ECE 552 / CPS 550
Advanced Computer Architecture |

Lecture 12
Memory - Part 1

Benjamin Lee
Electrical and Computer Engineering
Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall12.html

ECE552 Administrivia

19 October - Homework #3 Due

19 October — Project Proposals Due
One page proposal
1. What question are you askinge
2. How are you going to answer that question?
3. Talk to me if you are looking for project ideas.

23 October — Class Discussion

Roughly one reading per class. Do not wait unfil the day before!

1. Jouppi. “Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers.”

2. Kim et al. "An adaptive, non-uniform cache structure for wire-delay
dominated on-chip caches.”

3. Fromm et al. “The energy efficiency of IRAM architectures”

4. Lee et al. *Phase change memory architecture and the quest for
scalability™

® ECE 552 / CPS 550 o2

i) § iU
A

gp History of Memory

Core Memory

- Williams Tube in Manchester Mark | (1947) unreliable.
- Forrester invented core memory for MIT Whirlwind (1940-50s) in response
- First large-scale, reliable main memory

Magnetic Technology

- Core memory stores bits using magnetic polarity on ferrite cores
- Ferrite cores threaded onto 2D grid of wires

Performance

- Robust, non-volatile storage
- 1 microsecond core access time

& zzzzzszuzz*‘gﬂt :
DEC PDP-8/E Board, —— 7 emndii - Lo A

4K words x 12 bits, (1968) |
® ECE 552/ CPS 550 3

Semiconducior Memory

Semiconductor Memory

- Static RAM (SRAM): cross-coupled inverters latch value
- Dynamic RAM (DRAM): charge stored on a capacitor

Advent of Semiconductor Memory

- Technology became competitive in early 1970s
- Intel founded to exploit market for semiconductor memory

Dynamic Random Access Memory (DRAM)

- Charge on a capacitor maps to logical value
- Intel 1103 was first commercial DRAM
- Semiconductor memory quickly replaced core memory in 1970’s

® ECE 552 / CPS 550 04

1T DRAM Cell access transistor

/ word

it

Storage
capacitor (FET gate,
trench, stack)

poly

word

line
access
transistor

® ECE 552 / CPS 550

TiN top electrode (Vggf) TiN/TazOs/W
[? Capacitor |

e5

g DRAM Chip Architecture

-- Chip organized into 4-8 logical banks, which can be accessed in parallel
-- Each bank implements 2-D array of bits

Bank 1 bit lines]
Col. / Col. word lines
1 M /
0 Row 1
A P Y
T Ty
BIEREREE
R Row 2N
gol koo ao t\
Memory cell
one bit
N+M | M Column Decoder & ()
Sense Amplifiers
Data$ D

® ECE 552 / CPS 550

056

up Packaging & Memory Channel

]
—/ﬂ’ -

Clock and control signals :/7—. DRAM

Address lines multiplexed chip
row/column address ~’]2'

Data bus ,I,
(x4, x8, x16, x32)

DIMM (Dual Inline Memory Module): Multiple chips
sharing the same clock, control, and address signals.

Data pins collectively supply wide data bus. For
example, four x16 chips supply é64b data bus.

® ECE 552 / CPS 550

PERRS Fyd e s

AL EEALAR oy

»
-
-
-
-~
-
-
-
N
-
-
-

-
-
-
-
-
-

-
-
-
-

ST Y
-&“."_'

_

Two stacked
DRAM die

Processor plus
< logic die

—— e
@_9 2

Tl e e o

==

[Apple A4 package cross-section, iFixit 201 O]
® ECE 552 / CPS 550 °8

DRAM Operation

1. Activate (ACT)

- Decode row address (RAS). Enable the addressed row (e.g., 4Kb)
- Bitline and capacitor share charge

- Sense amplifiers detect small change in voltage.

- Latch row contents (a.k.a. row buffer)

2. Read or Write

- Decode column address (CAS). Select subset of row (e.g., 16b)

- If read, send latched bits to chip pins

- If write, modify latched bits and charge capacitor

- Can perform multiple CAS on same row without RAS (i.e., buffer hit)

3. Precharge
- Charge bit lines to buffer to prepare for next row access

® ECE 552 / CPS 550

o9

- DRAM Chip Architecture

- Ac’rlvc’re Latch row in sense amplifiers
-- Read/Write: Access specific columns in the row.
-- Precharge: Prepare for next row

|
|
|
Bank 1 bit lines]
Col. / Col. word lines
1 M /
0 Row 1
 THRERER
T Ty
B ERERER
R Row 2N
gol koo ao t\
Memory cell
one bit
N+M | M Column Decoder & ()
Sense Amplifiers
Data$ D H

® ECE 552 / CPS 550 ®10

DRAM Controller

1. Inferfaces to Processor Datapath

- Processor issues a load/store instruction
- Memory address maps to particular chips, rows, columns

2. Implements Control Protocol
- (1) Activate arow, (2) Read/write the row, (3) Precharge
- Enforces timing parameters between commands
- Latency of each step is approximately 15-20ns
- Various DRAM standards (DDR, RDRAM) have different signals

® ECE 552 / CPS 550

1]

&/
CK# .
. \

200MHz °«
Clock . N4 W

COMMANDS /) Nopﬁ Wﬁ(A

Row
ADDRESS WWW/)(—W///////////////////////////

Colu n

cT W@(Nopﬁ W@(r~.|op6 W% READ? W@(Nop® Wﬁ(PRE’

PrecHar
//"//////////////5///// /////

W norb >W/ nop® W&(ACT >@

'Roﬂ’
///////////// ”"////

A0 ////////////ﬂ(B >W////////////////

BAO, BA1 /////M ///// Bani

W/WWW// /////// //////////////

1
| tR(;D
T

v ><//f///////////////////////// o

CL:3

A T\é// ////////% W////////////////////////////% A),

: Bank x4 W

Bank x %

! tRA37

'“%//é/////////zf////

tRP

tRC |

\

//

case 1: 'AC (MIN) an

tDQSCK (MIN)

DQs, DQs#

TZ (MIN) -

—_— —— -

DQ!

® ECE 552 / CPS 550

(D) —

tLz MN) J

[Micron, 256Mb DDR2 SDRAM datasheet]

tac (i)t tHZ (VIN) J

400Mb/s

Data Rate ®12

Processor-Memory Bottleneck

Memory is usually a performance bottleneck
- Processor limited by memory bandwidth and latency

Latency (time for single transfer)

- Memory access time >> Processor cycle fime
- Example: 60ns latency translates into 60 cycles for 1GHz processor

Bandwidth (number of transfers per unit time)
- Every instruction is fetched from memory
- Suppose M is fraction of loads/stores in a program
- On average, 1+M memory references per instruction
- For CPI =1, system must supply 1+M memory transfers per cycle.

® ECE 552 / CPS 550 13

Performance

o SN
iy

Processor-Memory Latency

100 | Performance Gap:
(growing 50%/yr)

JO | oo AT DRAM
[/%/year
DRAM

Consider processor. Four-way superscalar. 3GHz clock. In 100ns required to
access DRAM once, processor could execute 1,200 instructions

® ECE 552 / CPS 550 e14

stance Increases Latency

CPU
CPU
mall
Smory Big Memory

® ECE 552 / CPS 550 e15

Memory Cell Size

BL" BL

BL" BL

'l\-l--

44 ;:;..'...'.~ WL STRAP 'i.

On-Chip g+ @i vss B T
. " g & ¥ WL ST BL i
SRAM in : WLSRAPEM |
logic chi "% vop : :
Oglc chip (8) () © (E) 5
BL* VSS VDD VSs BL
¥ o] v

R R g

'Ill.l"'l ri E"FJ H_l [.ll
a r_tl'rL_n uﬁ!:_fiui_il.

e e e By e) oty ey it iy %
-

=t I-.'l [e ok by o b wark
= —— -

(A
1 Memory cell in 0.5um processes

a) Gate Array SRAM

b} Embedded SRAM -

¢} Standard SRAM (6T cell with local interconnect) |

d) ASIC DRAM

e) Standard DRAM (stacked cell)

Off-chip DRAM has higher density than on-chip SRAM.

[Foss, “Implementing Application-Specific Memory”, ISSCC 1996]

® ECE 552 / CPS 550

DRAM on
memory chip

g Memory Hierarchy

Big, Slow Memory
(DRAM)

A Small,
Fast
CPU Memory ~—
(RF, SRAM)

holds frequently used data
Capacity Register (RF) << SRAM << DRAM
Latency Register (RF) << SRAM << DRAM
Bandwidth on-chip >> off-chip

Consider a data access.

If data is located in fast memory, latency is low (e.g., SRAM).
If data is not located in fast memory, latency is high (e.g., DRAM).

® ECE 552 / CPS 550

o1/

Memory Hierarchy Management

Small & Fast (Registers)
- Instruction specifies address (e.g., RS5)
- Implemented directly as register file
- Hardware might dynamically manage register usage
- Examples: stack management, register renaming

Large & Slow (SRAM and DRAM)

- Address usually computed from values in registers (e.g., I[d R1, x(R2))
- Implemented directly as hardware-managed cache hierarchy

- Hardware decides what data is kept in faster memory

- Software may provide hints

® ECE 552 / CPS 550 18

Memory Address (one dot per access)

© e eminy te b s p——— S e —— | @ -y

wwn au; EIRR O e ".‘L

i i

i N.r‘.-—‘--&b—-.ﬁ e I s | S v .-

3 - “ s s W@ -—
222 : : :2..-5'-;!“' L: 4 GG e R e o 2 o s

. -
- S S ——— “ . ' . o P — o - #‘
-

20' -~ !hﬂml ﬂcwm»um»m.nun- HO'. Siamwrwed Ba ™ . . f - b —————e e m*

U RC T

R e R I AR 1 me e e e e g
18.J: =
Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM Time

Systems Journal 10(3): 168-192 (1971)
® ECE 552 / CPS 550 19

Predictable Patterns

o SN
g 309

Temporal Locality

If a location is referenced once,
the same location is likely to referenced again in the near future.

Spatial Locality

If a location is referenced once,
nearby locations are likely to be referenced in the near future.

® ECE 552 / CPS 550 ®20

Memory Address (one dot per access)

o e — ..—.-.._.o.———-—..

'-A-l\ - 15 s
. wwn\ ;u; n.-ts ¥ P T T --b,aucl'i

2'&-0&“ u-w. “"’ﬂ‘.".‘

]
PA*—— aw—— iman . . .o , .s oms B S &
i L B et e BB e e J el L I e p— .-
3 -
22+
r T ———— il i : -

20' -~ !.‘.'ml w!-wv!n'»un-»m.nun- l‘.'. Samwr e B

2 O
T L R T L I L S TITE S BRPTTE T L a ¢ .'Dﬂ"-l‘

- trmmnuunmiumumunnmmnul LR LE R TR TER Y IY e | | " .o ® emve

18

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM Time
Systems Journal 10(3): 168-192 (1971)

® ECE 552 / CPS 550 2]

Caches

Yo SN
Calig 3

Caches exploit predictable patterns

Temporal Locality
Caches remember the contents of recently accessed locations

Spatial Locality

Caches fetch blocks of data nearby recently accessed locations

® ECE 552 / CPS 550

2?2

o SN
g 309

J

Caches

Address

Processor

Cache

Address

Main
Memory

Data -

copy of main
memory.-
location 100\

-, Data

copy of ﬁ:i"a.i,zn
memory

location 101

Data] Data
100 Byte| Byte
304 |5
/
Address 6848
Tag 416

—— Line

> Data Block

® ECE 552 / CPS 550

Cache Coniroller

Controller examines address from datapath and
searches cache for matching tags.

Cache Hit — address found in cache
- Return copy of data from cache

Cache Miss — address not found in cache
- Read block of data from main memory.
- Wait for main memory
- Return data to processor and update cache
- What is the update policy?

® ECE 552 / CPS 550

024

Data Placement Policy

Fully Associative

- Update - place data in any cache line (a.k.a. block)
- Access — search entire cache for matching tag

Set Associative

- Update — place data within set of lines determined by address
- Access — identify set from address, search set for matching tag

Direct Mapped

- Update — place data in specific line determined by address
- Access — identify line from address, check for matching tag

® ECE 552 / CPS 550 25

Placement Policy

. 1111111111222222222233
Line Number ¢1,34567890123456789012345678901
Memory
Set Number 1 2 3 01234567
Fully (2-way) Set Direct
Line 12 Associative Associative Mapped
can be placed anywhere anywhere in only into
set O block 4

(12mod4) (12 mod 8)

® ECE 552 / CPS 550 026

Tag Index Line
Offset
- j
t /k
V| _Tag Data Line

2k
lines

HIT

® ECE 552 / CPS 550

Data Word or Byte

27

Tag

HIT

Line

|

® ECE 552 / CPS 550 28

4

Update/Replacement Policy

INn an associative cache, which cache line in a set
should be evicted when the set becomes full?

Random
Least Recently Used (LRU)

- LRU cache state must be updated on every access
- True implementation only feasible for small sets (e.g., 2-way)
- Approximation algorithms exist for larger sets

First-In, First-Out (FIFO)

- Used in highly associative caches

Not Most Recently Used (NMRU)

- Implements FIFO with an exception for most recently used blocks

® ECE 552 / CPS 550

29

g Cache Example

Given memory accesses (read address), complete table for cache.
Cache is two-way set associative with four lines (a.k.a. sefts)
Each entry contains the {tag, index} for thaft line.

7 | HE | NE | 1] | 0
TAG INDEX WORD SELECT BYTE SELECT

Set Setl Set Set3 Cache |
Fead Wayl Wavl Wavl Wayl Wayl Wavyl WayD Wavl Hit?
Address 0 _E [_* A* & 7 E*

(5]

[
(£
Z

® ECE 552 / CPS 550 ©30

Line Size and Spatial Locality

Line is unit of transfer between the cache and memory

Tag WordO Word1 Word?2 Word3 4 word line, b=2
Split CPU -
address Line address offset,
— _/ \ v J
32-b bits o bifs

20 = line size a.k.a block size (in bytes)

Larger line size has distinct hardware advantages
-- less tag overhead
-- exploit fast burst transfers from DRAM
-- exploit fast burst transfers over wide bus

What are the disadvantages of increasing block size?

- fewer lines, more line conflicts
-- can waste bandwidth depending on application’s spatial locality

® ECE 552 / CPS 550 e 3]

Bin # Value Frequency
1 <50 2 NC
2 51-55 2 NC
3 56-60 3 B-
4 61-65 0B
5 66-70 4B
6 71-75 7 B+
7 76-80 7 A-
8 81-85 4 A
9 86-90 6 A
10 91-95 2 A+
11 96-100 0
94 max
73 mean

® ECE 552 / CPS 550

O = N W R U OO 0

10

11

32

Acknowledgements

YN
L

These slides contain material developed and copyright by
- Arvind (MIT)

- Krste Asanovic (MIT/UCB)

- Joel Emer (Intel/MIT)

- James Hoe (CMU)

- John Kubiatowicz (UCB)

- Alvin Lebeck (Duke)

- David Patterson (UCB)

- Daniel Sorin (Duke)

® ECE 552 / CPS 550 ©33

