
ECE 552 / CPS 550

 Advanced Computer Architecture I

Lecture 2

History, Instruction Set Architectures

Benjamin Lee
Electrical and Computer Engineering

Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall12.html

ECE 552 / CPS 550 2

ECE 552 Administrivia

11 September – Homework #1 Due
 Assignment on web page. Teams of 2-3.

 Submit soft copies to Sakai.

 Use Piazza for questions.

11 September – Class Discussion
 Do not wait until the day before!

1. Hill et al. “Classic machines: Technology, implementation, and

economics”

2. Moore. “Cramming more components onto integrated circuits”

3. Radin. “The 801 minicomputer”

4. Patterson et al. “The case for the reduced instruction set computer”

5. Colwell et al. “Instruction sets and beyond: Computers, complexity,

controversy”

ECE 552 / CPS 550 3

A Bit of History

Historical Narrative
 - Helps understand why ideas arose

 - Helps illustrate the design process

Technology Trends
 - Future technologies may be as constrained as older ones

Learning from History
 - Those who ignore history are doomed to repeat it

- Every mistake made in mainframe design was also made in

minicomputers, then microcomputers, where next?

ECE 552 / CPS 550 4

Charles Babbage

Charles Babbage (1791-1871)
 - Lucasian Professor of Mathematics

 - Cambridge University, 1827-1839

Contributions
 - Difference Engine 1823

 - Analytic Engine 1833

Approach
 - mathematical tables (astronomy), nautical tables (navy)

- any continuous function can be approximated by polynomial

- mechanical gears and simple calculators

ECE 552 / CPS 550 5

Difference Engine

Karl Weierstrass
 - Any continuous function can be approximated by a polynomial

 - Any polynomial can be computed from difference tables

Example: All you need is an adder
 f(n) = n2 + n + 41

 d1(n) = f(n) - f(n-1) = 2n => f(n) = f(n-1) + d1(n)

 d2(n) = d1(n) – d1(n-1) = 2 => d1(n) = d1(n-1) + d2(n)

n

d2(n)

d1(n)

f(n)

0

41

1

2

2

2

3

2

4

2

4 6 8

43 47 53 61

ECE 552 / CPS 550 7

Harvard Mark I

History
 - Howard Aiken – Professor of Physics, Harvard University

 - Built in 1944 in IBM Endicott Laboratories

Technology
 - Mechanical with some electro-magnetically controlled relays, gears

- 750,000 components weigh 5 tons

- Synchronizing clock beats every 0.015 seconds (66Hz)

Performance
 - 0.3 seconds for addition

- 6 seconds for multiplication

- 1 minute for a sine calculation

- Broke down once a week

ECE 552 / CPS 550 8

ENIAC

History
 - Electronic Numerical Integrator and Computer (ENIAC), 1943-45

 - Eckert and Mauchly, University of Pennsylvania

Technology
 - First electronic, operational, general-purpose analytic calculator

- 30 tons, 72 square meters, 200KW

Performance
 - Reads 120 cards per minute

- 200 microsecond add, 6 millisecond division

- 1000x faster than Mark I

- Not very reliable!

Application
 - World War II ballistic calculations

ECE 552 / CPS 550 9

EDVAC

History
 - Eckert, Mauchly, von Neumann, et al., 1944

 - ENIAC instructions execute independently of calculated results

 - Human intervention required to change instruction flow

 - EDVAC addresses this problem

Technology
 - First stored program computer

- Program manipulated as data

Instruction Sequencing
 - Manual control: calculators

- External automatic control: Harvard Mark I (paper tape)

- Internal automatic control: EDVAC (read-write memory)

- Stored program computer: same storage for data and instructions

ECE 552 / CPS 550 10

Technology and Reliability

Early Technology
 - ENIAC: 18,000 vacuum tubes, 20 10-digit numbers

 - EDVAC: 4,000 vacuum tubes, 2,000 word storage

BINAC
 - Two processors that checked each other for reliability

- Did not work because processors never agreed

Reliability Challenges
- Vacuum tubes, Williams tubes

- Charge storage on tube surface

Technology Solution
 - Magnetic-core memory, 1954

 - J. Forrester, MIT

 - MIT Whirlwind, MTBF 20min, considered reliable

ECE 552 / CPS 550 11

Computing in the 1950s

Hardware was expensive

Storage and Memory Challenges
 - Stores were small (1000 words), no resident system software

 - Memory access time was 10-50x slower than processor cycle

 - Instruction execution time dominated by memory access time

Computation Challenges
 - Emphasize design of complex control circuits to execute an instruction

 - Neglect time required to decode instruction

 - Programmer’s view of machine inseparable from HW implementation

ECE 552 / CPS 550 12

Early Instruction Sets

Single Accumulator
 - Carry-over from calculators, typically less than 2-dozen instructions

 - Single operand (AC)

LOAD x AC  M[x]
STORE x M[x]  (AC)

ADD x AC  (AC) + M[x]
SUB x

SHIFT LEFT AC  2  (AC)
SHIFT RIGHT

JUMP x PC  x
JGE x if (AC)  0 then PC  x

LOAD ADR x AC  Extract address field (M[x])
STORE ADR x

ECE 552 / CPS 550 13

Single Accumulator Machine

LOOP LOAD N # AC  M[N]

JGE DONE # if(AC>0), PC DONE

ADD ONE # AC  AC + 1

STORE N # M[N]  AC

F1 LOAD A # AC  M[A]

F2 ADD B # AC  (AC) + M[B]

F3 STORE C # M[C]  (AC)

JUMP LOOP

DONE HLT

Ci  Ai + Bi, 1  i  n

Notice M[N] is a counter, not an index.

How to modify the addresses A, B and C ?

ECE 552 / CPS 550 14

Self-Modifying Code

LOOP LOAD N # AC  M[N]
JGE DONE # if (AC >= 0), PC  DONE

ADD ONE # AC  AC + M[ONE]
STORE N # M[N]  AC

F1 LOAD A # AC  M[A]
F2 ADD B # AC  AC + M[B]
F3 STORE C # M[C]  (AC)

LOAD ADR F1 # AC  address field (M[F1])

ADD ONE # AC  AC + M[ONE]
STORE ADR F1 # changes address of A
LOAD ADR F2
ADD ONE
STORE ADR F2 # changes address of B
LOAD ADR F3

ADD ONE
STORE ADR F3 # changes address of C
JUMP LOOP

DONE HLT

Ci  Ai + Bi, 1  i  n

Each iteration requires:

 total book-keeping

Inst fetch 17 14

Stores 5 4

ECE 552 / CPS 550 15

Index Registers

Specialized registers to simplify address calculations
 - T. Kilburn, Manchester University, 1950s

 - Instead of single AC register, use AC and IX registers

Modify Existing Instructions
 - Load x, IX AC  M[x + (IX)]

 - Add x, IX AC  (AC) + M[x + (IX)]

Add New Instructions
 - Jzi x, IX if (IX)=0, then PC x, else (IX)(IX)+1

 - Loadi x, IX IX  M[x] (truncated to fit IX)

Index registers have accumulator-like characteristics

ECE 552 / CPS 550 16

Using Index Registers

 LOADi -n, IX # load n into IX

LOOP JZi DONE, IX # if(IX=0), DONE

LOAD LASTA, IX # AC M[LASTA + (IX)]

ADD LASTB, IX # note: LASTA is address

STORE LASTC, IX # of last element in A

JUMP LOOP

DONE HALT

Ci  Ai + Bi, 1  i  n

- Longer instructions (1-2 bits), index registers with ALU circuitry

- Does not require self-modifying code, modify IX instead

- Improved program efficiency (operations per iteration)

 total book-keeping

 Inst fetch 5 2

 Stores 1 0

Option 1: Increment index register by k
AC  (IX) new instruction

AC  (AC) + k

IX  (AC) new instruction

Also, the AC must be saved and restored

Option 2: Manipulate index register directly
INCi k, IX IX  (IX) + k

STOREi x, IX M[x]  (IX) (extended to fit a word)

IX begins to resemble AC
- Several index registers, accumulators

- Motivates general-purpose registers (e.g., MIPS ISA R0-R31)

ECE 552 / CPS 550 17

Operations on Index Registers

ECE 552 / CPS 550 18

Evolution of Addressing Modes

1. Single accumulator, absolute address
 Load x AC  M[x]

2. Single accumulator, index registers
 Load x, IX AC  M[x + (IX)]

3. Single accumulator, indirection
 Load (x) AC  M[M[x]]

4. Multiple accumulators, index registers, indirection
 Load Ri, IX, (x) Ri  M[M[x] + (IX)]

5. Indirection through registers
 Load Ri, (Rj) Ri  M[M[(Rj)]]

6. The Works
 Load Ri, Rj, (Rk) Rj = index, Rk = base address

 Ri  M[Rj + (Rk)]

ECE 552 / CPS 550 19

Instruction Formats

Zero-address Formats
 - Instructions have zero operands

 - Operands on a stack

 add M[sp]  M[sp] + M[sp-1]

 load M[sp]  M[M[sp]]

 - Stack can be registers or memory

 - Top of stack usually cached in registers

One-address Formats
 - Instructions have one operand

 - Accumulator is always other implicit operand

C
B
A

SP

Register

ECE 552 / CPS 550 20

Instruction Formats (cont.)

Two-address Formats
 - Destination is same as one of the operand sources

 Ri  (Ri) + (Rj) # (Reg x Reg) to Reg

 Ri  (Ri) + M[x] # (Reg x Mem) to Reg

 - x can be specified directly or via register

 - x address calculation could include indexing, indirection, etc.

Three-address Formats
 - One destination and up to two operand sources

 Ri  (Rj) + (Rk) # (Reg x Reg) to Reg

 Ri  (Rj) + M[x] # (Reg x Reg) to Reg

ECE 552 / CPS 550 21

Data Formats

Data Sizes
 - Bytes, Half-words, words, double words

Byte Addressing
 - Location of most-, least- significant bits

Word Alignment
 - Suppose memory is organized into 32-bit words (e.g., 4 bytes).

 - Word aligned addresses begin only at 0, 4, 8, … bytes

Big Endian

Little Endian

MSB

MSB LSB

LSB

 0 1 2 3 4 5 6 7

ECE 552 / CPS 550 22

Software Developments

Numerical Libraries (up to 1955)
 - floating-point operations

 - transcendental functions

 - matrix multiplication, equation solvers, etc.

High-level Languages(1955-1960)
 - Fortran, 1956

 - assemblers, loaders, linkers, compilers

Operating Systems (1955-1960)
 - accounting programs to track usage and charges

ECE 552 / CPS 550 23

Compatibility

Early 1960s, IBM had 4 incompatible computers
 - IBM 701, 650, 702, 1401

 - Different instruction set architecture

 - Different I/O system, secondary storage (magnetic taps, drums, disks)

 - Different assemblers, compilers, libraries

 - Different markets (e.g., business, scientific, real-time)

The need for compatibility motivated IBM 360.

ECE 552 / CPS 550 24

IBM 360: Design Principles

Amdahl, Blaauw and Brooks, “Architecture of the IBM System/360” 1964

1. Support growth and successor machines

2. Connect I/O devices with general methods

3. Emphasize total performance
 - Evaluate answers per month rather than bits per microsecond

 - Emphasize programmability

4. Eliminate manual intervention
 - Machine must be capable of supervising itself

5. Reduce down time
 - Build hardware fault checking and fault location support

6. Facilitate assembly
 - Redundant I/O devices, memories for fault tolerance

7. Support flexibility
 - Some problems required floating-point words > 36bits

ECE 552 / CPS 550 25

IBM 360: General Purpose Registers

Processor State
 - 16 general-purpose, 32-bit registers

 - may be used as index and base register

 - register 0 has special properties

 - 4 floating-point, 64-bit registers

- a program status word (PSW) with program counter (PC), condition

codes, control flags

Data Formats
 - 8-bit bytes: the IBM 360 is why bytes are 8-bits long today!

 - 16-bit half-words

 - 32-bit words

 - 64-bit double-words

ECE 552 / CPS 550 26

IBM 360: Initial Implementation

 Model 30 Model 70

Storage 8K - 64 KB 256K - 512 KB

 Datapath 8-bit 64-bit

 Circuit Delay 30 nsec/level 5 nsec/level

 Local Store Main Store Transistor Registers

 Control Store 1 microsecond read Conventional circuits

IBM 360 instruction set architecture (ISA) completely
hid underlying technological differences between
models

Milestone: The first true ISA designed as portable
hardware-software interface
 - With minor modifications, ISA still survives today

IBM, HotChips 2010

5.2 GHz in IBM 45nm CMOS technology

1.4 billion transistors in 512 sq-mm

64-bit virtual addressing

 - original IBM360 was 24-bit

Quad-core design

Out-of-order, 3-way superscalar pipeline

Redundant datapaths

 - every instruction performed in 2 parallel

datapaths and results compared

L1 i-cache (64KB); L1 d-cache (128KB) d-cache

L2 cache (1.5MB), private, per-core

L3 cache (24MB), eDRAM

Scales to 96 cores in one machine

ECE 552 / CPS 550 27

IBM z11: 47 Years Later

ECE 552 / CPS 550 28

Acknowledgements

These slides contain material developed and copyright by

- Arvind (MIT)

- Krste Asanovic (MIT/UCB)

- Joel Emer (Intel/MIT)

- James Hoe (CMU)

- John Kubiatowicz (UCB)

- Alvin Lebeck (Duke)

- David Patterson (UCB)

- Daniel Sorin (Duke)

