ECE 252 / CPS 220
Advanced Computer Architecture |

Lecture 19
Summary

Benjamin Lee
Electrical and Computer Engineering
Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall1l1.html

Yo SN
b 39S

ECE252 Administrivia

1 December 2011

Project Status

Please submit project reports to Blackboard by midnight

Final Exam

Wednesday, Dec 14, 2-5pm
Closed book, closed notes exam
Cumulative, with emphasis on latter half.

6-7 Questions
1/3 on earlier material, 2/3 on later material

1/3 extended design questions
2/3 short answer

® ECE 252 / CPS 220

o2

P

up Architecture: Abstractions/Metrics

Computer architecture defines HW/SW interface

Evaluate architectures quantitatively

® ECE 252 / CPS 220 3

Computer Architecture

[Application]

Gap too large to bridge in
one step

[Physics]

Computer architecture is the design of absiraction layers,
which allow efficient implementations of computational
applications on available technologies

® ECE 252 / CPS 220

°4

g Abstraction Layers

o 3
Salitig 2t 1S

Application
Algorithm
4 . 1
Programming Language
Domain of Operating System/Virtual Machines s
early Instruction Set Architecture (ISA) Domain of
computer recent
architecture Microarchitecture computer
(*50s-'80s) : architecture
Gates/Register-Transfer Level (RTL) } (since *90s)
v

Devices

Physics

® ECE 252 / CPS 220 5

ECE 252 Execvutive Summary

In-order Datapath Chip Multiprocessors
(built, ECE152) (understand, experiment ECE252)

® ECE 252 / CPS 220 4

Performance Factors

Latency = (Instructions / Program) x (Cycles / Instruction) x (Seconds / Cycle)

Seconds / Cycle

- Technology and architecture
- Transistor scaling
- Processor microarchitecture

Cycles / Instruction (CPl)

- Architecture and systems
- Processor microarchitecture
- System balance (processor, memory, network, storage)

Instructions / Program

- Algorithm and applications
- Compiler transformations, optimizations
- Instruction set architecture

® ECE 252 / CPS 220

e/

Power and Energy

Definitions

- Energy (Joules) = a x C x V2
- Power (Watts) =ax C x V2 x f

Power Factors and Trends

- activity (a): function of application resource usage

- capacitance (C): function of design; scales with area

- voltage (V): constrained by leakage, which increases as V falls
- frequency (f): varies with pipelining and fransistor speeds

- Models in cycle-accurate simulators (e.g., Princeton Wattch)

Dynamic Voltage and Frequency Scaling (DVFS)

- P-states: move between operational modes with different V, f

- Intel TurboBoost: increase V, f for short durations without violating
thermal design point (TDP)

® ECE 252 / CPS 220 e8

Datapath: CISC versus RISC

Complex Instruction Set Computing
- microprogramming
- motivated by technology (slow instruction fetch)

Yo SN
b 39S

Reduced Instruction Set Computing

- hard-wired datapath
- motivated by technology (caches, fast memory)
- complex instructions rarely used

® ECE 252 / CPS 220

o9

CISC Microprograms

instr fetch: MA « PC # fetch current instr

A « PC # next PC calculation
IR «— Memory
PC« A+4

dispatch on Opcode # start microcode

ALU: A « Reg]rs]
B < Reg]rt]
Reglrd] « func(A,B)
do instruction fetch

ALUI: A < Reg]rs]

B <« Imm # sign extension
Reg|rt] « Opcode(A,B)
do instruction fetch

® ECE 252 / CPS 220 ®10

CISC Bus-Based MIPS Datapath

Opcode zero? bu‘:sy
IdIR | IdA dg | —— 32(PC IdMA
OpSel Id d 3d1£Lin1<)
y — II:t
27 rs \
l l \—|—/+ RegSel MA
v 4 —’rd v v 3 |
— It dd
IR L, < A B addr addr
32 GPRs
Ethel In:]m "A‘L v V + PC ... Memory MemWrt
72L> Ext control ALU ' Regirt
32'b|t Reg enReg
I enMem
en mm_>\/ enALU_K7 data data
| Bus

Microinstruction: register to register transfer (17 control signals)
MA « PC means RegSel = PC; enReg=yes; IdMA= yes
B < Reg|rt] means RegSel = rt; enReg=yes; I|dB = yes

® ECE 252 / CPS 220 o1

RISC Hard-wired MIPS Datapath

Figure A.17, Page A-29

Execute/

i : Instruction decode/ dd Memory : Write
indtpiclion fich : register fetch ‘ c;cu:::zn : access i back
M
u
=1 x
Add NPC : Siandil :
4 — Zero? 1:::7 Condi
PC > >(M\
: - u a1
5 : l A . - :
memoy [B Fs TN Vawl| ram
= = (M) output
LB_] LA Eg Data | _f \mp
|-' J ; memory
1\6 Sign. 32 —J
" |extend i :
IF/ID ID/EX EX/MEM MEM/WB

©2007 Elsavier, Inc. Al rights resarved.

® ECE 252 / CPS 220 12

Visualizing the Pipeline

Figure A.2, Page A-8

Time (in clock cycles) -

cct § ©cc2 i ecca i cc4 i ccs i cCe i c©C7? i ccs P cCo

Program execution order (in instructions)

© 2007 Elsavier, Inc. All rights resarnved.

® ECE 252 / CPS 220 13

Hazards and Limits to Pipelining

Yo SN
b 39S

Structural Hazards

- Hardware cannot support this combination of instructions.
- Solution: stall pipeline (inferlocks)

Data Hazards

- Instruction depends on result of prior instruction still in pipeline
- Solution: forward data, stall pipeline

Control Hazards

- Instruction fetch depends on decision about control flow
- Example: compute branches early in pipeline, predict branches

® ECE 252 / CPS 220 e14

Tomasulo & Out-of-order

Out-of-order Execution

- Dynamically schedule instructions
- Execute instructions when dependences resolved

Tomasulo’s Algorithm

- Queue instructions until operands ready (reservation stations, ROB)
- Rename to eliminate write hazards (rename table, physical registers)

Precise Interrupts/Exceptions

- Instructions execute/complete out-of-order
- Instructions commit in-order via reorder buffer
- Check for exceptions when committing instruction

® ECE 252 / CPS 220

@15

\) M e m o ry
A /3
-\ B\
Caliv P3O g

@A) Small,
Fast Big, Slow Memory
(RF, SRAM)

holds frequently used data

DRAM — access dense array of slow memory with a command protocol
SRAM — access smaller array of fast memory on processor die

Virtual Memory — translate applications’ virtual addresses into physical addresses,
providing better memory management and protection

® ECE 252 / CPS 220 el

-- Chip organized into 4-8 logical banks, which can be accessed in parallel
-- Access DRAM with activate , read/write, precharge commands

|
|
|
Bank 1 bit lines]
Col. / Col. word lines
1 M /
0 Row 1
 THRERER
T Ty
B ERERER
R Row 2N
gol koo ao t\
Memory cell
one bit
N+M | M Column Decoder & ()
Sense Amplifiers
Data$ D H

® ECE 252 / CPS 220 e17

Caches

Yo SN
Calig 3

Caches exploit predictable patterns

Temporal Locality
Caches remember the contents of recently accessed locations

Spatial Locality

Caches fetch blocks of data nearby recently accessed locations

® ECE 252 / CPS 220

e18

Placement Policy

. 1111111111222222222233
Line Number ¢1,34567890123456789012345678901
Memory
Set Number 1 2 3 01234567
Fully (2-way) Set Direct
Associative Associative Mapped
: anywhere anywhere in only into
Line 12
set O block 4

can be placed
(12 mod 4) (12 mod 8)

® ECE 252 / CPS 220 19

Tag Index Line
Offset
- j
t /k
V| _Tag Data Line

2k
lines

HIT

® ECE 252 / CPS 220

Data Word or Byte

20

g Average Memory Access Time

AMAT = [HiT Time] + [Miss Prob.] x [Miss Penalty]

- Miss Penalty equals AMAT of next cache/memory/storage level.
- AMAT is recursively defined

To improve performance

- Reduce the hit time (e.g., smaller cache)
- Reduce the miss rate (e.g., larger cache)
- Reduce the miss penalty (e.g., optimize the next level)

S|mple design strategy
Observe that hit time increases with cache size
- Design the largest possible cache with a hit time of 1-2 cycles.
- For example, design 8-32KB of cache in modern technology

- Design trade-offs are more complex with superscalar architectures and
multi-ported memories

® ECE 252 / CPS 220

2]

Caches and Code

Restructuring code affects data access sequences

- Group data accesses together to improve spatial locality
- Re-order data accesses to improve temporal locality

Prevent data from entering the cache

- Useful for variables that are only accessed once
- Requires SW to communicate hints to HW.
- Example: “*no-allocate” instruction hints

Kill data that will never be used again

- Streaming data provides spatial locality but not temporal locality
- If particular lines contain dead data, use them in replacement policy.
- Toward software-managed caches

® ECE 252 / CPS 220 2?2

for (i=0; i < N; i++)
a[i] = b[i] * c[i];

for (i=0; i < N; i++)

d[i] = a[1] * c[1i];

.

for (i=0; i < N; i++)

{

b[i] * c[i];
afi] * c[1];

af[i]
d[i1]

What type of locality does this improvee

® ECE 252 / CPS 220 ®23

ill
A

gp Virtual Memory

Page Fault? Page Faulte
Protection violation? Protection violation?
Virtual Virtual
Address Physical Addres Physical
X Address Address
INst. j INst. Decode Data Data
TLB Cache >+ TLB Cache
Miss?e 1 Misse v |
- Table Walker
: Physical
Physical > <
Adydress > Memory Conftroller < Address

A

Physical Address

A

Main Memory (DRAM)

® ECE 252 / CPS 220 024

Parallelism

Instruction-level Parallelism (ILP)
- multiple instructions in-flight
- hardware-scheduled: (1) pipelining, (2) out-of-order execution
- software-scheduled: (3) VLIW

Data-level Parallelism (DLP)

- multiple, identical operations on data arrrays/streams
- (1) vector processors, (2) GPUs
- (3) single-instruction, multiple-data (SIMD) extensions

Thread-level Parallelism (TLP)

- multiple threads of control
- if a thread stalls, issue instructions from other threads
- (1) multi-threading, (2) multiprocessors

® ECE 252 / CPS 220 25

VLIW and ILP (SW-managed)

IntOp1 |IntOp2 |MemOp 1 Mem Op 2 FP Op 1 FP Op 2

} } } } } '
]]]]] .
Two Integer Units, L L - —
Single Cycle Latency 7]] []
Two Load/Store Units, L -

Three Cycle Latency Two Floating-Point Units,

Four Cycle Latency

- Multiple operations packed into one instruction format

- Instruction format is fixed, each slot supports particular instruction type

- Constant operation latencies are specified (e.g., 1 cycle integer op)

- Software schedules operations into instruction format, guaranteeing
(1) Parallelism within an instruction — no RAW checks between ops
(2) No data use before ready — no data interlocks/stalls

® ECE 252 / CPS 220 026

gp Vectors and DLP

SCALAR VECTOR
(1 operation) (N operations)
1 Ir2
N/
r3
length
add r3, rl, r2 vadd.vv v3, vl, v2

® ECE 252 / CPS 220 27

Simultaneous

Superscalar Fine-Grained Coarse-Grained Multipro'cessing Multithreadin
T N EE EENN EEX
= [] NN [] N W[EE
$ HB 1 X
- HEN 7 NN N
é EEEE NNN NN EEEE
F BN NNN NN LN
- 0 RENNY BENLIE
I [[NN 1IN
l [[CININ
I [[NN []
H= N J:Q* N NE
B Thread 1 Thread 3 Thread 5
N Thread 2 | Thread4 ldle slot

® ECE 252 / CPS 220 28

up Multiprocessors

=

Shared-memory Multiprocessors

- Provide a shared-memory abstraction
- Enables familiar and efficient programmer interface

P, P, P; P,

Memory System

® ECE 252 / CPS 220 29

Shared-memory Multiprocessors

- Provide a shared-memory abstraction
- Enables familiar and efficient programmer interface

| Interface II Interface II Interface II Interface |

I I I I
I Interconnection Network I

® ECE 252 / CPS 220 ©30

Shared-memory Multiprocessors

- Provide a shared-memory abstraction
- Enables familiar and efficient programmer interface

| Interface II Interface II Interface II Interface |

I I I I
I Interconnection Network I

® ECE 252 / CPS 220 ®3]

Challenges in Shared Memory

Cache Coherence
- “Common Sense”
P1-Read[X] > P1-Write[X] 2> P1-Read[X] Read returns X
P1-Write[X] = P2-Read[X] Read returns value written by P1
P1-Write[X] > P2-Write[X] Writes serialized
All P’s see writes in same order

Synchronization
- Atomic read/write operations

Memory Consistency

- What behavior should programmers expect from shared memory<e
- Provide a formal definition of memory behavior to programmer

- Example: When will a written value be seen?

- Example: P1-Write[X] <<10ps>> P2-Read[X]. What happens?e

® ECE 252 / CPS 220 32

Implement protocol for every cache line.
Compare, contrast snoopy and directory protocols [[Stanford Dash]]

CPU read hit

‘ Write miss for block

CPU read miss

g@
=
=
(]
oo
o,
=3
w
w
o
=
o
o
wn

miss on

CPU | Write miss for block . 7 bus

Write
*Three states

—Invalid: don’t have block
-X&" —Exclusive: have block and wrote it

—Shared: have block but only read it
—CPU activity

Put write
miss on bus

<

CPU
Read/
Write Hit

CPU Write Miss
WB, write miss on bus —Bus activity

® ECE 252 / CPS 220 ©33

Synchronization and Atomicity

Yo SN
b 39S

Solution: Test-and-set instruction

- Add single instruction for load-test-store (t&s R1, lock]

- Test-and-set atomically executes
Ild R1, lock; # load previous lock value
st 1, lock; # store 1 to set/acquire

- If lock inifially free (0), t1&s acquires lock (sets to 1)
- If lock inifially busy (1), t&s does not change it
- Instruction is un-interruptible/atomic by definition

INnst-0 t&s R1, lock # atomically load, check, and set lock=1
INst-1 bnez R1 # if previous value of R1 not O,

acquire unsuccessful
INst-n stw RT1,0 # atomically release lock

® ECE 252 / CPS 220 34

Sequential Consistency (SC)

Definition of Sequential Consistency
Formal definition of programmers’ expected view of memory

(1) Each processor P sees its own loads/stores in program order
(2) Each processor P sees IP loads/stores in program order
(3) All processors see same global load/store ordering.

P and IP loads/stores may be interleaved into some order.
But all processors see the same interleaving/ordering.

Definition of Multiprocessor Ordering [Lamport]

Multi-processor ordering corresponds to some sequential interleaving of uni-
processor orderings. Multiprocessor ordering should be indistinguishable from
multi-programmed uni-processor

® ECE 252 / CPS 220 35

For More

ECE 259 (Spring 2012)

« Advanced Computer Architecture |l
« Parallel computer architecture design and evaluation
« Parallel programming, coherence, synchronization, consistency

ECE 299-01 (Spring 2012)

« Energy Efficient Computer Systems
« Technology, architecture, application strategies for energy efficiency
« Datacenter computing

ECE 254 (tbd)

« Fault-Tolerant and Testable Computer Systems
- Fault models, redundancy, recovery, testing

Computer architecture is HW/SW interface.

Consider classes on both sides of this interface.
® ECE 252 / CPS 220

® 36

Looking Forward

Energy-efficiency

« Technology limitations motivate new architectures for efficiency
« Ex:specialization, heterogeneity, management

Technology

« Emerging technologies motivate new architectures for capability
« Ex:memory (phase change), networks (opfical),

Reliability and Security
« Variations in fabrication, design process motivate new safeguards
« Ex:tunable structures, trusted bases

Multiprocessors

« Abundant transistors, performance goals motivate parallel computing
« Ex: parallel programming, coherence/consistency, management

® ECE 252 / CPS 220 37

