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ECE252 Administrivia 

15 November – Homework #4 Due 
 

Project Proposals 
 

ECE 299 – Energy-Efficient Computer Systems 
- www.duke.edu/~bcl15/class/class_ece299fall10.html 

- Technology, architectures, systems, applications 

- Seminar for Spring 2012.  

- Class is paper reading, discussion, research project 

- In Fall 2010, students read >35 research papers. 

- In Fall 2012, read research papers.  

- In Fall 2012, also considering textbook “The Datacenter as a Computer: 

An Introduction to the Design of Warehouse-scale Machines.” 

http://www.duke.edu/~bcl15/class/class_ece299fall10.html


ECE 252 / CPS 220 3 

 

 

Last Time 

Out-of-order Superscalar 
• Hardware complexity increases super-linearly with issue width 

 

Very Long Instruction Word (VLIW) 
• Compiler explicitly schedules parallel instructions 

• Simple hardware, complex compiler 

• Later VLIWs added more dynamic interlocks 

 

Compiler Analysis 
• Use loop unrolling and software pipelining for loops, trace scheduling for 

more irregular code 

• Static compiler scheduling is difficult in presence of unpredictable 

branches and variable memory latency 
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Multi-threading 

Instruction-level Parallelism 
- Objective: Extract instruction-level parallelism (ILP) 

- Difficulty: Limited ILP from sequential thread of control 

 

Multi-threaded Processor 
- Processor fetches instructions from multiple threads of control 

- If instructions from one thread stalls, issue instructions from other threads 

 

Thread-level Parallelism 
- Thread-level parallelism (TLP) provides independent threads 

- Multi-programming – run multiple, independent, sequential jobs 

- Multi-threading – run single job faster using multiple, parallel threads 
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Increasing Pipeline Utilization 

 

In an out-of-order superscalar 

processor, many apps cannot 

fully use execution units 

 

Consider percentage of issue 

cycles in which processor is 

busy. 

 

Tullsen, Eggers and Levy. 

“Simultaneous multi-threading,” 

ISCA 1995.  
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Superscalar (In)Efficiency 

Issue width 

Time 

Completely idle cycle 
(vertical waste) 

Instruction 
issue 

Partially filled cycle, 
i.e., IPC < 4 
(horizontal waste) 
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Pipeline Hazards 

Data Dependencies 
- Dependencies exist between instructions 

- Example: LW-LW (via r1), LW-ADDI (via r5), ADDI-SW (via r5) 
 

Solutions  
- Interlocks stall the pipeline (slow) 

- Forwarding paths (requires hardware, limited applicability) 

 

LW  r1, 0(r2) 
LW  r5, 12(r1) 
ADDI  r5, r5, #12 
SW  12(r1), r5 

F D X M W 

t0 t1 t2 t3 t4 t5 t6 t7 t8 

F D X M W D D D 
F D X M W D D D F F F 

F D D D D F F F 

t9 t10 t11 t12 t13 t14 
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Vertical Multithreading 

Issue width 

Time 

Second thread interleaved 
cycle-by-cycle 

Instruction 
issue 

Partially filled cycle, 
i.e., IPC < 4 
(horizontal waste) 

With cycle-by-cycle interleaving, remove vertical waste 
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Multithreading 

 

Interleave instructions from multiple threads in pipeline 
- Example: Interleave threads (T1, T2, T3, T4) in 5-stage pipeline 

 

- For any given thread, earlier instruction writes-back (W) before later instruction 

reads register file (D).  

- Example: [T1: LW r1, 0(r2)] writes back before [T1: LW r5, 12(r1)] decodes 

 

F D X M W 

t0 t1 t2 t3 t4 t5 t6 t7 t8 

T1:  LW  r1, 0(r2) 
T2:  ADD  r7, r1, r4 
T3: XORI  r5, r4, #12 
T4: SW  0(r7),  r5 
T1: LW  r5, 12(r1) 

t9 

F D X M W 
F D X M W 

F D X M W 
F D X M W 
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CDC 6600 Peripheral Processors 

- Cray (1964) built first multithreaded hardware architecture 

 

- Pipeline with100ns clock period 

- 10 “virtual” I/O processors  provides thread-level parallelism 

- Each virtual processor executes one instruction every 1000ns (= 1ms) 

- Minimize processor state with accumulator-based instruction set 
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Simple Multithreaded Pipeline 

- Additional State: One copy of architected state per thread (e.g., PC, GPR) 

- Thread Select: Round-robin logic; Propagate thread ID down pipeline to 

access correct state (e.g., GPR1 versus GPR2) 

 

- Software (e.g., OS) perceives multiple, slower CPUs 

 

 

+1 

2 Thread select 

PC 
1 

PC 
1 

PC 
1 

PC 
1 

I$ IR 
GPR1 GPR1 GPR1 GPR1 

X 

Y 

2 

D$ 
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Multithreading Costs 

User State (per thread) 
- Program counters 

- Physical register files 

 

System State (per thread) 
- Page table base register 

- Exception handling registers 

 

Overheads and Contention 
- Threads contend for shared caches, TLB 

- Alternatively, threads require additional cache, TLB capacity 

- Scheduler (OS or HW) manages threads 
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Fine-Grain Multithreading 

Switch threads at instruction-granularity 
 

Fixed Interleave (CDC 6600 PPUs, 1964) 
- PPU – peripheral processing unit 

- Given N threads, each thread executes one instruction every N cycles 

- Insert pipeline bubble (e.g., NOP) if thread not ready for its slot 
 

Software-controlled Interleave (TI ASC PPUs, 1971) 
- PPU – peripheral processing unit 

- OS explicitly controls thread interleaving 

- Example: blue thread scheduled 2x as often as orange, purple thread 

 

 
 

Why was thread scheduling introduced for peripheral 

processing units first? 
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Denelcor HEP (1982) 

First commercial hardware-threading for main CPU 
- Architected by Burton Smith 

- Multithreading previously used to hide long I/O, memory latencies in PPUs 

 

 

 

 

 

 

 

 

 

 

 

- Up to 8 processors, 10 MHz Clock 

- 120 threads per processor 

- Precursor to Tera MTA 
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Tera MTA (1990) 

- Up to 256 processors 

- Up to 128 threads per processor 

 

 

 

 

 

 

 

 

 

- Processors and memories communicate via a 3D torus interconnect 

Nodes linked to nearest 6 neighbors 

 

- Main memory is flat and shared 

Flat memory  no data cache 

Memory sustains 1 memory access per cycle per processor 

Why does this make sense for a multi-threaded machine? 



ECE 252 / CPS 220 16 

 

 

MIT Alewife (1990) 

Anant Agarwal at MIT 
 

SPARC 
- RISC instruction set architecture from 

Sun Microsystems 

- Alewife modifies SPARC processor 

 

Multithreading 
- Up to 4 threads per processor 

- Threads switch on cache miss 
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Coarse-Grain Multithreading 

Switch threads on long-latency operation 

 

Tera MTA designed for supercomputing applications 

with large data sets and little locality 
- Little locality  no data cache 

- Many parallel threads needed to hide long memory latency 

- If one thread accesses memory, schedule another thread in its place 

 

Other applications may be more cache friendly 
- Good locality  data cache hits 

- Provide small number of threads to hide cache miss penalty 

- If one thread misses cache, schedule another thread in its place 
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Multithreading & “Simple” Cores 

IBM PowerPC RS64-IV (2000) 
- RISC instruction set architecture from IBM 

- Implements in-order, quad-issue, 5-stage pipeline 

- Up to 2 threads per processor 

 

Oracle/Sun Niagara Processors (2004-2009) 
- Targets datacenter web and database servers.  

- SPARC instruction set architecture from Sun 

- Implements simple, in-order core 

 

- Niagara-1 (2004) – 8 cores, 4 threads/core 

- Niagara-2 (2007) – 8 cores, 8 threads/core 

- Niagara-3 (2009) – 16 cores, 8 threads/core 
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Why Simple Cores? 

Switch threads on cache miss 
- If a thread accesses memory, flush pipeline switch to another thread 

 

 

Simple Core Advantages 
- Minimize flush penalty with short pipeline (4 cycles in 5-stage pipeline) 

- Reduce energy cost per op (out-of-order execution consumes energy) 

 

 

Simple Core Trade-off 
- Lower single-thread performance 

- Higher multi-thread performance and energy efficiency 
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Oracle/Sun Niagara-3 (2009)  
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Superscalar (In)Efficiency 

Issue width 

Time 

Completely idle cycle 
(vertical waste) 

Instruction 
issue 

Partially filled cycle, 
i.e., IPC < 4 
(horizontal waste) 
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Vertical Multithreading 

Issue width 

Time 

Second thread interleaved 
cycle-by-cycle 

Instruction 
issue 

Partially filled cycle, 
i.e., IPC < 4 
(horizontal waste) 

Vertical multithreading reduces vertical waste with cycle-by-cycle interleaving. 

However, horizontal waste remains. 
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Chip Multiprocessing (CMP) 

Chip multiprocessing reduces horizontal waste with simple (narrower) cores. 

However, vertical waste remains. And ILP is bounded. 

Issue width 

Time 
Partially filled cycle, 
i.e., IPC < 4 
(horizontal waste) 

Completely idle cycle 
(vertical waste) 
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Simultaneous Multithreading (SMT) 

Interleave multi-threaded instructions with no restrictions. 

Tullsen, Eggers, Levy. University of Washington, 1995. 

Issue width 

Time 
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IBM Power4  IBM Power5 

Power4 
 - Single-threaded processor 

 - Out-of-order execution, superscalar (8 execution units) 
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IBM Power4  IBM Power5 

Power4 – single-threaded processor, 8 execution units 

Power5 – dual-threaded processor, 8 execution units 
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IBM Power5 Data Flow 

- Program Counter: duplicate and alternate fetch between two threads 

- Return Stack: duplicate since different threads call different sub-routines 

- Instruction Buffer: queue instructions separately 

- Decode: de-queue instructions depending on thread priority 
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IBM Power4  IBM Power5 

Support multiple instruction streams 
 - Increase L1 instruction cache associativity 

 - Increase instruction TLB associativity 

 - Mitigate cache contention from instruction streams 

 - Separate instruction prefetch and buffering per thread 

 - Allow thread prioritization  

Support more instructions in-flight 
 - Increase the number of physical registers (e.g., 152 to 240) 

 - Mitigate register renaming bottleneck 

Support larger cache footprints 
 - Increase L2 cache size (e.g., 1.44MB to 1.92MB) 

 - Increase L3 cache size  

 - Mitigate cache contention from data footprints 

Power5 core is 24% larger than Power4 core 
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Instruction Scheduling 

ICOUNT: Schedule thread with fewest instructions 

in flight 

  

(1) prevents one thread from filling issue queue 

 

(2) prioritizes threads that efficiently move 

instructions through datapath 

 

(3) provides an even mix of threads, maximizing 

parallelism 
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SMT Performance 

Intel Pentium4 Extreme SMT 
 - Single program 

 - 1.01x speedup for SPECint and 1.07x speedup for SPECfp 
 

 - Multiprogram (pairs of SPEC workloads) 

 - 0.9-1.6x for various pairs 
 

IBM Power 5 
 - Single program 

 - 1.23x speedup for SPECint and 1.16x speedup for SPECfp 
 

 - Multiprogram (pairs of SPEC workloads) 

 - 0.89-1.41x for various pairs 
 

Intuition 
 - SPECint has complex control flow, idles processor, benefits from SMT 

 - SPECfp has large data sets, cache conflicts, fewer benefits from SMT 
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SMT Flexibility 
For SW regions with high thread 
level parallelism (TLP), share 
machine width across all threads 

Issue width 

Time 

Issue width 

Time 

For SW regions with low thread 
level parallelism (TLP), reserve 
machine width for single thread 
instruction level parallelism (ILP) 
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Superscalar Fine-Grained Coarse-Grained Multiprocessing 
Simultaneous 

Multithreading 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

Thread 5 

Idle slot 
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Summary 

Out-of-order Superscalar 
• Processor pipeline is under-utilized due to data dependencies 

 

Thread-level Parallelism 
• Independent threads more fully use processor resources 

 

Multithreading 
• Reduce vertical waste by scheduling threads to hide long latency 

operations (e.g., cache misses) 

• Reduce horizontal waste by scheduling threads to more fully use 

superscalar issue width 

 
 


