
ECE 552 / CPS 550

 Advanced Computer Architecture I

Lecture 12

Memory – Part 1

Benjamin Lee
Electrical and Computer Engineering

Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall12.html

ECE 552 / CPS 550 2

ECE552 Administrivia

19 October – Homework #3 Due

19 October – Project Proposals Due
 One page proposal

1. What question are you asking?

2. How are you going to answer that question?

3. Talk to me if you are looking for project ideas.

23 October – Class Discussion
 Roughly one reading per class. Do not wait until the day before!

1. Jouppi. “Improving direct-mapped cache performance by the addition

of a small fully-associative cache and prefetch buffers.”

2. Kim et al. “An adaptive, non-uniform cache structure for wire-delay

dominated on-chip caches.”

3. Fromm et al. “The energy efficiency of IRAM architectures”

4. Lee et al. “Phase change memory architecture and the quest for

scalability”

ECE 552 / CPS 550 3

History of Memory

Core Memory
- Williams Tube in Manchester Mark I (1947) unreliable.

- Forrester invented core memory for MIT Whirlwind (1940-50s) in response

- First large-scale, reliable main memory

Magnetic Technology
- Core memory stores bits using magnetic polarity on ferrite cores

- Ferrite cores threaded onto 2D grid of wires

- Current pulses on X- and Y-axis could read and write cells

Performance
- Robust, non-volatile storage

- 1 microsecond core access time

DEC PDP-8/E Board,
4K words x 12 bits, (1968)

ECE 552 / CPS 550 4

Semiconductor Memory

Semiconductor Memory
- Static RAM (SRAM): cross-coupled inverters latch value

- Dynamic RAM (DRAM): charge stored on a capacitor

Advent of Semiconductor Memory
- Technology became competitive in early 1970s

- Intel founded to exploit market for semiconductor memory

Dynamic Random Access Memory (DRAM)
- Charge on a capacitor maps to logical value

- Intel 1103 was first commercial DRAM

- Semiconductor memory quickly replaced core memory in 1970’s

ECE 552 / CPS 550 5

DRAM – Dennard 1968

TiN top electrode (VREF)

Ta2O5 dielectric

W bottom
electrode

poly
word
line

access
transistor

1T DRAM Cell

word

bit

access transistor

Storage
capacitor (FET gate,
trench, stack)

VREF

ECE 552 / CPS 550 6

DRAM Chip Architecture

-- Chip organized into 4-8 logical banks, which can be accessed in parallel

-- Each bank implements 2-D array of bits

R
o
w

 A
d
d
re

s
s

D
e
c
o
d
e
r

Col.
1

Col.
2M

Row 1

Row 2N

Column Decoder &
Sense Amplifiers

M

N

N+M

bit lines
word lines

Memory cell
(one bit)

D Data

Bank 1

ECE 552 / CPS 550 7

Packaging & Memory Channel

• DIMM (Dual Inline Memory Module): Multiple chips

sharing the same clock, control, and address signals.

• Data pins collectively supply wide data bus. For

example, four x16 chips supply 64b data bus.

Address lines multiplexed

row/column address

Clock and control signals

Data bus

(x4, x8, x16, x32)

DRAM

chip
~12

~7

ECE 552 / CPS 550 8

Packaging & 3D Stacking

[Apple A4 package cross-section, iFixit 2010]

Two stacked

DRAM die

Processor plus

logic die

[Apple A4 package on circuit board]

ECE 552 / CPS 550 9

DRAM Operation

1. Activate (ACT)
 - Decode row address (RAS). Enable the addressed row (e.g., 4Kb)

 - Bitline and capacitor share charge

 - Sense amplifiers detect small change in voltage.

 - Latch row contents (a.k.a. row buffer)

2. Read or Write
 - Decode column address (CAS). Select subset of row (e.g., 16b)

 - If read, send latched bits to chip pins

 - If write, modify latched bits and charge capacitor

 - Can perform multiple CAS on same row without RAS (i.e., buffer hit)

3. Precharge
 - Charge bit lines to buffer to prepare for next row access

ECE 552 / CPS 550 10

DRAM Chip Architecture
-- Activate: Latch row in sense amplifiers

-- Read/Write: Access specific columns in the row.

-- Precharge: Prepare for next row

R
o
w

 A
d
d
re

s
s

D
e
c
o
d
e
r

Col.
1

Col.
2M

Row 1

Row 2N

Column Decoder &
Sense Amplifiers

M

N

N+M

bit lines
word lines

Memory cell
(one bit)

D Data

Bank 1

ECE 552 / CPS 550 11

DRAM Controller

1. Interfaces to Processor Datapath
 - Processor issues a load/store instruction

 - Memory address maps to particular chips, rows, columns

2. Implements Control Protocol
 - (1) Activate a row, (2) Read/write the row, (3) Precharge

 - Enforces timing parameters between commands

 - Latency of each step is approximately 15-20ns

 - Various DRAM standards (DDR, RDRAM) have different signals

ECE 552 / CPS 550 12

Double Data Rate (DDR*) DRAM

[Micron, 256Mb DDR2 SDRAM datasheet]

Row Column Precharge Row’

Data

200MHz

Clock

400Mb/s

Data Rate

ECE 552 / CPS 550 13

Processor-Memory Bottleneck

Memory is usually a performance bottleneck
 - Processor limited by memory bandwidth and latency

Latency (time for single transfer)
 - Memory access time >> Processor cycle time

 - Example: 60ns latency translates into 60 cycles for 1GHz processor

Bandwidth (number of transfers per unit time)
 - Every instruction is fetched from memory

 - Suppose M is fraction of loads/stores in a program

 - On average,1+M memory references per instruction

 - For CPI = 1, system must supply 1+M memory transfers per cycle.

ECE 552 / CPS 550 14

Processor-Memory Latency

Consider processor. Four-way superscalar. 3GHz clock. In 100ns required to

access DRAM once, processor could execute 1,200 instructions

Time

µProc 60%/year

DRAM
7%/year

1

10

100

1000
1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU

1
9
8
2

Processor-Memory

Performance Gap:

(growing 50%/yr)

P
e

rf
o

rm
a

n
c

e

ECE 552 / CPS 550 15

Distance Increases Latency

Small

Memory

CPU

Big Memory

CPU

ECE 552 / CPS 550 16

Memory Cell Size

Off-chip DRAM has higher density than on-chip SRAM.

[Foss, “Implementing Application-Specific Memory”, ISSCC 1996]

DRAM on
memory chip

On-Chip
SRAM in
logic chip

ECE 552 / CPS 550 17

Memory Hierarchy

Capacity Register (RF) << SRAM << DRAM

Latency Register (RF) << SRAM << DRAM

Bandwidth on-chip >> off-chip

Consider a data access.

If data is located in fast memory, latency is low (e.g., SRAM).

If data is not located in fast memory, latency is high (e.g., DRAM).

Small,

Fast

Memory

(RF, SRAM)

CPU
Big, Slow Memory

(DRAM)

A B

holds frequently used data

ECE 552 / CPS 550 18

Memory Hierarchy Management

Small & Fast (Registers)
 - Instruction specifies address (e.g., R5)

 - Implemented directly as register file

 - Hardware might dynamically manage register usage

 - Examples: stack management, register renaming

Large & Slow (SRAM and DRAM)
 - Address usually computed from values in registers (e.g., ld R1, x(R2))

 - Implemented directly as hardware-managed cache hierarchy

 - Hardware decides what data is kept in faster memory

 - Software may provide hints

ECE 552 / CPS 550 19

Real Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM

Systems Journal 10(3): 168-192 (1971)

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

a
c

c
e

ss
)

ECE 552 / CPS 550 20

Predictable Patterns

Temporal Locality
If a location is referenced once,

the same location is likely to referenced again in the near future.

Spatial Locality
If a location is referenced once,

nearby locations are likely to be referenced in the near future.

ECE 552 / CPS 550 21

Real Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM

Systems Journal 10(3): 168-192 (1971)

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

a
c

c
e

ss
)

Temporal

 Locality

Spatial

Locality

ECE 552 / CPS 550 22

Caches

Caches exploit predictable patterns

Temporal Locality
Caches remember the contents of recently accessed locations

Spatial Locality
Caches fetch blocks of data nearby recently accessed locations

ECE 552 / CPS 550 23

Caches

Cache Processor Main
Memory

Address Address

Data Data

 Address
 Tag

Data Block

Data
Byte

Data
Byte

Data
Byte

Line 100

304

6848

copy of main
memory
location 100

copy of main
memory
location 101

 416

ECE 552 / CPS 550 24

Cache Controller

Controller examines address from datapath and

searches cache for matching tags.

Cache Hit – address found in cache
 - Return copy of data from cache

Cache Miss – address not found in cache
 - Read block of data from main memory.

 - Wait for main memory

 - Return data to processor and update cache

 - What is the update policy?

ECE 552 / CPS 550 25

Data Placement Policy

Fully Associative
 - Update – place data in any cache line (a.k.a. block)

 - Access – search entire cache for matching tag

Set Associative
- Update – place data within set of lines determined by address

- Access – identify set from address, search set for matching tag

Direct Mapped
- Update – place data in specific line determined by address

- Access – identify line from address, check for matching tag

ECE 552 / CPS 550 26

Placement Policy

0 1 2 3 4 5 6 7 0 1 2 3 Set Number

Cache

 Fully (2-way) Set Direct
Associative Associative Mapped
anywhere anywhere in only into
 set 0 block 4
 (12 mod 4) (12 mod 8)

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Line Number

Line 12
can be placed

ECE 552 / CPS 550 27

Direct-Mapped Cache

 Tag Data Line V

 =

Line
Offset

 Tag Index

 t
 k b

 t

HIT Data Word or Byte

 2k

lines

ECE 552 / CPS 550 28

Fully Associative Cache

 Tag Data Line V

 =

L
in

e

O
ff
s
e
t

T
a
g

 t

 b

HIT

Data
Word
or Byte

 =

 =

 t

ECE 552 / CPS 550 29

Update/Replacement Policy

In an associative cache, which cache line in a set

should be evicted when the set becomes full?

Random

Least Recently Used (LRU)
 - LRU cache state must be updated on every access

 - True implementation only feasible for small sets (e.g., 2-way)

 - Approximation algorithms exist for larger sets

First-In, First-Out (FIFO)
 - Used in highly associative caches

Not Most Recently Used (NMRU)
 - Implements FIFO with an exception for most recently used blocks

ECE 552 / CPS 550 30

Cache Example

Given memory accesses (read address), complete table for cache.

Cache is two-way set associative with four lines (a.k.a. sets)

Each entry contains the {tag, index} for that line.

ECE 552 / CPS 550 31

Line Size and Spatial Locality

Word3 Word0 Word1 Word2

Larger line size has distinct hardware advantages

 -- less tag overhead

 -- exploit fast burst transfers from DRAM

 -- exploit fast burst transfers over wide bus

What are the disadvantages of increasing block size?
 -- fewer lines, more line conflicts

 -- can waste bandwidth depending on application’s spatial locality

Line address offsetb

2b = line size a.k.a block size (in bytes)

Split CPU
address

b bits 32-b bits

Tag

Line is unit of transfer between the cache and memory

4 word line, b=2

ECE 552 / CPS 550 32

Midterm

ECE 552 / CPS 550 33

Acknowledgements

These slides contain material developed and copyright by

- Arvind (MIT)

- Krste Asanovic (MIT/UCB)

- Joel Emer (Intel/MIT)

- James Hoe (CMU)

- John Kubiatowicz (UCB)

- Alvin Lebeck (Duke)

- David Patterson (UCB)

- Daniel Sorin (Duke)

