
ECE 552 / CPS 550 

 Advanced Computer Architecture I 

 

Lecture 8 

Instruction-Level Parallelism – Part 1 

Benjamin Lee 
Electrical and Computer Engineering 

Duke University 
 

www.duke.edu/~bcl15 
www.duke.edu/~bcl15/class/class_ece252fall12.html 

 



ECE 552 / CPS 550 2 

 

 

ECE552 Administrivia 

27 September – Homework #2 Due 
- Use blackboard forum for questions 

- Attend office hours with questions 

- Email for separate meetings 

 

2 October – Class Discussion 
 Roughly one reading per class. Do not wait until the day before! 

 

1. Srinivasan et al. “Optimizing pipelines for power and performance” 

2. Mahlke et al. “A comparison of full and partial predicated execution 

support for ILP processors” 

3. Palacharla et al. “Complexity-effective superscalar processors” 

4. Yeh et al. “Two-level adaptive training branch prediction” 
 



ECE 552 / CPS 550 3 

 

 

Complex Pipelining 

Pipelining becomes complex when we want high 

performance in the presence of… 
- Long latency or partially pipelined floating-point units 

- Memory systems with variable access time 

- Multiple arithmetic and memory units 

 

MIPS Floating Point 
- Interaction between floating-point (FP), integer datapath defined by ISA 

- Architect separate register files for floating point (FPR) and integer (GPR) 

- Define separate load/store instructions for FPR, GPR 

- Define move instructions between register files 

- Define FP branches in terms of FP-specific condition codes 



ECE 552 / CPS 550 4 

 

 

Floating-Point Unit (FPU) 

FPU requires much more hardware than integer unit 
 

Single-cycle FPU a bad idea 
- Why? 

- It is common to have several, different types of FPUs (Fadd, Fmul, etc.) 

- FPU may be pipelined, partially pipelined, or not pipelined 

 

Floating-point Register File (FPR) 
- To operate several FPUs concurrently, FPR requires several read/write ports 

 



ECE 552 / CPS 550 5 

 

 

Pipelining FPUs 

Functional units have internal pipeline registers 
- Inputs to a functional unit (e.g., register file) can change during a long 

latency operation 

- Operands are latched when an instruction enters the functional unit 

fully 
pipelined 

partially 
pipelined 

1cyc 1cyc 1cyc 

2 cyc 2 cyc 



ECE 552 / CPS 550 6 

 

 

Realistic Memory Systems 

Latency of main memory access usually greater than 

one cycle and often unpredictable 
- Solving this problem is a central issue in computer architecture 

 

Improving memory performance 
- Separate instruction and data memory ports, no self-modifying code 

- Caches -- size L1 cache for single-cycle access 

- Caches -- L1 miss stalls pipeline 

- Memory – interleaving memory allows multiple simultaneous access 

- Memory – bank conflicts stall the pipeline 



ECE 552 / CPS 550 7 

Multiple Functional Units 

IF ID WB 

ALU Mem 

Fadd 

Fmul 

Fdiv 

Issue 

GPR’s 

FPR’s 



ECE 552 / CPS 550 8 

 

 

Complex Pipeline Control 

Implications of multi-cycle instructions 
- FPU or memory unit requires more than one cycle 

- Structural conflict in execution stage, if FPU or memory unit is not pipelined 

 

Different functional unit latencies 
- Structural conflict in writeback stage due to different latencies 

- Out-of-order write conflicts due to variable latencies 

 

How to handle exceptions? 



ECE 552 / CPS 550 9 

 

 

Complex In-Order Pipeline 

Delay writeback so all 

operations have same 

latency to writeback stage.  

Write ports never over-

subscribed – Every cycle has 

one instruction in and one 

instruction out 

How do we prevent increased 

writeback latency from 

slowing down single-cycle 

integer operations?  

Forwarding 

 

PC 
Inst. 

Mem D Decode X1 X2 
Data 
Mem W + GPRs 

X2 W Fadd X3 

X3 

FPRs X1 

X2 Fmul X3 

X2 FDiv X3 

Unpipelined 

divider 

Commit 
Point 



ECE 552 / CPS 550 10 

 

 

Complex In-Order Pipeline 

How do we handle data hazards 

for very long latency 

operations? 

 

Stall pipeline on long latency 

operations (e.g., divides, 

cache misses) 

 

Exceptions handled in program 

order at commit point  

 

PC 
Inst. 

Mem D Decode X1 X2 
Data 
Mem W + GPRs 

X2 W Fadd X3 

X3 

FPRs X1 

X2 Fmul X3 

X2 FDiv X3 

Unpipelined 

divider 

Commit 
Point 



ECE 552 / CPS 550 11 

 

 

Superscalar In-Order Pipeline 

Fetch 2 instructions per cycle. 

Issue both simultaneously if 

instruction mix matches 

functional unit mix. 

 

Increases instruction 

throughput. 

 

How do we further increase 

issue width? (a) duplicate 

functional units, (b) increase 

register file ports, (c) 

increase forwarding paths 

2 
PC 

Inst. 

Mem D 
Dual 

Decode X1 X2 

Data 

Mem W + GPRs 

X2 W Fadd X3 

X3 

FPRs X1 

X2 Fmul X3 

X2 FDiv X3 

Unpipelined 

divider 

Commit 
Point 



ECE 552 / CPS 550 12 

 

 

Dependence Analysis 

Consider executing a sequence of instructions of the 
form: Rk  (Ri) op (Rj) 
 

Data Dependence 
R3  (R1) op (R4)  # RAW hazard (R3) 

R5  (R3) op (R4) 

 

Anti-dependence 
R3  (R1) op (R2)  # WAR hazard (R1) 

R1  (R4) op (R5) 

 

Output-dependence 
R3  (R1) op (R2)  # WAW hazard (R3) 

R3  (R6) op (R7) 

 
 



ECE 552 / CPS 550 13 

 

 

Detecting Data Hazards 

Range and Domain of Instruction (j) 
R(j) = registers (or other storage) modified by instruction j 

D(j) = registers (or other storage) read by instruction j 

 

Suppose instruction k follows instruction j in program 

order. Executing instruction k before the effect of 

instruction j has occurred can cause… 

 
 RAW hazard if  R(j)   D(k)   # j modifies a register read by k 

WAR hazard if  D(j)   R(k)   # j reads a register modified by k 
WAW hazard if  R(j)   R(k) # j, k modify the same register

 



ECE 552 / CPS 550 14 

 

 

Registers vs Memory Dependence 

Data hazards due to register operands can be 

determined at decode stage 

 

Data hazards due to memory operands can be 

determined only after computing effective address in 

execute stage 

 

 store  M[R1 + disp1]  R2 

 load  R3  M[R4 + disp2] 

 

(R1 + disp1) == (R4 + disp2)? 



I1  DIVD  f6,  f6, f4 

 

I2  LD  f2, 45(r3) 

 

I3  MULTD  f0, f2, f4 
 

I4  DIVD  f8, f6, f2 

 

I5 SUBD  f10, f0, f6 

 

I6  ADDD  f6, f8, f2 

ECE 552 / CPS 550 15 

 

 

Data Hazards Example 

RAW Hazards 

WAR Hazards 

WAW Hazards 



ECE 552 / CPS 550 16 

 

 

Instruction Scheduling 

I6 

I2 

I4 

I1 

I5 

I3 

Valid Instruction Orderings 

in-order I1  I2  I3  I4  I5 I6 

 

out-of-order  
 

out-of-order 

I2  I1  I3  I4  I5 I6 

I1  I2 I3  I5  I4 I6 

I1  DIVD  f6,  f6, f4 

 

I2  LD  f2, 45(r3) 

 

I3  MULTD  f0, f2, f4 

 

I4  DIVD  f8, f6, f2 

 

I5 SUBD  f10, f0, f6 

 

I6  ADDD  f6, f8, f2 



ECE 552 / CPS 550 17 

 

 

Out-of-Order Completion 

Let k indicate when instruction k is issued. 

Let k denote when instruction k is completed. 

             Latency 

I1  DIVD  f6,  f6, f4   4 

 

I2 LD  f2, 45(r3)   1 

 

I3 MULTD  f0, f2, f4  3 

 

I4 DIVD  f8, f6, f2  4 

 

I5 SUBD  f10, f0, f6  1 

 

I6 ADDD  f6, f8, f2  1 
I6 

I2 

I4 

I1 

I5 

I3 



ECE 552 / CPS 550 18 

 

 

Out-of-Order Completion 

             Latency 

I1  DIVD  f6,  f6, f4   4 

 

I2 LD  f2, 45(r3)   1 

 

I3 MULTD  f0, f2, f4  3 

 

I4 DIVD  f8, f6, f2  4 

 

I5 SUBD  f10, f0, f6  1 

 

I6 ADDD  f6, f8, f2  1 

in-order comp  1   2 

 

out-of-order comp 1   2 

1   2   3   4        3   5   4   6   5   6 

2   3     1   4   3   5   5   4   6   6 

I6 

I2 

I4 

I1 

I5 

I3 



ECE 552 / CPS 550 19 

 

 

Scoreboard 

Up until now, we assumed user or compiler statically 

examines instructions, detecting hazards and 

scheduling instructions 

 

Scoreboard is a hardware data structure to 

dynamically detect hazards 



ECE 552 / CPS 550 20 

 

 

Cray CDC6600 

Seymour Cray, 1963 
- Fast, pipelined machine with 60-bit words 

- 128 Kword main memory capacity, 32-banks 

 

- Ten functional units (parallel, unpipelined) 

- Floating-point: adder, 2 multipliers, divider 

- Integer: adder, 2 incrementers 

- Dynamic instruction scheduling with scoreboard 

 

- Ten peripheral processors for I/O 

 

-More than 400K transistors, 750 sq-ft, 5 tons, 150kW 

with novel Freon-based cooling 

 

- Very fast clock, 10MHz (FP add in 4 clocks) 

- Fastest machine in world for 5 years  

- Over 100 sold ($7-10M each) 

 



ECE 552 / CPS 550 21 

 

 

IBM Memo on CDC6600 

Thomas Watson Jr., IBM CEO, August 1963 
 

“Last week, Control Data….announced the 6600 system. I understand that in the 

laboratory developing the system there are only 34 people including the janitor.  

Of these, 14 are engineers and 4 are programmers…Contrasting this modest 

effort with our vast development activities, I fail to understand why we have lost 

our industry leadership by letting someone else offer the world’s most powerful 

computer.” 

 

To which Cray replied… 

 
“It seems like Mr. Watson has answered his own question.” 

 

 



ECE 552 / CPS 550 22 

Multiple Functional Units 

IF ID WB 

ALU Mem 

Fadd 

Fmul 

Fdiv 

Issue 

GPR’s 

FPR’s 

Previously, resolved write hazards 

(WAR, WAW) by equalizing 

pipeline depths and 

forwarding. 

 

Is there an alternative? 



ECE 552 / CPS 550 23 

 

 

Conditions for Instruction Issue 

When is it safe to issue an instruction? 
- Suppose a data structure tracks all instructions in all functional units 

 

Before issuing instruction, issue logic must check:  
- Is the required functional unit available? Check for structural hazard. 

- Is the input data available? Check for RAW hazard. 

- Is it safe to write the destination? Check for WAR, WAW hazard 

- Is there a structural hazard at the write back stage? 

 



ECE 552 / CPS 550 24 

 

 

Issue Logic and Data Structure 

In issue stage, instruction j consults the table 
- Functional unit available?  Check the busy column 

- RAW?   Search the Dest column for j’s sources 

- WAR?   Search the Src1/2 columns for j’s destination 

- WAW?   Search the Dest column for j’s destination 

If no hazard, add entry and issue instruction 

Upon instruction write back, remove entry 

  Name Busy  Op Dest Src1 Src2   
Int 
Mem  
Add1 
Add2 
Add3 
Mult1 
Mult2 
Div 



ECE 552 / CPS 550 25 

 

 

Simplifying the Data Structure 

Assume instructions issue in-order 
 

 

 

Assume issue logic does not dispatch instruction if  it 

detects RAW hazard or busy functional unit 
 

 

 

Assume functional unit latches operands when the 

instruction is issued 
 

 



ECE 552 / CPS 550 26 

 

 

Simplifying the Data Structure 

Can the dispatched instruction cause WAR hazard? 
 - No, because instructions issue in order and operands are read at issue 
 

 

No WAR Hazards 
 - No need to track source-1 and source-2 
 

 

Can the dispatched instruction cause WAW hazard? 
 - Yes, because instructions may complete out-of-order 
 

 

Do not issue instruction in case of WAW hazard 
 - In scoreboard, a register name occurs at most once in ‘dest’ column 

 

 



ECE 552 / CPS 550 27 

 

 

Scoreboard 

Busy[FU#]: a bit-vector to indicate functional unit 

availability (FU = Int, Add, Mutl, Div) 
 

 

WP[#regs]:  a bit-vector to record the registers to 

which writes are pending 
 - Bits are set to true by issue logic 

 - Bits are set to false by writeback stage 

- Each functional unit’s pipeline registers must carry ‘dest’ field and a 

flag to indicate if it’s valid: “the (we, ws) pair” 

 

Issue logic checks instruction (opcode, dest, src1, 

src2) against scoreboard (busy, wp) to dispatch 
 - FU available?  Busy[FU#] 

 - RAW?   WP[src1] or WP[src2] 

 - WAR?   Cannot arise 

 - WAW?   WP[dest] 

 



ECE 552 / CPS 550 28 

 

 

I1  DIVD f6,  f6, f4 
I2 LD f2, 45(r3)  
I3 MULTD f0, f2, f4 
I4 DIVD f8, f6, f2 
I5 SUBD f10, f0, f6 
I6 ADDD f6, f8, f2 

Busy-Functional Units Status    Writes Pending (WP) 
Int(1) Add(1)  Mult(3)   Div(4)    WB 

 t0  I1        f6     f6 

 t1  I2   f2         f6   f6, f2 

 t2                  f6      f2    f6, f2  I2 

 t3  I3      f0      f6     f6, f0 

 t4          f0             f6    f6, f0   I1 

 t5  I4             f0 f8      f0, f8 

 t6          f8          f0    f0, f8  I3 

 t7  I5        f10  f8     f8, f10 

 t8        f8 f10    f8, f10  I5 

 t9             f8    f8  I4 

t10 I6        f6         f6 

t11                    f6     f6  I6 

Instruction Issue Logic             
FU available? Busy[FU#] 

RAW? WP[src1] or WP[src2] 
WAR? Cannot arise 
WAW? WP[dest] 



ECE 552 / CPS 550 29 

 

 

Scoreboard 

Detect hazards dynamically 

 

Issue instructions in-order 

Complete instructions out-of-order 
 

Increases instruction-level-parallelism by 
 - More effectively exploiting multiple functional units 

 - Reducing the number of pipeline stalls due to hazards 

 



ECE 552 / CPS 550 30 

 

 

Acknowledgements 

These slides contain material developed and copyright by  

- Arvind (MIT) 

- Krste Asanovic (MIT/UCB) 

- Joel Emer (Intel/MIT) 

- James Hoe (CMU) 

- John Kubiatowicz (UCB) 

- Alvin Lebeck (Duke) 

- David Patterson (UCB) 

- Daniel Sorin (Duke) 

 


