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ECE252 Administrivia 

1 December 2011 
 

Project Status 
- Please submit project reports to Blackboard by midnight 

 

Final Exam 
- Wednesday, Dec 14, 2-5pm 

- Closed book, closed notes exam 

- Cumulative, with emphasis on latter half.  

 

- 6-7 Questions 

- 1/3 on earlier material, 2/3 on later material 

 

- 1/3 extended design questions 

- 2/3 short answer 



ECE 252 / CPS 220 3 

 

 

Architecture: Abstractions/Metrics 

Computer architecture defines HW/SW interface 
  

Evaluate architectures quantitatively 
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Computer Architecture  

Application 

Physics 

Gap too large to bridge in 

one step 

Computer architecture is the design of abstraction layers,  

which allow efficient implementations of computational 

applications on available technologies 
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Abstraction Layers 

Algorithm 

Gates/Register-Transfer Level (RTL) 

Application 

Instruction Set Architecture (ISA) 

Operating System/Virtual Machines 

Microarchitecture 

Devices 

Programming Language 

Circuits 

Physics 

Domain of 

early 

computer 

architecture 

(‘50s-’80s) 

Domain of 

recent 

computer 

architecture 

(since ‘90s) 



In-order Datapath 

(built, ECE152) 

Chip Multiprocessors 

(understand, experiment ECE252) 
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ECE 252 Executive Summary 
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Performance Factors 

Latency = (Instructions / Program) x (Cycles / Instruction) x (Seconds / Cycle) 
 

Seconds / Cycle 
 - Technology and architecture 

 - Transistor scaling 

 - Processor microarchitecture 

  

Cycles / Instruction (CPI) 
 - Architecture and systems 

 - Processor microarchitecture 

 - System balance (processor, memory, network, storage) 

 

Instructions / Program 
 - Algorithm and applications 

 - Compiler transformations, optimizations 

 - Instruction set architecture 
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Power and Energy 

Definitions 
 - Energy (Joules) = a x C x V2 

 - Power (Watts) = a x C x V2 x f 

 

Power Factors and Trends 
 - activity (a): function of application resource usage 

 - capacitance (C): function of design; scales with area 

- voltage (V): constrained by leakage, which increases as V falls 

 - frequency (f): varies with pipelining and transistor speeds 

 - Models in cycle-accurate simulators (e.g., Princeton Wattch) 

 

Dynamic Voltage and Frequency Scaling (DVFS) 
 - P-states:  move between operational modes with different V, f 

- Intel TurboBoost: increase V, f for short durations without violating 

thermal design point (TDP) 
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Datapath: CISC versus RISC 

Complex Instruction Set Computing 
 - microprogramming 

 - motivated by technology (slow instruction fetch) 

  

Reduced Instruction Set Computing 
 - hard-wired datapath 

 - motivated by technology (caches, fast memory) 

 - complex instructions rarely used 
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CISC Microprograms 

instr fetch:  MA  PC   # fetch current instr 
    A  PC    # next PC calculation 
 IR  Memory 
 PC  A + 4 
 dispatch on Opcode  # start microcode 
 
 

ALU:    A  Reg[rs]    
 B  Reg[rt]    
 Reg[rd]   func(A,B)   
 do instruction fetch     
 
 

ALUi:    A  Reg[rs] 
 B  Imm    # sign extension 
 Reg[rt]  Opcode(A,B) 
 do instruction fetch 
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CISC Bus-Based MIPS Datapath 

Microinstruction: register to register transfer  (17 control signals) 
MA  PC means RegSel = PC; enReg=yes; ldMA= yes 
B  Reg[rt]  means RegSel = rt;    enReg=yes;    ldB   = yes 

enMem 
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RISC Hard-wired MIPS Datapath 
Figure A.17, Page A-29 

IF/ID ID/EX EX/MEM MEM/WB 
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Visualizing the Pipeline 
Figure A.2, Page A-8 
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Hazards and Limits to Pipelining 

Structural Hazards 
- Hardware cannot support this combination of instructions.  

- Solution: stall pipeline (interlocks) 

 

Data Hazards 
- Instruction depends on result of prior instruction still in pipeline 

- Solution: forward data, stall pipeline 
 

Control Hazards 
- Instruction fetch depends on decision about control flow 

- Example: compute branches early in pipeline, predict branches 
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Tomasulo & Out-of-order 

Out-of-order Execution 
- Dynamically schedule instructions 

- Execute instructions when dependences resolved 

 

Tomasulo’s Algorithm 
- Queue instructions until operands ready (reservation stations, ROB) 

- Rename to eliminate write hazards (rename table, physical registers) 

 
 

Precise Interrupts/Exceptions 
- Instructions execute/complete out-of-order 

- Instructions commit in-order via reorder buffer 

- Check for exceptions when committing instruction 
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Memory 

DRAM – access dense array of slow memory with a command protocol 

 

SRAM – access smaller array of fast memory on processor die 

 

Virtual Memory – translate applications’ virtual addresses into physical addresses, 

providing better memory management and protection 

Small, 

Fast 

Memory 

(RF, SRAM) 

CPU 
Big, Slow Memory 

(DRAM) 

A B 

holds frequently used data 
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DRAM 

-- Chip organized into 4-8 logical banks, which can be accessed in parallel 

-- Access DRAM with activate , read/write, precharge commands 
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Caches 

Caches exploit predictable patterns 

 

Temporal Locality 
Caches remember the contents of recently accessed locations 

 

Spatial Locality 
Caches fetch blocks of data nearby recently accessed locations 
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Placement Policy 

0 1 2 3 4 5 6 7 0     1      2     3 Set Number 

Cache 

     Fully  (2-way) Set        Direct 
Associative Associative         Mapped 
anywhere anywhere in          only into 
        set 0                block 4  
           (12 mod 4)    (12 mod 8) 

0 1 2 3 4 5 6 7 8 9 

1 1 1 1 1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9 

2 2 2 2 2 2 2 2 2 2 
0 1 2 3 4 5 6 7 8 9 

3 3 
0 1 

Memory 

Line Number 

Line 12  
can be placed 
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Direct-Mapped Cache 

  Tag Data Line   V 

 = 

Line 
Offset 

  Tag Index 

 t 
 k  b 

 t 

HIT Data Word or Byte 

  2k 

lines 



ECE 252 / CPS 220 21 

 

 

Average Memory Access Time 

AMAT = [Hit Time] + [Miss Prob.] x [Miss Penalty] 
- Miss Penalty equals AMAT of next cache/memory/storage level.  

- AMAT is recursively defined 

 

To improve performance 
- Reduce the hit time (e.g., smaller cache) 

- Reduce the miss rate (e.g., larger cache) 

- Reduce the miss penalty (e.g., optimize the next level) 

 

Simple design strategy 
- Observe that hit time increases with cache size 

- Design the largest possible cache with a hit time of 1-2 cycles. 

- For example, design 8-32KB of cache in modern technology 

- Design trade-offs are more complex with superscalar architectures and 

multi-ported memories 
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Caches and Code 

Restructuring code affects data access sequences 
- Group data accesses together to improve spatial locality 

- Re-order data accesses to improve temporal locality 
 

Prevent data from entering the cache 
- Useful for variables that are only accessed once 

- Requires SW to communicate hints to HW.  

- Example: “no-allocate” instruction hints 

 

Kill data that will never be used again 
- Streaming data provides spatial locality but not temporal locality 

- If particular lines contain dead data, use them in replacement policy. 

- Toward software-managed caches 
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Caches and Code 

 

What type of locality does this improve? 

for(i=0; i < N; i++) 

    a[i] = b[i] * c[i]; 

 

for(i=0; i < N; i++) 

     d[i] = a[i] * c[i]; 

  for(i=0; i < N; i++) 

{ 

       a[i] = b[i] * c[i];  

       d[i] = a[i] * c[i]; 

  } 
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Virtual Memory 
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Parallelism 

Instruction-level Parallelism (ILP) 
 - multiple instructions in-flight 

 - hardware-scheduled: (1) pipelining, (2) out-of-order execution 

 - software-scheduled: (3) VLIW 

  

Data-level Parallelism (DLP) 
 - multiple, identical operations on data arrrays/streams 

 - (1) vector processors, (2) GPUs 

 - (3) single-instruction, multiple-data (SIMD) extensions 

 

Thread-level Parallelism (TLP) 
 - multiple threads of control 

 - if a thread stalls, issue instructions from other threads 

 - (1) multi-threading, (2) multiprocessors 
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VLIW and ILP (SW-managed) 

- Multiple operations packed into one instruction format 

- Instruction format is fixed, each slot supports particular instruction type 

- Constant operation latencies are specified (e.g., 1 cycle integer op) 

- Software schedules operations into instruction format, guaranteeing 

(1)Parallelism within an instruction – no RAW checks between ops 

(2)No data use before ready – no data interlocks/stalls 

Two Integer Units, 
Single Cycle Latency 

Two Load/Store Units, 
Three Cycle Latency Two Floating-Point Units, 

Four Cycle Latency 

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2 Int Op 1 
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Vectors and DLP 
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Multithreading and TLP 
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Multiprocessors 

Shared-memory Multiprocessors 
- Provide a shared-memory abstraction 

- Enables familiar and efficient programmer interface 

 

 

P1 P2 P3 P4 

Memory System 
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Multiprocessors 

Shared-memory Multiprocessors 
- Provide a shared-memory abstraction 

- Enables familiar and efficient programmer interface 

 

 

Interconnection Network 

P1 
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P2 

Cache M2 

Interface 

P3 
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P4 

Cache M4 

Interface 
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Multiprocessors 

Shared-memory Multiprocessors 
- Provide a shared-memory abstraction 

- Enables familiar and efficient programmer interface 
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Challenges in Shared Memory 

Cache Coherence 
- “Common Sense” 

- P1-Read[X]  P1-Write[X]  P1-Read[X]  Read returns X 

- P1-Write[X]  P2-Read[X]   Read returns value written by P1 

- P1-Write[X]  P2-Write[X]   Writes serialized 

      All P’s see writes in same order 

 

Synchronization 
- Atomic read/write operations 

 

Memory Consistency 
- What behavior should programmers expect from shared memory? 

- Provide a formal definition of memory behavior to programmer 

- Example: When will a written value be seen? 

- Example: P1-Write[X] <<10ps>> P2-Read[X]. What happens? 
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Coherence Protocols 

Implement protocol for every cache line.  

Compare, contrast snoopy and directory protocols [[Stanford Dash]] 
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Synchronization and Atomicity 

 

Solution: Test-and-set instruction 
- Add single instruction for load-test-store (t&s R1, lock) 

- Test-and-set atomically executes 

ld R1, lock; # load previous lock value 

st 1, lock;  # store 1 to set/acquire 

 

- If lock initially free (0), t&s acquires lock (sets to 1) 

- If lock initially busy (1), t&s does not change it  

- Instruction is un-interruptible/atomic by definition 
 

Inst-0 t&s R1, lock # atomically load, check, and set lock=1 

Inst-1 bnez R1  # if previous value of R1 not 0,  

….    acquire unsuccessful 

Inst-n stw R1, 0  # atomically release lock 
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Sequential Consistency (SC) 

Definition of Sequential Consistency  
Formal definition of programmers’ expected view of memory 

 

(1) Each processor P sees its own loads/stores in program order 

 

(2) Each processor P sees !P loads/stores in program order 

 

(3) All processors see same global load/store ordering.  

 P and !P loads/stores may be interleaved into some order. 

 But all processors see the same interleaving/ordering. 

   

Definition of Multiprocessor Ordering [Lamport] 
Multi-processor ordering corresponds to some sequential interleaving of uni-

processor orderings. Multiprocessor ordering should be indistinguishable from 

multi-programmed uni-processor 
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For More 

ECE 259 (Spring 2012) 
• Advanced Computer Architecture II 

• Parallel computer architecture design and evaluation 

• Parallel programming, coherence, synchronization, consistency 
 

ECE 299-01 (Spring 2012) 
• Energy Efficient Computer Systems 

• Technology, architecture, application strategies for energy efficiency 

• Datacenter computing 
 

ECE 254 (tbd) 
• Fault-Tolerant and Testable Computer Systems 

• Fault models, redundancy, recovery, testing 

 

Computer architecture is HW/SW interface.   

Consider classes on both sides of this interface. 
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Looking Forward 

Energy-efficiency 
• Technology limitations motivate new architectures for efficiency 

• Ex: specialization, heterogeneity, management 
 

Technology 
• Emerging technologies motivate new architectures for capability 

• Ex: memory (phase change), networks (optical), 
 

Reliability and Security 
• Variations in fabrication, design process motivate new safeguards 

• Ex: tunable structures, trusted bases 
 

Multiprocessors 
• Abundant transistors, performance goals motivate parallel computing 

• Ex: parallel programming, coherence/consistency, management 
 


