
ECE 252 / CPS 220

 Advanced Computer Architecture I

Lecture 19

Summary

Benjamin Lee
Electrical and Computer Engineering

Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall11.html

ECE 252 / CPS 220 2

ECE252 Administrivia

1 December 2011

Project Status
- Please submit project reports to Blackboard by midnight

Final Exam
- Wednesday, Dec 14, 2-5pm

- Closed book, closed notes exam

- Cumulative, with emphasis on latter half.

- 6-7 Questions

- 1/3 on earlier material, 2/3 on later material

- 1/3 extended design questions

- 2/3 short answer

ECE 252 / CPS 220 3

Architecture: Abstractions/Metrics

Computer architecture defines HW/SW interface

Evaluate architectures quantitatively

ECE 252 / CPS 220 4

Computer Architecture

Application

Physics

Gap too large to bridge in

one step

Computer architecture is the design of abstraction layers,

which allow efficient implementations of computational

applications on available technologies

ECE 252 / CPS 220 5

Abstraction Layers

Algorithm

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machines

Microarchitecture

Devices

Programming Language

Circuits

Physics

Domain of

early

computer

architecture

(‘50s-’80s)

Domain of

recent

computer

architecture

(since ‘90s)

In-order Datapath

(built, ECE152)

Chip Multiprocessors

(understand, experiment ECE252)

ECE 252 / CPS 220 6

ECE 252 Executive Summary

ECE 252 / CPS 220 7

Performance Factors

Latency = (Instructions / Program) x (Cycles / Instruction) x (Seconds / Cycle)

Seconds / Cycle
 - Technology and architecture

 - Transistor scaling

 - Processor microarchitecture

Cycles / Instruction (CPI)
 - Architecture and systems

 - Processor microarchitecture

 - System balance (processor, memory, network, storage)

Instructions / Program
 - Algorithm and applications

 - Compiler transformations, optimizations

 - Instruction set architecture

ECE 252 / CPS 220 8

Power and Energy

Definitions
 - Energy (Joules) = a x C x V2

 - Power (Watts) = a x C x V2 x f

Power Factors and Trends
 - activity (a): function of application resource usage

 - capacitance (C): function of design; scales with area

- voltage (V): constrained by leakage, which increases as V falls

 - frequency (f): varies with pipelining and transistor speeds

 - Models in cycle-accurate simulators (e.g., Princeton Wattch)

Dynamic Voltage and Frequency Scaling (DVFS)
 - P-states: move between operational modes with different V, f

- Intel TurboBoost: increase V, f for short durations without violating

thermal design point (TDP)

ECE 252 / CPS 220 9

Datapath: CISC versus RISC

Complex Instruction Set Computing
 - microprogramming

 - motivated by technology (slow instruction fetch)

Reduced Instruction Set Computing
 - hard-wired datapath

 - motivated by technology (caches, fast memory)

 - complex instructions rarely used

ECE 252 / CPS 220 10

CISC Microprograms

instr fetch: MA  PC # fetch current instr
 A  PC # next PC calculation
 IR  Memory
 PC  A + 4
 dispatch on Opcode # start microcode

ALU: A  Reg[rs]
 B  Reg[rt]
 Reg[rd]  func(A,B)
 do instruction fetch

ALUi: A  Reg[rs]
 B  Imm # sign extension
 Reg[rt]  Opcode(A,B)
 do instruction fetch

ECE 252 / CPS 220 11

CISC Bus-Based MIPS Datapath

Microinstruction: register to register transfer (17 control signals)
MA  PC means RegSel = PC; enReg=yes; ldMA= yes
B  Reg[rt] means RegSel = rt; enReg=yes; ldB = yes

enMem

MA

addr

data

ldMA

Memory

busy

MemWrt

Bus 32

zero?

 A B

OpSel ldA ldB

ALU

enALU

ALU
control

2

RegWrt

enReg

addr

data

rs
rt
rd

32(PC)
31(Link)

RegSel

32 GPRs
+ PC ...

32-bit Reg

3

rs
rt
rd

ExtSel

IR

Opcode

ldIR

Imm
Ext

enImm

2

ECE 252 / CPS 220 12

RISC Hard-wired MIPS Datapath
Figure A.17, Page A-29

IF/ID ID/EX EX/MEM MEM/WB

ECE 252 / CPS 220 13

Visualizing the Pipeline
Figure A.2, Page A-8

ECE 252 / CPS 220 14

Hazards and Limits to Pipelining

Structural Hazards
- Hardware cannot support this combination of instructions.

- Solution: stall pipeline (interlocks)

Data Hazards
- Instruction depends on result of prior instruction still in pipeline

- Solution: forward data, stall pipeline

Control Hazards
- Instruction fetch depends on decision about control flow

- Example: compute branches early in pipeline, predict branches

ECE 252 / CPS 220 15

Tomasulo & Out-of-order

Out-of-order Execution
- Dynamically schedule instructions

- Execute instructions when dependences resolved

Tomasulo’s Algorithm
- Queue instructions until operands ready (reservation stations, ROB)

- Rename to eliminate write hazards (rename table, physical registers)

Precise Interrupts/Exceptions
- Instructions execute/complete out-of-order

- Instructions commit in-order via reorder buffer

- Check for exceptions when committing instruction

ECE 252 / CPS 220 16

Memory

DRAM – access dense array of slow memory with a command protocol

SRAM – access smaller array of fast memory on processor die

Virtual Memory – translate applications’ virtual addresses into physical addresses,

providing better memory management and protection

Small,

Fast

Memory

(RF, SRAM)

CPU
Big, Slow Memory

(DRAM)

A B

holds frequently used data

ECE 252 / CPS 220 17

DRAM

-- Chip organized into 4-8 logical banks, which can be accessed in parallel

-- Access DRAM with activate , read/write, precharge commands

R
o
w

 A
d
d
re

s
s

D
e
c
o
d
e
r

Col.
1

Col.
2M

Row 1

Row 2N

Column Decoder &
Sense Amplifiers

M

N

N+M

bit lines
word lines

Memory cell
(one bit)

D Data

Bank 1

ECE 252 / CPS 220 18

Caches

Caches exploit predictable patterns

Temporal Locality
Caches remember the contents of recently accessed locations

Spatial Locality
Caches fetch blocks of data nearby recently accessed locations

ECE 252 / CPS 220 19

Placement Policy

0 1 2 3 4 5 6 7 0 1 2 3 Set Number

Cache

 Fully (2-way) Set Direct
Associative Associative Mapped
anywhere anywhere in only into
 set 0 block 4
 (12 mod 4) (12 mod 8)

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Line Number

Line 12
can be placed

ECE 252 / CPS 220 20

Direct-Mapped Cache

 Tag Data Line V

 =

Line
Offset

 Tag Index

 t
 k b

 t

HIT Data Word or Byte

 2k

lines

ECE 252 / CPS 220 21

Average Memory Access Time

AMAT = [Hit Time] + [Miss Prob.] x [Miss Penalty]
- Miss Penalty equals AMAT of next cache/memory/storage level.

- AMAT is recursively defined

To improve performance
- Reduce the hit time (e.g., smaller cache)

- Reduce the miss rate (e.g., larger cache)

- Reduce the miss penalty (e.g., optimize the next level)

Simple design strategy
- Observe that hit time increases with cache size

- Design the largest possible cache with a hit time of 1-2 cycles.

- For example, design 8-32KB of cache in modern technology

- Design trade-offs are more complex with superscalar architectures and

multi-ported memories

ECE 252 / CPS 220 22

Caches and Code

Restructuring code affects data access sequences
- Group data accesses together to improve spatial locality

- Re-order data accesses to improve temporal locality

Prevent data from entering the cache
- Useful for variables that are only accessed once

- Requires SW to communicate hints to HW.

- Example: “no-allocate” instruction hints

Kill data that will never be used again
- Streaming data provides spatial locality but not temporal locality

- If particular lines contain dead data, use them in replacement policy.

- Toward software-managed caches

ECE 252 / CPS 220 23

Caches and Code

What type of locality does this improve?

for(i=0; i < N; i++)

 a[i] = b[i] * c[i];

for(i=0; i < N; i++)

 d[i] = a[i] * c[i];

 for(i=0; i < N; i++)

{

 a[i] = b[i] * c[i];

 d[i] = a[i] * c[i];

 }

ECE 252 / CPS 220 24

Virtual Memory

PC
Inst.

TLB

Inst.

Cache D Decode E M
Data

Cache W +

Page Fault?
Protection violation?

Page Fault?

Protection violation?

Data

TLB

Main Memory (DRAM)

Memory Controller
Physical
Address

Physical
Address

Physical Address

Physical
Address

Page-Table Base
Register

Virtual
Address Physical

Address

Virtual
Address

Hardware Page

Table Walker

Miss? Miss?

ECE 252 / CPS 220 25

Parallelism

Instruction-level Parallelism (ILP)
 - multiple instructions in-flight

 - hardware-scheduled: (1) pipelining, (2) out-of-order execution

 - software-scheduled: (3) VLIW

Data-level Parallelism (DLP)
 - multiple, identical operations on data arrrays/streams

 - (1) vector processors, (2) GPUs

 - (3) single-instruction, multiple-data (SIMD) extensions

Thread-level Parallelism (TLP)
 - multiple threads of control

 - if a thread stalls, issue instructions from other threads

 - (1) multi-threading, (2) multiprocessors

ECE 252 / CPS 220 26

VLIW and ILP (SW-managed)

- Multiple operations packed into one instruction format

- Instruction format is fixed, each slot supports particular instruction type

- Constant operation latencies are specified (e.g., 1 cycle integer op)

- Software schedules operations into instruction format, guaranteeing

(1)Parallelism within an instruction – no RAW checks between ops

(2)No data use before ready – no data interlocks/stalls

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency Two Floating-Point Units,

Four Cycle Latency

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2 Int Op 1

ECE 252 / CPS 220 27

Vectors and DLP

ECE 252 / CPS 220 28

Multithreading and TLP
T

im
e

(p
ro

ce
ss

or
 c

yc
le

)

Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

ECE 252 / CPS 220 29

Multiprocessors

Shared-memory Multiprocessors
- Provide a shared-memory abstraction

- Enables familiar and efficient programmer interface

P1 P2 P3 P4

Memory System

ECE 252 / CPS 220 30

Multiprocessors

Shared-memory Multiprocessors
- Provide a shared-memory abstraction

- Enables familiar and efficient programmer interface

Interconnection Network

P1

Cache M1

Interface

P2

Cache M2

Interface

P3

Cache M3

Interface

P4

Cache M4

Interface

ECE 252 / CPS 220 31

Multiprocessors

Shared-memory Multiprocessors
- Provide a shared-memory abstraction

- Enables familiar and efficient programmer interface

Interconnection Network

P1

Cache M1

Interface

P2

Cache M2

Interface

P3

Cache M3

Interface

P4

Cache M4

Interface

ECE 252 / CPS 220 32

Challenges in Shared Memory

Cache Coherence
- “Common Sense”

- P1-Read[X]  P1-Write[X]  P1-Read[X] Read returns X

- P1-Write[X]  P2-Read[X] Read returns value written by P1

- P1-Write[X]  P2-Write[X] Writes serialized

 All P’s see writes in same order

Synchronization
- Atomic read/write operations

Memory Consistency
- What behavior should programmers expect from shared memory?

- Provide a formal definition of memory behavior to programmer

- Example: When will a written value be seen?

- Example: P1-Write[X] <<10ps>> P2-Read[X]. What happens?

ECE 252 / CPS 220 33

Coherence Protocols

Implement protocol for every cache line.

Compare, contrast snoopy and directory protocols [[Stanford Dash]]

ECE 252 / CPS 220 34

Synchronization and Atomicity

Solution: Test-and-set instruction
- Add single instruction for load-test-store (t&s R1, lock)

- Test-and-set atomically executes

ld R1, lock; # load previous lock value

st 1, lock; # store 1 to set/acquire

- If lock initially free (0), t&s acquires lock (sets to 1)

- If lock initially busy (1), t&s does not change it

- Instruction is un-interruptible/atomic by definition

Inst-0 t&s R1, lock # atomically load, check, and set lock=1

Inst-1 bnez R1 # if previous value of R1 not 0,

…. acquire unsuccessful

Inst-n stw R1, 0 # atomically release lock

ECE 252 / CPS 220 35

Sequential Consistency (SC)

Definition of Sequential Consistency
Formal definition of programmers’ expected view of memory

(1) Each processor P sees its own loads/stores in program order

(2) Each processor P sees !P loads/stores in program order

(3) All processors see same global load/store ordering.

 P and !P loads/stores may be interleaved into some order.

 But all processors see the same interleaving/ordering.

Definition of Multiprocessor Ordering [Lamport]
Multi-processor ordering corresponds to some sequential interleaving of uni-

processor orderings. Multiprocessor ordering should be indistinguishable from

multi-programmed uni-processor

ECE 252 / CPS 220 36

For More

ECE 259 (Spring 2012)
• Advanced Computer Architecture II

• Parallel computer architecture design and evaluation

• Parallel programming, coherence, synchronization, consistency

ECE 299-01 (Spring 2012)
• Energy Efficient Computer Systems

• Technology, architecture, application strategies for energy efficiency

• Datacenter computing

ECE 254 (tbd)
• Fault-Tolerant and Testable Computer Systems

• Fault models, redundancy, recovery, testing

Computer architecture is HW/SW interface.

Consider classes on both sides of this interface.

ECE 252 / CPS 220 37

Looking Forward

Energy-efficiency
• Technology limitations motivate new architectures for efficiency

• Ex: specialization, heterogeneity, management

Technology
• Emerging technologies motivate new architectures for capability

• Ex: memory (phase change), networks (optical),

Reliability and Security
• Variations in fabrication, design process motivate new safeguards

• Ex: tunable structures, trusted bases

Multiprocessors
• Abundant transistors, performance goals motivate parallel computing

• Ex: parallel programming, coherence/consistency, management

