8

Unroll loop to execute 4 iterations
Reduces number of empty operation slots
How many flops/cycle? 4 fadds / 11 cycles = 0.36

o1/

Software Pipelining

Exploit independent loop iterations

- If loop iterations are independent, then get more parallelism by
scheduling instructions from different iterations

- Example: Loop iterations are independent in the code sequence below.
- Construct the data-flow graph for one iteration

load Ali] C
for (i=0; i<N; i++) \I/
B[i] = A[i] + C; T
store BJ[i]

® ECE 252 / CPS 220

e18

Software Pipelining (lllustrated)

Not pipelined

load A[0]) [C

store B[O]

load A[1] C

4

store B[1]

load A[2] C

store B[2]

load A[3] C

4

store B[3]

® ECE 252 / CPS 220

Pipelined
s
Load A[O] C
— —
T <
load A[1] C
—
> store B[O] load A[2] C
o)
O store B[1] load A[3] C
w < —
>
S store B[2] load A[4] C
Q2 —
“ store B[3] load A[5] C
> —
£ store B[4]
5 <
&)
_ store B[5]

19

c '

Unroll the loop to perform 4 iterations at
once. Then SW pipeline.
for (i=0; i<N; i++)
B[i] = A[i] + C;
loop: Id f1, O(r1)
ld f2, 8(r1)
Id 3, 16(r1)
ld f4, 24(r1)
addrl, 32
fadd 5, 0, f1
fadd fé, f0, 2
fadd f7, 10, 3
fadd 8, 0, 4
sd 5, 0(r2)
sd f6, 8(r2)
sd 7, 16(r2)
addr2, 32
sd f8, -8(r2)

bnerl, r3, loop
® ECE 252 / CPS 220

gp Scheduling SW Pipelined Loops

InfT Inf2 M1 M2 FP+ FPx
1d f1
1d £2
1d £3
add r1 1d 4
fadd f5
fadd f6
fadd {7
fadd f8
Id f1 | sd £5
1df2 | sd f6
addr2 | Id 3 | sd {7
add r1| bne Id f4 | sd {8
fadd f5
fadd f6
fadd {7
fadd f8
sd 5

20

Unrolling versus Pipelining

- Unrolled loops pay fill and drain costs once per loop iteration.

- SW pipelined loops pay (a.k.a. prologue) and drain (a.k.a. epilogue)
costs only once per loop.

YN
L

Loop Unrolled

Wind-down overhead

performance !
VaN%
) Loop Iteratic;n time
Software Pipelined
performance
Loop«——> time

Iteration
® ECE 252 / CPS 220 2]

What if there are no loops?

o SN
iy

- Basic block defined by
sequence of consecutive

/\ instructions. Every basic
block ends with a branch.

- Instruction-level parallelism is
hard to find in basic blocks

\/ - Basic blocks illustrated by

control flow graph

Basic block

/\

—

® ECE 252 / CPS 220 2?2

Trac

—

/

e Scheduling

® ECE 252 / CPS 220

\\
\
\

A frace is a sequence of basic blocks
(a.k.a., long string of straight-line
code)

Trace Selection: Use profiling or
compiler heuristics to find common
sequences/paths

Trace Compaction: Schedule whole
trace into few VLIW instructions.

Add fix-up code to cope with
branches jumping out of frace. Undo
instructions if control flower diverges
from trace.

®23

Problems with “Classic” VLIW

Objec’r Code Challenges

Compatibility: Need to recompile code for every VLIW machine, even
QCross generations.

- Compatibility: Code specific to operation slots in instruction format and
latencies of operations

- Code Size: Instruction padding wastes instruction memory/cache with
nops for unfilled slofs.

- Code Size: Loop unrolling, software pipelining increases code footprint.

Scheduling Variable Latency Operations

- Effective schedules rely on known instruction latencies
- Caches, memories produce unpredictable variability

® ECE 252 / CPS 220 024

Problems with “Classic” VLIW

Objec’r Code Challenges

Compatibility: Need to recompile code for every VLIW machine, even
QCross generations.

- Compatibility: Code specific to operation slots in instruction format and
latencies of operations

- Code Size: Instruction padding wastes instruction memory/cache with
nops for unfilled slofs.

- Code Size: Loop unrolling, software pipelining increases code footprint.

Scheduling Variable Latency Operations

- Effective schedules rely on known instruction latencies
- Caches, memories produce unpredictable variability

® ECE 252 / CPS 220 25

Intel fanium, EPIC |A-64

Explicitly Parallel Instruction Computing (EPIC)
- Computer architecture style (e.g., CISC, RISC, EPIC)

|A-64
- Instruction set architecture (e.g., x86, MIPS, |A-64)
- |A-64 — Intel Architecture 64-bit

Implementations

- Merced, first implementation, 2001
- McKinley, second implementation, 2002
- Poulson, recent implementation, 2011

® ECE 252 / CPS 220

026

Intel fanium, EPIC |A-64

- Eight cores
- I-cycle 16KB L1 |1&D caches
- 9-cycle 512KB L2 I-cache

| | | B | -8-cycle 256KB L2 D-cache
e .-.ﬂ: el .-'l t -32MBshared L3 cache

| fldfr SEE s | - 544mm?Zin 32nm CMOS

n !'”

- 3 billion transistors

N~ |

:§;_

' ”
)
T i -
ol _—
L -
: i
<

l
$
i

- Cores are 2-way multithreaded
- Each VLIW word is 128-bits, containing 3 instructions (op slofts)
- Fetch 2 words per cycle = 6 instructions (op slofts)

- Retire 4 words per cycle - 12 instructions (op slots)

® ECE 252 / CPS 220 027

Intel fanium, EPIC |A-64

|Instruction 2 | Instruction 1 Instruction 0 Template |

128-bit instruction bundle

-Template bits describe grouping of these instructions with
others in adjacent bundles

- Each group contains instructions that can execute in
parallel

bundle j-1 bundle j bundle j+1bundle j+2
| \ \ I | \ \ I | \ \ I | \ \ I | \ \ I |

\ J N N\) L J
Y N i e

group i-1 group i group i+1 group i+2

® ECE 252 / CPS 220 28

g VLIW and Control Flow Challenges

Chollenge
Mispredicted branches limit ILP
- Trace selection groups basic blocks into larger ones
- Trace compaction schedules instructions info a single VLIW
- Requires fix-up code for branches that exit trace

Solution — Predicated Execution

- Eliminate hard to predict branches with predicated execution
- 1A-64 instructions can be executed conditionally under predicate
- Instruction becomes a NOP if predicate register is false

® ECE 252 / CPS 220 29

VLIW and Control Flow Challenges

b0: Inst 1
INnst 2 :
oros=b, b2 :221 ;
b1: Inst 3 pl.,p2 <-cmp(a==b)
Inst 4 else : : (P1)Inst3 || (p2)Inst5
or b3 Pred'w“o> (1) Inst4 || (p2) Inst 6
INst 7
2! Inst 5 Inst 8
Inst 6 then
One basic block
3! Inst 7
INst 8
On average >50% branches

removed. Mahlke et al. 1995.

Four basic blocks

® ECE 252 / CPS 220 ©30

Limits of Static ILP

Software Instruction-level Parallelism (VLIW)

- Compiler complexity

- Code size explosion

- Unpredictable branches

- Variable memory latency and unpredictable cache behavior

Current Status
- Despite several attempts, VLIW has failed in general-purpose computing

- VLIW hardware complexity similar to in-order, superscalar hardware
complexity. Limited advantage on large, complex applications

- Successful in embedded digital signal processing; friendly code

® ECE 252 / CPS 220 ®3]

Summary

Out-of-order Superscalar
« Hardware complexity increases super-linearly with issue-width.

Very Long Instruction Word (VLIW)

« Compiler explicitly schedules parallel instructions
« Unrolling and software pipelining loops

Predication

« Mitigates branches in VLIW machines
« Add predicates to operations.
« |If predicate is false, instruction does not affect architected state

« Mahlke et al. “A comparison of full and partial predicated execution
support for ILP processors” 1995.

® ECE 252 / CPS 220

32

Acknowledgements

YN
L

These slides contain material developed and copyright by
- Arvind (MIT)

- Krste Asanovic (MIT/UCB)

- Joel Emer (Intel/MIT)

- James Hoe (CMU)

- Arvind Krishnamurthy (U. Washington)

- John Kubiatowicz (UCB)

- Alvin Lebeck (Duke)

- David Patterson (UCB)

- Daniel Sorin (Duke)

® ECE 252 / CPS 220 ©33

