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ECE552 Administrivia 

27 September – Homework #2 Due 
 Assignment on web page. Teams of 2-3.  

 Submit soft copies to Sakai. 

 Use Piazza for questions. 

 

2 October – Class Discussion 
 Roughly one reading per class. Do not wait until the day before! 

 

1. Srinivasan et al. “Optimizing pipelines for power and performance” 

2. Mahlke et al. “A comparison of full and partial predicated execution 

support for ILP processors” 

3. Palacharla et al. “Complexity-effective superscalar processors” 

4. Yeh et al. “Two-level adaptive training branch prediction” 
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Pipelining 

Latency = (Instructions / Program) x (Cycles / Instruction) x (Seconds / Cycle) 
 

Performance Enhancement 
 - Increases number of cycles per instruction 

 - Reduces number of seconds per cycle 
 

Instruction-Level Parallelism 
- Begin with multi-cycle design 

- When one instruction advances from stage-1 to stage=2, allow next 

instruction to enter stage-1.  

- Individual instructions require the same number of stages 

- Multiple instructions in-flight, entering and leaving at faster rate 
 

insn0.dec insn0.fetch 

insn1.dec insn1.fetch 

Multi-cycle 

Pipelined 

insn0.exec 

insn1.exec 

insn0.dec insn0.fetch 

insn1.dec insn1.fetch 

insn0.exec 

insn1.exec 
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Ideal Pipelining 

- All objects go through the same stages 

- No resources shared between any two stages 

- Equal propagation delay through all pipeline stages  

- An object entering the pipeline is not affected by objects in other stages 
 

- These conditions generally hold for industrial assembly lines 

- But can an instruction pipeline satisfy the last condition? 

 

Technology Assumptions 
- Small, very fast memory (caches) backed by large, slower memory 

- Multi-ported register file, which is slower than a single-ported one 

- Consider 5-stage pipelined Harvard architecture 

 

 
 

stage 
1 

stage 
2 

stage 
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stage 
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Practical Pipelining 

Pipeline Overheads 
- Each stage requires registers, which hold state/data communicated from one 

stage to next, incurring hardware and delay overheads 

- Each stage requires partitioning logic into “equal” lengths 

- Introduces diminishing marginal returns from deeper pipelines 

 

Pipeline Hazards 
- Instructions do not execute independently 

- Instructions entering the pipeline depend on in-flight instructions or contend 

for shared hardware resources 
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stage 
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stage 
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Pipelining MIPS 

First, build MIPS without pipelining 
 - Single-cycle MIPS datapath 
 

Then, pipeline into multiple stages 
- Multi-cycle MIPS datapath 

- Add pipeline registers to separate logic into stages 

 

- MIPS partitions into 5 stages 

- 1: Instruction Fetch (IF) 

- 2: Instruction Decode (ID) 

- 3: Execute (EX) 

- 4: Memory (MEM ) 

- 5: Write Back (WB) 
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5-Stage Pipelined Datapath (MIPS) 

IF: IR  mem[PC]; PC  PC + 4;  

ID: A  Reg[IRrs]; B  Reg[IRrt]; 

IF/ID ID/EX EX/MEM MEM/WB 
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5-Stage Pipelined Datapath (MIPS) 

EX: Result  A opIRop B;  

MEM: WB  Result;  

WB: Reg[IRrd]  WB 

IF/ID ID/EX EX/MEM MEM/WB 
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Visualizing the Pipeline 
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Hazards and Limits to Pipelining 

Hazards prevent next instruction from executing 

during its designated clock cycle 

 

Structural Hazards 
- Hardware cannot support this combination of instructions.  

- Example: Limited resources required by multiple instructions (e.g. FPU) 

 

Data Hazards 
- Instruction depends on result of prior instruction still in pipeline 

- Example: An integer operation is waiting for value loaded from memory 
 

Control Hazards 
- Instruction fetch depends on decision about control flow 

- Example: Branches and jumps change PC 
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Structural Hazards 

 

A single memory port causes structural hazard during data load, instr fetch 
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Structural Hazards 

Stall the pipeline, creating bubbles, by freezing earlier stages  interlocks 

Use Harvard Architecture (separate instruction, data memories) 
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Data Hazards 

 

Instruction depends on result of prior instruction still in pipeline 
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Data Hazards 

Read After Write (RAW) 

- Caused by a dependence, need for communication 

- Instr-j tries to read operand before Instr-I writes it 

  i: add r1, r2, r3 

  j: sub r4, r1, 43 
 

Write After Read (WAR) 

- Caused by an anti-dependence and the re-use of the name “r1” 

- Instr-j tries to write operand (r1) before Instr-I reads it 

  i: add r4, r1, r3 

  j: add r1, r2, r3 

  k: mul r6, r1, r7 
 

Write After Write (WAW) 

- Caused by an output dependence and the re-use of the name “r1” 

- Instr-j tries to write operand (r1) before Instr-I writes it 

  i: sub r1, r4, r3 

  j: add r1, r2, r3 

  k: mul r6, r1, r7 
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Resolving Data Hazards 

Strategy 1 – Interlocks and Pipeline Stalls 
- Later stages provide dependence information to earlier stages, which can 

stall or kill instructions 

- Works as long as instruction at stage i+1 can complete without any 

interference from instructions in stages 1 through i (otherwise, deadlocks may 

occur) 

FB1 

stage 

1 

stage 

2 

stage 

3 
stage 

4 

FB2 FB3 FB4 
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Interlocks & Pipeline Stalls 

stalled stages 

time 

t0 t1 t2 t3 t4 t5 t6 t7 . . . . 

IF I1 I2 I3 I3 I3 I3 I4 I5  

ID  I1 I2 I2 I2 I2 I3 I4 I5 

EX           I1 nop nop nop I2 I3 I4 I5 

MA         I1 nop nop nop I2 I3 I4 I5 

WB         I1 nop nop nop I2 I3 I4 I5 

 

 time 

 t0 t1 t2 t3 t4 t5 t6 t7 . . . . 
(I1) r1  (r0) + 10 IF1 ID1 EX1 MA1 WB1 

(I2) r4  (r1) + 17  IF2 ID2 ID2 ID2 ID2 EX2 MA2 WB2 

(I3)      IF3 IF3 IF3 IF3 ID3 EX3 MA3 WB3 

(I4)                           IF4 ID4 EX4 MA4 WB4 

(I5)                              IF5 ID5 EX5 MA5 WB5 

Resource 

Usage 
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Interlocks & Pipeline Stalls 

IR IR IR 

31 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 
inst 

Inst 
Memory 

0x4 

Add 

IR 

Imm 

Ext 

ALU 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

wdata 

addr 

wdata 

rdata 
Data  
Memory 

we 

nop 

Example Dependence 
r1  r0 + 10 

r4  r1 + 17 
Stall Condition 



ECE 552 / CPS 550 18 

 

 

Interlock Control Logic 

 

- Compare the source registers of instruction in 

decode stage with the destination registers of 

uncommitted instructions 

 

- Stall if a source register in decode matches some 

destination register? 

- No, not every instruction writes to a register 

- No, not every instruction reads from a register 

 

- Derive stall signal from conditions in the pipeline 
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Interlock Control Logic 

IR IR IR 
31 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 
inst 

Inst 
Memory 

0x4 

Add 

IR 

Imm 

Ext 

ALU 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

wdata 

addr 

wdata 

rdata 
Data  
Memory 

we 

nop 

Compare the source registers of the instruction in the decode stage (rs, rt) with 

the destination register of the uncommitted instructions (ws). 

stall 
Cstall 

ws 

rs 
rt 

? 
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Interlock Control Logic 

Should we always stall if RS/RT matches some WS? No, because not every 

instruction writes/reads a register. Introduce write/read enable signals (we/re) 

Cdest 

IR IR IR 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 
inst 

Inst 
Memory 

0x4 

Add 

IR 

Imm 

Ext 

ALU 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

wdata 

addr 

wdata 

rdata 
Data  
Memory 

we 

31 

nop 

stall 
Cstall 

ws 

rs 
rt 

? 

we 

re1 re2 

Cre 

ws we ws 

Cdest 
Cdest 

we 
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Source and Destination Registers 

instruction    source(s)  destination 

ALU rd  (rs) func (rt)   rs, rt  rd 

ALUi rt  (rs) op imm   rs  rt 

LW rt  M[(rs) + imm]   rs  rt 

SW M [(rs) + imm]  (rt)  rs, rt 

BZ cond (rs) 

 true: PC  (PC) + imm  rs 

 false:  PC  (PC) + 4  rs 

J PC  (PC) + imm 

JAL r31  (PC), PC  (PC) + imm   R31 

JR PC  (rs)    rs 

JALR r31  (PC), PC  (rs)  rs  R31 

R-type:     op  rs       rt      rd              func 

 

I-type:     op  rs       rt       immediate16  
   

J-type:     op           immediate26  
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Interlock Control Logic 

Should we always stall if RS/RT matches some RD? No, because not every 

instruction writes/reads a register. Introduce write/read enable signals (we/re) 

Cdest 

IR IR IR 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 
inst 

Inst 
Memory 

0x4 

Add 

IR 

Imm 

Ext 

ALU 

rd1 

GPRs 

rs1 
rs2 

ws 
wd rd2 

we 

wdata 

addr 

wdata 

rdata 
Data  
Memory 

we 

31 

nop 

stall 
Cstall 

ws 

rs 
rt 

? 

we 

re1 re2 

Cre 

ws we ws 

Cdest 
Cdest 

we 
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Deriving the Stall Signal 

Cdest  ws Case(opcode) 

   ALU:   ws  rd 

   ALUi:   ws  rt 

   JAL, JALR:  ws  R31 

 

  we Case(opcode) 

   ALU, ALUi, LW  we  (ws != 0) 

   JAL, JALR we  1 

   otherwise we  0 

 

Cre  re1 Case(opcode) 

   ALU, ALUi  re1  1 

   LW, SW, BZ re1  1 

   JR, JALR  re1  1 

   J, JAL  re1  0 

 

  re2 Case(opcode) 

   << same as re1 but for register rt>> 
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Deriving the Stall Signal 

Notation: [pipeline-stage][signal] 

E.g., Drs – rs signal from decode stage 

E.g., Ewe – we signal from execute stage 

 

Cstall  stall-1   ( (Drs == Ews) & Ewe | 

    (Drs == Mws) & Mwe | 

    (Drs == Wws) & Wwe 

   ) & Dre1 

 

 

  stall-2   ( (Drt == Ews) & Ewe | 

    (Drt == Mws) & Mwe | 

    (Drt == Wws) & Wwe 

   ) & Dre2 

 

  stall   stall-1 | stall-2 



ECE 552 / CPS 550 25 

 

 

Load/Store Data Hazards 

M[(r1)+7]  (r2) 

r4  M[(r3)+5] 

 

What is the problem here? 

What if (r1)+7 == (r3)+5? 

 

Load/Store hazards may be resolved in the pipeline or may be resolved in 

the memory system.  More later. 
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Resolving Data Hazards 

Strategy 2 – Forwarding (aka Bypasses) 
- Route data as soon as possible to earlier stages in the pipeline 

- Example: forward ALU output to its input 

   t0 t1 t2 t3 t4 t5 t6 t7 . . . . 
(I1) r1  r0 + 10  IF1 ID1 EX1 MA1 WB1 

(I2) r4  r1 + 17   IF2 ID2 ID2 ID2 ID2 EX2 MA2 WB2 

(I3)       IF3 IF3 IF3 IF3 ID3 EX3 MA3  

(I4)                      stalled stages  IF4 ID4 EX4  

(I5)                               IF5 ID5  

 time   t0 t1 t2 t3 t4 t5 t6 t7 . . . . 
(I1) r1  r0 + 10  IF1 ID1 EX1 MA1 WB1 

(I2) r4  r1 + 17   IF2 ID2 EX2 MA2 WB2 

(I3)       IF3 ID3 EX3 MA3 WB3 

(I4)                       IF4 ID4 EX4 MA4 WB4 

(I5)                            IF5 ID5 EX5 MA5 WB5 
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Example Forwarding Path 

ASrc 

IR IR IR 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 

inst 

Inst 

Memory 

0x4 

Add 

IR 

Imm 

Ext 

ALU 

rd1 

GPRs 

rs1 

rs2 

ws 
wd rd2 

we 

wdata 

addr 

wdata 

rdata 
Data  
Memory 

we 

31 

nop 

stall 

D 

E M W 
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Deriving Forwarding Signals 

This forwarding path only applies to the ALU operations… 

  

 Eforward  Case(Eopcode) 

   ALU, ALUi  Eforward  (ws != 0) 

   otherwise Eforward  0 

 

…and all other operations will need to stall as before 

 

 Estall  Case(Eopcode) 

   LW  Estall  (ws != 0) 

   JAL, JALR Estall  1 

   otherwise Estall  0 

 

 Asrc  (Drs == Ews) & Dre1 & Eforward 

 

Remember to update stall signal, removing case covered  

by this forwarding path 
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Multiple Forwarding Paths 
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Multiple Forwarding Paths 

ASrc 

IR IR IR 

PC 
A 

B 

Y 

R 

MD1 MD2 

addr 

inst 

Inst 

Memory 

0x4 

Add 

IR 
ALU 

Imm 

Ext 

rd1 

GPRs 

rs1 

rs2 

ws 
wd rd2 

we 

wdata 

addr 

wdata 

rdata 
Data  
Memory 

we 

31 

nop 

stall 

D 

E M W 

PC for JAL, ... 

BSrc 
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Forwarding Hardware 
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Forwarding Loads/Stores 
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Data Hazard Despite Forwarding 

 

LD cannot forward (backwards in time)  to DSUB. What is the solution? 
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Data Hazards and Scheduling 

Try producing faster code for 

- A = B + C; D = E – F;  

- Assume A, B, C, D, E, and F are in memory 

- Assume pipelined processor 
 

Slow Code 

LW  Rb, b 

LW  Rc, c 

ADD  Ra, Rb, Rc 

SW  a, Ra 

LW  Re e 

LW  Rf, f 

SUB Rd, Re, Rf 

SW  d, RD 

Fast Code 

LW  Rb, b 

LW  Rc, c 

LW  Re, e 

ADD  Ra, Rb, Rc 

LW Rf, f 

SW a, Ra 

SUB  Rd, Re, Rf 

SW  d, RD 
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