ECE 552 / CPS 550
Advanced Computer Architecture |

Lecture 9
Instruction-Level Parallelism - Part 2

Benjamin Lee
Electrical and Computer Engineering
Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall12.html

ECE552 Administrivia

27 September — Homework #2 Due
- Use blackboard forum for questions
- Attend office hours with questions
- Email for separate meetings

2 October — Class Discussion
Roughly one reading per class. Do not wait unfil the day before!

1. Srinivasan et al. "*Optimizing pipelines for power and performance”

2. Mahlke et al. “A comparison of full and partial predicated execution
support for ILP processors”

3. Palacharla et al. *Complexity-effective superscalar processors”
4. Yeh et al. “Two-level adaptive training branch prediction”

4 October — Midterm Exam

® ECE 552 / CPS 550 2

gp In-Order Issue Pipeline

ALU

Mem

/

® ECE 552 / CPS 550

Fadd

Fmul

Fdiv

\\[\ ‘,

WB

3

Scoreboard

Busy[FU#]: a bit-vector o indicate functional unit
availability where FU = {Int, Add, Mutl, Div}

WP [#regs]. a bit-vector to record the registers to

which writes are pending

- Bits are set to true by issue logic
- Bits are set to false by writeback stage

- Each functional unit’s pipeline registers must carry ‘dest’ field and @
flag to indicate if it's valid: “the (we, ws) pair”

Issue logic checks instruction (opcode, dest, srcl,
src2) against scoreboard (busy, wp) to dispatch

- FU available? Busy[FU#]

- RAW? WP[src1] or WP[src2]
- WAR? Cannot arise

- WAW?e WP[dest]

® ECE 552 / CPS 550 o4

Instruction Operands Latency
1: LD F2, 34(R2)]

2. LD F4, 45(R3) long

3: MULTD F6, F4, F2 3

4: SUBD F8, F2, F2]

5: DIVD F4, F2, F8 4

6: ADDD F10, F6, F4]

In-order: 1 (2 1)

In-order restriction keeps instruction 4 from issuing

® ECE 552 / CPS 550

............ 234435..566

g Out-of-Order Issue

ALU »| Mem \
IF |_]1ID >l wB
Fadd /
Fmul

- Issue stage buffer holds multiple instructions waiting to issue

- Decode stage adds next instruction to buffer if there is space and
next instruction does not cause a WAR or WAW hazard

- Any instruction in buffer whose RAW hazards are satisfied can issue
- When instruction commits, a new instruction can issue

® ECE 552 / CPS 550

gp Limitations of Out-of-Order Issue

Instruction Operands Latency
1: LD F2, 34(R2)] ‘ ‘

2. LD F4, 45(R3) long
3: MULTD F6, F4, F2 3
4: SUBD F8, F2, F2 1
5: DIVD F4, F2, F8 4
6. ADDD F10, Fé, F4 1

In-order: 1(21) 234435..566
Out-of-order: 1(21)44 23....35...5656

Out-of-order execution has no gain.
Why did we not issue instruction 5¢

® ECE 552 / CPS 550

e/

Instructions In-Flight

Q2
b 3

What features of an ISA limit the number of
Instructions in the pipeline? Number of reqgisters

What features of a program limit the number of
Instructions in the pipelinee Conirol transfers

Qut-of-order issue does not address these other
limitations.

® ECE 552 / CPS 550

3

Mitigating Limited Register Names

\\),
B\’ V.
g yas®

Floating point pipelines often cannot be filled with

small number of registers
- IBM 360 had only 4 floating-point registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA compatibilitye

-In 1967, Robert Tomasulo’s solution was dynamic register renaming.

® ECE 552 / CPS 550 09

gp ILP via Renaming

Instruction Operands Latency

1: LD F2, 34(R2)]

2. LD F4, 45(R3) long

3: MULTD F6, F4, F2 3

4: SUBD F8, F2, F2]

5: DIVD F4, F2, F8 4

6: ADDD F10, F6, F4]

In-order: 1(21) 234435..566

Out-of-order:

N

1(21)445...2(3,5)366

Any anti-dependence can be eliminated by

renaming (requires additional storage). Renaming

can be done in hardware!

® ECE 552 / CPS 550

1]

up Register Renaming

ALU »| Mem

/

wB

IF |_]ID

\|

Fadd

Fmul

- Decode stage renames registers and adds instructions to the reorder
buffer (ROB)

- ROB tracks in-flight instructions in program order
- ROB renames registers to eliminate WAR or WAW hazards

- ROB instructions with resolved RAW hazards can issue (source
operands are ready)

- This is called "“out-of-order” or "dataflow’ execution

® ECE 552 / CPS 550 12

i) § 4Ll

up Reorder Buffer (ROB)

Ins# useexec op pl srcl p2 src2

ptr,—
next to
deadllocate

pTr] B —
next

available

Reorder buffer

Instruction slot is candidate for execution when...
- Instruction is valid (“use” bit is set)
- Instruction is not already executing (“exec” bit is clear)

- Operands are available (“p1” and “p2" are set for “src1” and “src2”)
® ECE 552/ CPS 550 ®13

1.

Renaming Registers and the ROB

Insert instruction intfo ROB (after decoding it)
I ROB entry is used, use €« 1

ii. Instruction is not yet executing, exec € 1

iii. Specify operation in ROB enftry

Update renaming table

I |[dentify instruction’s destination reqister (e.g., F1)
ii. Lookup register (e.g., F1) in renaming table

iii. Insert pointer to instruction’s ROB entry

When instfruction executes, exec € 1

When instruction writes-back, replace pointer to
ROB with produced value

® ECE 552 / CPS 550 e14

Example

Renaming table Reorder buffer
o data Ins# use exec op pl srcl P2 src2
F1 1 0 |0 | LD f,
F2 w1l 2 D |o | LD t,
F3 3 1 0 MUL]| 0 {2 1 wil ts
F4 th 4 D J0O SUB |1 vl 1 vl ty
F5 5 |1 o [DIV]1]|vi | o0 w ts
F6 t3
F7
F8 i
| | | |
1: LD F2, 34 (R2) When are names in sources replaced
2: LD F4, 45 (R3) by datae When a functional unit
3: MUTLD Fé, F4, F2 produces dafa
4: SUBD F8, F2, F2
5:-DIVD F4, 2. F8 When can a name be re-used? When

an instruction completes
6: ADDD F10, Fé, F4 sl P

® ECE 552 / CPS 550 e15

1.

Renaming Registers and the ROB

Insert instruction intfo ROB (after decoding it)
I ROB entry is used, use €« 1

ii. Instruction is not yet executing, exec € 1

iii. Specify operation in ROB enftry

Update renaming table

I |[dentify instruction’s destination reqister (e.g., F1)
ii. Lookup register (e.g., F1) in renaming table

iii. Insert pointer to instruction’s ROB entry

When instfruction executes, exec € 1

When instruction writes-back, replace pointer to
ROB with produced value

® ECE 552 / CPS 550 e1é6

Register Renaming

Renaming Table

& Regqister File \ \
Tns# |use [exec| op |pl] srcl [p2] src2 t,
t
Reorder Buffer .
| I

1 v 4 Y 4 y 1 1

Load Store

Unit FU FU Unit

l | | < t, result >

- Decode stage allocates instruction template (i.e., tag t) and stores
tag in register file.

- When instruction completes, tag is de-allocated.
® ECE 552 / CPS 550

gp Allocating/Deallocating Templates

Ins# useexec op pl srcl p2 src2

ptr, —
next to
deallocate

prt; —
next
available

Reorder buffer

- Reorder buffer is managed circularly.

- Field “exec” is set when instruction begins execution.
- Field *use” is cleared when instruction completes

- P1r2 increments when *use” bit is cleared.

® ECE 552 / CPS 550 18

up Reservation Stations

0 §iLl
P

1 BeEIENY [oad instructions Floating-point
2 buffers Register File &

3 (from Renaming Table
g memory)

6

IBM 360/91 ¥ ¥
disfributes insfruction il p data p data ¥ L2 /

templates (ROB) by
functional units. 2 il p data p data
2
Also known as N N
reservation stations. \ Adder / \ Mult /
| | | |

) | <t result > |

1

p data

Common bus ensures that data is made available

store butters immediately to all the instructions waiting for it

(to memory)

® ECE 552 / CPS 550 19

Effectiveness

»' \ /“ -
SIS ,\’;
L ey ol

History
- Renaming/out-of-order execution first infroduction in 360/91 in 1969
- However, implementation did not re-appear until mid-20s
- Whye

Limitations
- Effective on a very small class of problems
- Memory latency was a much bigger problem in the 1960s
- Problem-1: Exceptions were not precise
- Problem-2: Control transfers

® ECE 552 / CPS 550 ®20

Precise Interrupts

Definition
- It must appear as if an interrupt is taken between two instructions
- Consider instructions k, k+1

- Effect of all instructions up to and including k is totally complete
- No effect of any instruction after k has taken place

Interrupt Handler
- Aborts program or restarts at instruction k+1

® ECE 552 / CPS 550 2]

Out-of-Order & Interrupts

Out-of-order Completion

- Precise interrupts are difficult fo implement at high performance

- Want to start execution of later instructions before exception checks are
finished on earlier instructions

I, DIVD f6, f6, f4
L LD f2, 45(r3)

I MULTD f0, f2, f4
I, DIVD f8, f6, f2
I SUBD f10, f0, f6
I, ADDD f6, f8, f2

out-of-ordercomp 1 2 2 3,1 4 3 5 5 4 6 6
restore f2 restore f10

interrupts

® ECE 552 / CPS 550 22

Commit Point

Inst. _\l Data
PC <|> Mem — D Decode El >+ M Mem - H W
ata Addr ;
Kil
Selecy verflow xcept I :
riteback
Handfer |PC Address
PC Exceptions
c & Cause
> l/ > EPC
Kill F Kill D Kill E Asynchronous
Stage Stage Stage Interrupts

-- Hold exception flags in pipeline until commit point

-- Exceptions earlier in program order override those later in program order

-- Inject external interrupts, which over-ride others, at commit point

-- If exception at commit: (1) update Cause and EPC registers, (2) kill all stages,
(3) inject handler PC into fetch stage

® ECE 552 / CPS 550 ®23

i Phases of Instruction Execution

P

i

l-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Result
Buffer

Arch.
State

® ECE 552 / CPS 550

gp Exception Handling (out-of-order)

IN-Order Commit for Precise Exceptions
- Instructions fetched, decoded into reorder buffer (ROB) in-order
- Instructions executed, completed out-of-order
- Instructions committed in-order
- Instruction commit writes to architectural state (e.g., register file, memory)

Need temporary storage for results before commit

In-order Out-of-order In-order

Fetch "™ Decode —> Reorder Buffer 3] Commit

\Execute\

Inject handler PC

® ECE 552 / CPS 550 25

Supporting Precise Exceptions

Inst# use exec op pl srcl P2 src2 pd dest data cause

ot W
next to %WWW
next DI
available DI,
2% %00 %

o)
2
~‘

- Add <pd, dest, data, cause> fields to instruction template
- pd (1 if result ready), dest (target register), data (result computed)
- cause (reason for interrupt/exception)

- Commit instructions to register file and memory in-order
- On exception, clear re-order buffer (reset ptr-1 = ptr-2)
- Store instructions must commit before modifying memory

® ECE 552 / CPS 550 26

fag Register File)
valid bit (now holds only)
commifted state)
Ins# |use [exec| op |pl srcrl P2 src2 pd dest| data t
)
Reorder ,
Buffer :
T
I
Load Store Commit
Unit FU FU FU Unif
1 l <t, result >

Renaming table is a cache, speeds up register name look-up. Table is cleared after
each exception. When else are valid bits cleared?e Control transfers.

® ECE 552 / CPS 550 28

Control Transfer Penalty

Modern processors may have >10 Next fetch
pipeline stages between next started
PC col.culo’rion and branch l-cache
resolution.

Fetch

How much work is lost if pipeline Buffer

does not follow correct

instruction flow?e
Issue

. : Buffer
[Loop Length] x [Pipeline Width]
Func.

Units

= Result
Branch Buffer

executed

® ECE 552 / CPS 550 29

v Bl

gp Branches and Jumps

Each instruction fetch depends on 1-2 pieces of
Information from preceding instruction:

1. Is preceding instruction a branch?
2. It so, what is the target address?

Instruction Taken knowne Target knowne
J after decode affer decode
JR after decode affer fetch
BEQZ/BNEZ after fetch* affer decode

*assuming zero¢ detect when register read

® ECE 552 / CPS 550 ©30

Reducing Control Flow Penalty

u \ /“ o
SIS ,\’;
St yas”

Software Solutions

1. Eliminate branches -- loop unrolling increases run length before branch

2. Reduce resolution fime - instruction scheduling moves instruction that
produces condition earlier

Hardware Solutions

1. Find other work — delay slots and software cooperation

2. Speculate — predict branch result and execute instructions beyond
branch

® ECE 552 / CPS 550 e 3]

Acknowledgements

\!)/
Saing ..y“f

These slides contain material developed and copyright by
- Arvind (MIT)

- Krste Asanovic (MIT/UCB)

- Joel Emer (Intel/MIT)

- James Hoe (CMU)

- John Kubiatowicz (UCB)

- Alvin Lebeck (Duke)

- David Patterson (UCB)

- Daniel Sorin (Duke)

® ECE 552 / CPS 550 32

