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ECE252 Administrivia 

15 November – Homework #4 Due 
Will be posted by end of week. 

 

Project Proposals 
Should have received comments already. 

 

ECE 299 – Energy-Efficient Computer Systems 
- www.duke.edu/~bcl15/class/class_ece299fall10.html 

- Technology, architectures, systems, applications 

- Seminar for Spring 2012.  

- Class is paper reading, discussion, research project 

- In Fall 2010, students read >35 research papers. 

- In Fall 2012, read research papers.  

- In Fall 2012, also considering textbook “The Datacenter as a Computer: 

An Introduction to the Design of Warehouse-scale Machines.” 

http://www.duke.edu/~bcl15/class/class_ece299fall10.html
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Last Time 

Virtual Memory 
• Enables multi-programming 

• Programs operate in virtual memory space 

• Programs are protected from each other 

 

Virtual to Physical Address Translation 
• Base&Bound 

• Segmentation 

• Paging 

• Multi-level Translation (segmented paging, paged paging) 

 

Translation Lookaside Buffer 
• Accelerates virtual memory, address translation 
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OoO Superscalar Complexity 

Out-of-order Superscalar 
- Objective: Increase instruction-level parallelism. 

- Cost: Hardware logic/mechanisms to track dependencies and 

dynamically schedule independent instructions. 

 

Hardware Complexity 
- Instructions can issue, complete out-of-order. 

- Instructions must commit in-order 

- Implement Tomasulo’s algorithm with a variety of structures 

- Example: Reservation stations, reorder buffer, physical register file 

 

Very Long Instruction Word (VLIW) 
- Objective: Increase instruction-level parallelism. 

- Cost: Software compilers/mechanisms to track dependencies and 

statically schedule independent instructions. 
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Review of Fetch/Decode 

Fetch 
- Load instruction by accessing memory at program counter (PC) 

- Update PC using sequential address (PC+4) or branch prediction (BTB) 

 

Decode/Rename 
- Take instruction from fetch buffer 

- Allocate resources, which are necessary to execute instruction: 

(1) Destination physical register – if instruction writes a register, rename 

(2) Reorder buffer (ROB) entry – support in-order commit 

(3) Issue queue entry – hold instruction as it waits for execution 

(4) Memory buffer entry – resolve dependencies through memory (next slide) 

 

- Stall if resources unavailable 

- Rename source/destination registers 

- Update reorder buffer, issue queue, memory buffer 
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Review of Memory Buffer 

Allocate memory buffer entry 
 

Store Instructions 
- Calculate store-address and place in buffer 

- Take store-data and place in buffer 

- Instruction commits in-order when store-address, store-data ready 

 

Load Instructions 
- Calculate load-address and place in buffer 

- Instruction searches memory buffer for stores with matching address 

- Forward load data from in-flight stores with matching address 

- Stall load if buffer contains stores with un-resolved addresses 

 

 



ECE 252 / CPS 220 7 

 

 

Review of Issue/Execute 

Issue 
- Instruction commits from reorder buffer 

- A commit wakes-up an instruction by marking its sources ready 

- Select logic determines which ready instructions should execute 

- Issue when by sending instructions to functional unit 

 

Execute 
- Read operands from physical register file and/or forwarding path 

- Execute instruction in functional unit 

- Write result to physical register file, store buffer 

- Produce exception status 

- Write to reorder buffer 
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Review of Commit 

Commit 
- Instructions can complete and update reorder buffer out-of-order 

- Instructions commit from reorder buffer in-order 

 

Exceptions 
- Check for exceptions 

- If exception raised, flush pipeline 

- Jump to exception handler 

 

Release Resources 
- Free physical register used by last writer to same architected register 

- Free reorder buffer slot 

- Free memory buffer slot 
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Control Logic Scaling 

- Lifetime (L) – number of cycles an instruction spends in pipeline 

- Lifetime depends on pipeline latency, time spent in reorder buffer 

- Issue width (W) – maximum number of instructions issued per cycle 

 

- As W increases, issue logic must find more instructions to execute in parallel 

and keep pipeline busy. 

- More instructions must be fetched, decoded, and queued.   

- W x L instructions can impact any of the W issuing instructions (e.g. forwarding) 

and growth in hardware proportional to W x (W x L) 

Lifetime L 

Issue Group 

Previously Issued 

Instructions 

Issue Width W 



ECE 252 / CPS 220 10 

Control Logic (MIPS R10000) 

Control 

Logic 



ECE 252 / CPS 220 11 

Sequential Instruction Sets 

Check instruction 
dependencies 

Superscalar processor 

a = foo(b); 
for (i=0, i< 

Sequential 

source code 
Superscalar compiler 

Find independent 
operations 

Schedule operations 

Sequential 
machine code 

Schedule execution 
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Sequential Instruction Sets 

Superscalar Compiler 
- Takes sequential code (e.g., C, C++) 

- Check instruction dependencies 

- Schedule operations to preserve dependencies 

- Produces sequential machine code (e.g., MIPS) 

 

Superscalar Processor 
- Takes sequential code (e.g., MIPS) 

- Check instruction dependencies 

- Schedule operations to preserve dependencies 

 

Inefficiency of Superscalar Processors 
- Performs dependency, scheduling dynamically in hardware 

- Expensive logic rediscovers schedules that a compiler could have found 
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VLIW – Very Long Instruction Word 

- Multiple operations packed into one instruction format 

- Instruction format is fixed, each slot supports particular instruction type 

- Constant operation latencies are specified (e.g., 1 cycle integer op) 

- Software schedules operations into instruction format, guaranteeing 

(1)Parallelism within an instruction – no RAW checks between ops 

(2)No data use before ready – no data interlocks/stalls 

Two Integer Units, 
Single Cycle Latency 

Two Load/Store Units, 
Three Cycle Latency Two Floating-Point Units, 

Four Cycle Latency 

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2 Int Op 1 
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VLIW Compiler Responsibilities  

Schedule operations to maximize parallel execution 
- Fill operation slots 

 

Guarantee intra-instruction parallelism 
- Ensure operations within same instruction are independent 

 

Schedule to avoid data hazards 
- Separate options with explicit NOPs 

 

 



ECE 252 / CPS 220 15 

 

 

Loop Execution 

for (i=0; i<N; i++) 

    B[i] = A[i] + C; Int1 Int 2 M1 M2 FP+ FPx 

loop: ld  add r1 

fadd  

sd  add r2  bne  

loop:  ld f1, 0(r1)  

          add r1, 8 

          fadd f2, f0, f1 

          sd f2, 0(r2) 

          add r2, 8 

          bne r1, r3, loop 

Compile 

Schedule 

- The latency of each instruction is fixed (e.g., 3 cycle ld, 4 cycle fadd) 

- Instr-1: Load A[i] and increment i (r1) in parallel 

- Instr-2: Wait for load 

- Instr-3: Wait for add. Store B[i], increment i (r2), branch in parallel 

- How many flops / cycle? 1 fadd / 8 cycles = 0.125 



ECE 252 / CPS 220 16 

 

 

Loop Unrolling 

- Unroll inner loop to perform k iterations 

of computation at once. 

- If N is not a multiple of unrolling factor 

k, insert clean-up code 

 

- Example: unroll inner loop to perform 4 

iterations at once 

for (i=0; i<N; i++) 
    B[i] = A[i] + C; 

for (i=0; i<N; i+=4) 
{ 
    B[i]     = A[i] + C; 
    B[i+1] = A[i+1] + C; 
    B[i+2] = A[i+2] + C; 
    B[i+3] = A[i+3] + C; 
} 
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Scheduling Unrolled Loops 

loop:  ld f1, 0(r1) 

           ld f2, 8(r1) 

           ld f3, 16(r1) 

           ld f4, 24(r1) 

           add r1, 32 

           fadd f5, f0, f1 

           fadd f6, f0, f2  

           fadd f7, f0, f3  

           fadd f8, f0, f4 

           sd f5, 0(r2) 

           sd f6, 8(r2) 

           sd f7, 16(r2) 

           sd f8, 24(r2) 

           add r2, 32 

           bne r1, r3, loop 

schedule 

Int1 Int 2 M1 M2 FP+ FPx 

loop: ld f1 

ld f2 

ld f3 

ld f4 add r1 fadd f5 

fadd f6 

fadd f7 

fadd f8 

sd f5 

sd f6 

sd f7 

sd f8 add r2 bne 

- Unroll loop to execute 4 iterations 

- Reduces number of empty operation slots 

- How many flops/cycle? 4 fadds / 11 cycles = 0.36  
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Software Pipelining 

Exploit independent loop iterations 
- If loop iterations are independent, then get more parallelism by 

scheduling instructions from different iterations 

 

- Example: Loop iterations are independent in the code sequence below. 

- Construct the data-flow graph for one iteration 

load A[i] C 

+ 

store B[i] 

for (i=0; i<N; i++) 
    B[i] = A[i] + C; 
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Software Pipelining (Illustrated) 
Not pipelined 
load A[0] C 

+ 

store B[0] 

load A[1] C 

+ 

store B[1] 

load A[2] C 

+ 

store B[2] 

load A[3] C 

+ 

store B[3] 

F
ill

 
S
te

a
d

y
 S

ta
te

 
D

ra
in

 

Pipelined 

Load A[0] C 

+ load A[1] C 

store B[0] + load A[2] C 

store B[1] + load A[3] C 

store B[2] + load A[4] C 

store B[3] + load A[5] C 

store B[4] + 

store B[5] 
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Scheduling SW Pipelined Loops 
Unroll the loop to perform 4 iterations at 
once. Then SW pipeline. 
for (i=0; i<N; i++) 
    B[i] = A[i] + C; 

 
 loop:  ld f1, 0(r1) 

           ld f2, 8(r1) 

           ld f3, 16(r1) 

           ld f4, 24(r1) 

           add r1, 32 

           fadd f5, f0, f1 

           fadd f6, f0, f2  

           fadd f7, f0, f3  

           fadd f8, f0, f4 

           sd f5, 0(r2) 

           sd f6, 8(r2) 

           sd f7, 16(r2) 

           add r2, 32 

           sd f8, -8(r2) 

           bne r1, r3, loop 

Int1 Int 2 M1 M2 FP+ FPx 

ld f1 

ld f2 

ld f3 

ld f4 

fadd f5 

fadd f6 

fadd f7 

fadd f8 

sd f5 

sd f6 

sd f7 

sd f8 

add r1 

add r2 

bne 

ld f1 

ld f2 

ld f3 

ld f4 

fadd f5 

fadd f6 

fadd f7 

fadd f8 

sd f5 

sd f6 

sd f7 

sd f8 

add r1 

add r2 

bne 

ld f1 

ld f2 

ld f3 

ld f4 

fadd f5 

fadd f6 

fadd f7 

fadd f8 

sd f5 

add r1 

loop: 
steady 
state 

fill 

drain 
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Unrolling versus Pipelining 
- Unrolled loops pay fill and drain costs once per loop iteration. 

- SW pipelined loops pay (a.k.a. prologue) and drain (a.k.a. epilogue) 

costs only once per loop.  

time 

performance 

time 

performance 

Loop Unrolled 

Software Pipelined 

Wind-down overhead 

Loop Iteration 

Loop 
Iteration 
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What if there are no loops? 

 

- Basic block defined by 

sequence of consecutive 

instructions.  Every basic 

block ends with a branch. 

  

- Instruction-level parallelism is 

hard to find in basic blocks 

 

- Basic blocks illustrated by 

control flow graph 

Basic block 
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Trace Scheduling 

 

- A trace is a sequence of basic blocks 

(a.k.a., long string of straight-line 

code) 

 

- Trace Selection: Use profiling or 

compiler heuristics to find common 

sequences/paths 

 

- Trace Compaction: Schedule whole 

trace into few VLIW instructions.  

 

- Add fix-up code to cope with 

branches jumping out of trace. Undo 

instructions if control flower diverges 

from trace. 
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Problems with “Classic” VLIW 

Object Code Challenges 
- Compatibility: Need to recompile code for every VLIW machine, even 

across generations.    

- Compatibility: Code specific to operation slots in instruction format and 

latencies of operations 

 

- Code Size: Instruction padding wastes instruction memory/cache with 

nops for unfilled slots.  

- Code Size: Loop unrolling, software pipelining increases code footprint.  

 

Scheduling Variable Latency Operations 
- Effective schedules rely on known instruction latencies 

- Caches, memories produce unpredictable variability 
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Intel Itanium, EPIC IA-64 

Explicitly Parallel Instruction Computing (EPIC) 
- Computer architecture style (e.g., CISC, RISC, EPIC) 

 

IA-64 
- Instruction set architecture (e.g., x86, MIPS, IA-64) 

- IA-64 – Intel Architecture 64-bit 

 

Implementations 
- Merced, first implementation, 2001 

- McKinley, second implementation, 2002 

- Poulson, recent implementation, 2011 
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Intel Itanium, EPIC IA-64 

- Eight cores 

- 1-cycle 16KB L1 I&D caches 

- 9-cycle 512KB L2 I-cache 

- 8-cycle 256KB L2 D-cache 

- 32 MB shared L3 cache 

- 544mm2 in 32nm CMOS 

- 3 billion transistors 

- Cores are 2-way multithreaded 

 

- Each VLIW word is 128-bits, containing 3 instructions (op slots) 

 

- Fetch 2 words per cycle  6 instructions (op slots)  

 

- Retire 4 words per cycle  12 instructions (op slots) 
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Intel Itanium, EPIC IA-64 

-Template bits describe grouping of these instructions with 

others in adjacent bundles 

- Each group contains instructions that can execute in 

parallel 

Instruction 2 Instruction 1 Instruction 0 Template 

128-bit instruction bundle 

group i group i+1 group i+2 group i-1 

bundle j bundle j+1 bundle j+2 bundle j-1 
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VLIW and Control Flow Challenges 

Challenge 
- Mispredicted branches limit ILP 

- Trace selection groups basic blocks into larger ones 

- Trace compaction schedules instructions into a single VLIW 

- Requires fix-up code for branches that exit trace 

 

Solution – Predicated Execution 
- Eliminate hard to predict branches with predicated execution 

- IA-64 instructions can be executed conditionally under predicate 

- Instruction becomes a NOP if predicate register is false 
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VLIW and Control Flow Challenges 

Inst 1 
Inst 2 
br a==b, b2 

Inst 3 
Inst 4 
br b3 

Inst 5 
Inst 6 
 

Inst 7 
Inst 8 
 

b0: 

b1: 

b2: 

b3: 

if 

else 

then 

Four basic blocks 

Inst 1 

Inst 2 

p1,p2 <- cmp(a==b) 

(p1) Inst 3     ||   (p2) Inst 5 

(p1) Inst 4     ||   (p2) Inst 6 

Inst 7 

Inst 8 

Predication 

One basic block 

On average >50% branches 

removed. Mahlke et al. 1995.  
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Limits of Static ILP 

Software Instruction-level Parallelism (VLIW) 
- Compiler complexity 

- Code size explosion 

- Unpredictable branches 

- Variable memory latency and unpredictable cache behavior 

 

Current Status 
- Despite several attempts, VLIW has failed in general-purpose computing 

- VLIW hardware complexity similar to in-order, superscalar hardware 

complexity. Limited advantage on large, complex applications 

- Successful in embedded digital signal processing; friendly code 
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Summary 

Out-of-order Superscalar  
• Hardware complexity increases super-linearly with issue-width.  

 

Very Long Instruction Word (VLIW) 
• Compiler explicitly schedules parallel instructions 

• Unrolling and software pipelining loops 

 

Predication 
• Mitigates branches in VLIW machines 

• Add predicates to operations.   

• If predicate is false, instruction does not affect architected state 

• Mahlke et al. “A comparison of full and partial predicated execution 

support for ILP processors” 1995. 
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