
ECE 252 / CPS 220

 Advanced Computer Architecture I

Lecture 16

Multi-threading

Benjamin Lee
Electrical and Computer Engineering

Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall11.html

ECE 252 / CPS 220 2

ECE252 Administrivia

15 November – Homework #4 Due

Project Proposals

ECE 299 – Energy-Efficient Computer Systems
- www.duke.edu/~bcl15/class/class_ece299fall10.html

- Technology, architectures, systems, applications

- Seminar for Spring 2012.

- Class is paper reading, discussion, research project

- In Fall 2010, students read >35 research papers.

- In Fall 2012, read research papers.

- In Fall 2012, also considering textbook “The Datacenter as a Computer:

An Introduction to the Design of Warehouse-scale Machines.”

http://www.duke.edu/~bcl15/class/class_ece299fall10.html

ECE 252 / CPS 220 3

Last Time

Out-of-order Superscalar
• Hardware complexity increases super-linearly with issue width

Very Long Instruction Word (VLIW)
• Compiler explicitly schedules parallel instructions

• Simple hardware, complex compiler

• Later VLIWs added more dynamic interlocks

Compiler Analysis
• Use loop unrolling and software pipelining for loops, trace scheduling for

more irregular code

• Static compiler scheduling is difficult in presence of unpredictable

branches and variable memory latency

ECE 252 / CPS 220 4

Multi-threading

Instruction-level Parallelism
- Objective: Extract instruction-level parallelism (ILP)

- Difficulty: Limited ILP from sequential thread of control

Multi-threaded Processor
- Processor fetches instructions from multiple threads of control

- If instructions from one thread stalls, issue instructions from other threads

Thread-level Parallelism
- Thread-level parallelism (TLP) provides independent threads

- Multi-programming – run multiple, independent, sequential jobs

- Multi-threading – run single job faster using multiple, parallel threads

ECE 252 / CPS 220 5

Increasing Pipeline Utilization

In an out-of-order superscalar

processor, many apps cannot

fully use execution units

Consider percentage of issue

cycles in which processor is

busy.

Tullsen, Eggers and Levy.

“Simultaneous multi-threading,”

ISCA 1995.

ECE 252 / CPS 220 6

Superscalar (In)Efficiency

Issue width

Time

Completely idle cycle
(vertical waste)

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

ECE 252 / CPS 220 7

Pipeline Hazards

Data Dependencies
- Dependencies exist between instructions

- Example: LW-LW (via r1), LW-ADDI (via r5), ADDI-SW (via r5)

Solutions
- Interlocks stall the pipeline (slow)

- Forwarding paths (requires hardware, limited applicability)

LW r1, 0(r2)
LW r5, 12(r1)
ADDI r5, r5, #12
SW 12(r1), r5

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

F D X M W D D D
F D X M W D D D F F F

F D D D D F F F

t9 t10 t11 t12 t13 t14

ECE 252 / CPS 220 8

Vertical Multithreading

Issue width

Time

Second thread interleaved
cycle-by-cycle

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

With cycle-by-cycle interleaving, remove vertical waste

ECE 252 / CPS 220 9

Multithreading

Interleave instructions from multiple threads in pipeline
- Example: Interleave threads (T1, T2, T3, T4) in 5-stage pipeline

- For any given thread, earlier instruction writes-back (W) before later instruction

reads register file (D).

- Example: [T1: LW r1, 0(r2)] writes back before [T1: LW r5, 12(r1)] decodes

F D X M W

t0 t1 t2 t3 t4 t5 t6 t7 t8

T1: LW r1, 0(r2)
T2: ADD r7, r1, r4
T3: XORI r5, r4, #12
T4: SW 0(r7), r5
T1: LW r5, 12(r1)

t9

F D X M W
F D X M W

F D X M W
F D X M W

ECE 252 / CPS 220 10

CDC 6600 Peripheral Processors

- Cray (1964) built first multithreaded hardware architecture

- Pipeline with100ns clock period

- 10 “virtual” I/O processors  provides thread-level parallelism

- Each virtual processor executes one instruction every 1000ns (= 1ms)

- Minimize processor state with accumulator-based instruction set

ECE 252 / CPS 220 11

Simple Multithreaded Pipeline

- Additional State: One copy of architected state per thread (e.g., PC, GPR)

- Thread Select: Round-robin logic; Propagate thread ID down pipeline to

access correct state (e.g., GPR1 versus GPR2)

- Software (e.g., OS) perceives multiple, slower CPUs

+1

2 Thread select

PC
1

PC
1

PC
1

PC
1

I$ IR
GPR1 GPR1 GPR1 GPR1

X

Y

2

D$

ECE 252 / CPS 220 12

Multithreading Costs

User State (per thread)
- Program counters

- Physical register files

System State (per thread)
- Page table base register

- Exception handling registers

Overheads and Contention
- Threads contend for shared caches, TLB

- Alternatively, threads require additional cache, TLB capacity

- Scheduler (OS or HW) manages threads

ECE 252 / CPS 220 13

Fine-Grain Multithreading

Switch threads at instruction-granularity

Fixed Interleave (CDC 6600 PPUs, 1964)
- PPU – peripheral processing unit

- Given N threads, each thread executes one instruction every N cycles

- Insert pipeline bubble (e.g., NOP) if thread not ready for its slot

Software-controlled Interleave (TI ASC PPUs, 1971)
- PPU – peripheral processing unit

- OS explicitly controls thread interleaving

- Example: blue thread scheduled 2x as often as orange, purple thread

Why was thread scheduling introduced for peripheral

processing units first?

ECE 252 / CPS 220 14

Denelcor HEP (1982)

First commercial hardware-threading for main CPU
- Architected by Burton Smith

- Multithreading previously used to hide long I/O, memory latencies in PPUs

- Up to 8 processors, 10 MHz Clock

- 120 threads per processor

- Precursor to Tera MTA

ECE 252 / CPS 220 15

Tera MTA (1990)

- Up to 256 processors

- Up to 128 threads per processor

- Processors and memories communicate via a 3D torus interconnect

Nodes linked to nearest 6 neighbors

- Main memory is flat and shared

Flat memory  no data cache

Memory sustains 1 memory access per cycle per processor

Why does this make sense for a multi-threaded machine?

ECE 252 / CPS 220 16

MIT Alewife (1990)

Anant Agarwal at MIT

SPARC
- RISC instruction set architecture from

Sun Microsystems

- Alewife modifies SPARC processor

Multithreading
- Up to 4 threads per processor

- Threads switch on cache miss

ECE 252 / CPS 220 17

Coarse-Grain Multithreading

Switch threads on long-latency operation

Tera MTA designed for supercomputing applications

with large data sets and little locality
- Little locality  no data cache

- Many parallel threads needed to hide long memory latency

- If one thread accesses memory, schedule another thread in its place

Other applications may be more cache friendly
- Good locality  data cache hits

- Provide small number of threads to hide cache miss penalty

- If one thread misses cache, schedule another thread in its place

ECE 252 / CPS 220 18

Multithreading & “Simple” Cores

IBM PowerPC RS64-IV (2000)
- RISC instruction set architecture from IBM

- Implements in-order, quad-issue, 5-stage pipeline

- Up to 2 threads per processor

Oracle/Sun Niagara Processors (2004-2009)
- Targets datacenter web and database servers.

- SPARC instruction set architecture from Sun

- Implements simple, in-order core

- Niagara-1 (2004) – 8 cores, 4 threads/core

- Niagara-2 (2007) – 8 cores, 8 threads/core

- Niagara-3 (2009) – 16 cores, 8 threads/core

ECE 252 / CPS 220 19

Why Simple Cores?

Switch threads on cache miss
- If a thread accesses memory, flush pipeline switch to another thread

Simple Core Advantages
- Minimize flush penalty with short pipeline (4 cycles in 5-stage pipeline)

- Reduce energy cost per op (out-of-order execution consumes energy)

Simple Core Trade-off
- Lower single-thread performance

- Higher multi-thread performance and energy efficiency

ECE 252 / CPS 220 20

Oracle/Sun Niagara-3 (2009)

ECE 252 / CPS 220 21

Superscalar (In)Efficiency

Issue width

Time

Completely idle cycle
(vertical waste)

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

ECE 252 / CPS 220 22

Vertical Multithreading

Issue width

Time

Second thread interleaved
cycle-by-cycle

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

Vertical multithreading reduces vertical waste with cycle-by-cycle interleaving.

However, horizontal waste remains.

ECE 252 / CPS 220 23

Chip Multiprocessing (CMP)

Chip multiprocessing reduces horizontal waste with simple (narrower) cores.

However, vertical waste remains. And ILP is bounded.

Issue width

Time
Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

Completely idle cycle
(vertical waste)

ECE 252 / CPS 220 24

Simultaneous Multithreading (SMT)

Interleave multi-threaded instructions with no restrictions.

Tullsen, Eggers, Levy. University of Washington, 1995.

Issue width

Time

ECE 252 / CPS 220 25

IBM Power4  IBM Power5

Power4
 - Single-threaded processor

 - Out-of-order execution, superscalar (8 execution units)

ECE 252 / CPS 220 26

IBM Power4  IBM Power5

Power4 – single-threaded processor, 8 execution units

Power5 – dual-threaded processor, 8 execution units

ECE 252 / CPS 220 27

IBM Power5 Data Flow

- Program Counter: duplicate and alternate fetch between two threads

- Return Stack: duplicate since different threads call different sub-routines

- Instruction Buffer: queue instructions separately

- Decode: de-queue instructions depending on thread priority

ECE 252 / CPS 220 28

IBM Power4  IBM Power5

Support multiple instruction streams
 - Increase L1 instruction cache associativity

 - Increase instruction TLB associativity

 - Mitigate cache contention from instruction streams

 - Separate instruction prefetch and buffering per thread

 - Allow thread prioritization

Support more instructions in-flight
 - Increase the number of physical registers (e.g., 152 to 240)

 - Mitigate register renaming bottleneck

Support larger cache footprints
 - Increase L2 cache size (e.g., 1.44MB to 1.92MB)

 - Increase L3 cache size

 - Mitigate cache contention from data footprints

Power5 core is 24% larger than Power4 core

ECE 252 / CPS 220 29

Instruction Scheduling

ICOUNT: Schedule thread with fewest instructions

in flight

(1) prevents one thread from filling issue queue

(2) prioritizes threads that efficiently move

instructions through datapath

(3) provides an even mix of threads, maximizing

parallelism

ECE 252 / CPS 220 30

SMT Performance

Intel Pentium4 Extreme SMT
 - Single program

 - 1.01x speedup for SPECint and 1.07x speedup for SPECfp

 - Multiprogram (pairs of SPEC workloads)

 - 0.9-1.6x for various pairs

IBM Power 5
 - Single program

 - 1.23x speedup for SPECint and 1.16x speedup for SPECfp

 - Multiprogram (pairs of SPEC workloads)

 - 0.89-1.41x for various pairs

Intuition
 - SPECint has complex control flow, idles processor, benefits from SMT

 - SPECfp has large data sets, cache conflicts, fewer benefits from SMT

ECE 252 / CPS 220 31

SMT Flexibility
For SW regions with high thread
level parallelism (TLP), share
machine width across all threads

Issue width

Time

Issue width

Time

For SW regions with low thread
level parallelism (TLP), reserve
machine width for single thread
instruction level parallelism (ILP)

ECE 252 / CPS 220 32

Types of Multithreading
T

im
e

(p
ro

ce
ss

or
 c

yc
le

)

Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

ECE 252 / CPS 220 33

Summary

Out-of-order Superscalar
• Processor pipeline is under-utilized due to data dependencies

Thread-level Parallelism
• Independent threads more fully use processor resources

Multithreading
• Reduce vertical waste by scheduling threads to hide long latency

operations (e.g., cache misses)

• Reduce horizontal waste by scheduling threads to more fully use

superscalar issue width

