ECE 552 / CPS 550
Advanced Computer Architecture |

Lecture 16
Multi-threading

Benjamin Lee
Electrical and Computer Engineering
Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall12.html

ECE552 Administrivia

13 November — Homework #4 Due

Project Status
- Plan on having preliminary data or infrastructure

8 November — Class Discussion

Roughly one reading per class. Do not wait unfil the day before!
1. Mudge, “Power: A first-class architectural design constraint”

2. Lamport, "How to make a multiprocessor computer that correctly
executes multiprocess programs”

3. Lenoski et al. “The Stanford DASH Multiprocessor”

4. Tullsen et al. “Simultaneous mulfithreading: Maximizing on-chip
parallelism™

® ECE 552 / CPS 550

o2

Last Time

Out-of-order Superscalar
 Hardware complexity increases super-linearly with issue width

Very Long Instruction Word (VLIW)
« Compiler explicitly schedules parallel instructions
« Simple hardware, complex compiler
« Later VLIWs added more dynamic interlocks

Compiler Analysis

« Use loop unrolling and software pipelining for loops, frace scheduling for
more irregular code

« Static compiler scheduling is difficult in presence of unpredictable
branches and variable memory latency

® ECE 552 / CPS 550

3

Multi-threading

Instruction-level Parallelism

- Objective: Extract instruction-level parallelism (ILP)
- Difficulty: Limited ILP from sequential thread of control

Multi-threaded Processor

- Processor fetches instructions from multiple threads of control
- Ifinstructions from one thread stalls, issue instructions from other threads

Thread-level Parallelism
- Thread-level parallelism (TLP) provides independent threads
- Multi-programming - run multiple, independent, sequential jobs
- Multi-threading - run single job faster using multiple, parallel threads

® ECE 552 / CPS 550

e 4

100 =
90

80

-1
=

=
=

i

o
=

S

Percent of Total Issue Cycles
2

R

oy

[
=

20

10

\
™)
]
\
]
B
'\\
*]
]
'\
[~
]
N
™)
B '_\.
i
5

=T ¥ e EE L
Applications

® ECE 552 / CPS 550

Lomicaty

m memory conflict

@ long fp

short fp

long integer
E short integer
load delays

I:I control hazards
24 branch misprediction
E deache miss
[III icache miss
EY dub miss

B it miss

. processor busy

ng Pipeline Utilization

In an out-of-order superscalar
processor, many apps cannot
fully use execution unifs

Consider percentage of issue
cycles in which processor is
busy.

Tullsen, Eggers and Levy.
“Simultaneous multi-threading,”
ISCA 1995.

®5

Superscalar (In)Efficiency

Issue width

Instruction
issue 811981 194
~_Completely idle cycle
(vertical waste)
b3: 1831
Time
Partially filled cycle,
— 1ie,IPC<4
(horizontal waste)

® ECE 552 / CPS 550 L)

LW
LW

rl, 0(r2)
5, 12(r1)

i Pipeline Hazards

10 .11 .12 .3 .t4 .t5 .t6 .t7 .18 . 19 .t10.111.t12 113 .t14,

ADDI 15, 15, #12

SW 12(r1), 15

Data Dependencies

- Dependencies exist between instructions
- Example: LW-LW (via 1), LW-ADDI (via r5), ADDI-SW (via r5)

Solutions

- Interlocks stall the pipeline (slow)

- Forwarding paths (requires hardware, limited applicability)

® ECE 552 / CPS 550

FIDI XMW | | | i

. |F|[D|D[D|D[X|MW i | i
. |F|F|F|F|[D|D|D[D[X|MW
. ¢ i ¢ |f|F|F|F|D|D|D|[D

e/

Issue width

< n
« >

Instruction e
issue $edesdes
,___— Second thread interleaved
cycle-by-cycle

e
Time o

Partially filled cycle,

! — i.e, IPC<4

(horizontal waste)

With cycle-by-cycle interleaving, remove vertical waste

® ECE 552 / CPS 550

3

i Multithreading

t'"diu " nw

10 .11 .12 .t3 .14 . t5 . t6 . t7 . 18 . 19

T1: W rl,002) |[E]D[X mei

T2: ADD 17,11, r4 . |F|D[X

T3: XORI 15,14, #12 | | |E|D|X Mm -
T4: SW 0@7), 5 ¢ i i |F|D[X|MW :
T1: LW 1512(c1) : ¢ i i [E|D[X|MW

Interleave instructions from multiple threads in pipeline
- Example: Interleave threads (T1, T2, T3, T4) in 5-stage pipeline

- For a given thread, earlier instruction writes-back (W) before later instruction
reads register file (D).

- Example: [T1: LW r1, 0(r2)] writes back before [T1: LW r5, 12(r1)] decodes

® ECE 552 / CPS 550 09

- Cray (1964) built first multithreaded hardware architecture

- Pipeline with100ns clock period

- 10 “virtual” I/O processors = provides thread-level parallelism

- Each virtual processor executes one instruction every 1000ns (= 1ms)
- Minimize processor state with accumulator-based instruction set

® ECE 552 / CPS 550 ®10

D %

I(,
D
| =

D$

+1F

Vi ;|_| Vi

al

=3 PD=<

2 Thread select |A| "2

Additional State: One copy of architected state per thread (e.g., PC, GPR)

Thread Select: Round-robin logic; Propagate thread ID down pipeline to
access correct state (e.g., GPR1 versus GPR2)

Software (e.g., OS) perceives multiple, slower CPUs

® ECE 552 / CPS 550 o1

Multithreading Costs

User State (per thread)

- Program counters
- Physical register files

System State (per thread)

- Page table base register
- Exception handling registers

Overheads and Contention

- Threads contend for shared caches, TLB
- Alternatively, threads require additional cache, TLB capacity
- Scheduler (OS or HW) manages threads

® ECE 552 / CPS 550

12

Fine-Grain Multithreading

Switch threads at instruction-granularity

Fixed Interleave (CDC 6600 PPUs, 1964)

- PPU - peripheral processing unit
- Given N threads, each thread executes one instruction every N cycles
- Insert pipeline bubble (e.g., NOP) if thread not ready for its slot

Software-conftrolled Interleave (TI ASC PPUs, 1971)

- PPU - peripheral processing unit
- OS explicitly controls thread interleaving
- Example: blue thread scheduled 2x as often as orange, purple thread

Why was thread scheduling infroduced for peripheral
processing units firste

® ECE 552 / CPS 550 13

Coarse-Grain Multithreading

Switch threads on long-latency operation

Tera MTA designed for supercomputing applications

with large data sets and little locality

- Little locality 2 no data cache
- Many parallel threads needed to hide long memory latency
- If one thread accesses memory, schedule another thread in its place

Other applications may be more cache friendly

- Good locality = data cache hits
- Provide small number of threads to hide cache miss penalty
- If one thread misses cache, schedule another thread in its place

® ECE 552 / CPS 550 e14

First commercial hardware-threading for main CPU

- Architected by Burton Smith
- Multithreading previously used to hide long I/O, memory latencies in PPUs

- Up to 8 processors, 10 MHz Clock
- 120 threads per processor
- Precursor to Tera MTA

® ECE 552 / CPS 550 e15

Tera MTA (1990)

- Up to 256 processors
- Up to 128 threads per processor

N I w/
|
J?n.a.-u.: L

- Processors and memories communicate via a 3D torus interconnect
Nodes linked to nearest 6 neighbors

- Main memory is flat and shared
Flat memory - no data cache
Memory supports one memory access per cycle per processor
Why does this make sense for a multi-threaded machine?

® ECE 552 / CPS 550 e1é6

gp MIT Alewife (1990)

Anant Agarwal at MIT

SPARC

- RISC instruction set architecture from
Sun Microsystems

- Alewife modifies SPARC processor

Multithreading

- Up to 4 threads per processor
- Threads switch on cache miss

® ECE 552 / CPS 550

o1/

g Multithreading & “Simple” Cores

IBM PowerPC RS64-IV (2000)

- RISC instruction set architecture from IBM
- Implements in-order, quad-issue, 5-stage pipeline
- Up to 2 threads per processor

Orocle/Sun Niagara Processors (2004-2009)

Targets datacenter web and database servers.
- SPARC instruction set architecture from Sun
- Implements simple, in-order core

- Niagara-1 (2004) - 8 cores, 4 threads/core

- Niagara-2 (2007) — 8 cores, 8 threads/core
- Niagara-3 (2009) — 16 cores, 8 threads/core

® ECE 552 / CPS 550 18

gp Oracle/Sun Niagara-3 (2009)

VR

CORE
CORE 1

e ! =

CORE 4

: !;mmmm ==

CORE 7
CORE £

CORES
QORE 10
CORE 11

O 3 -
b ¥

CORE 12

CORE 13
OORE 14
CORE 15

i b g - - i B St -
& = z - z 3 ey
.- 2 E : > {4 v
: e g == =1 = _— =¥ _ e i
X a e ot " %
s o A - " o —— |

Tt B ! e

f" 1 Loy

g AL by Y .
[r : ‘e 4 . n ’ s | SRl 5

oH 0 ¥ O D6 o umnndnm’anaﬁubrg »e ETH BRSO G o Erener o R e o B

l"’ oy B WIBEETHYEY BHnEhINt S RE SRR DR BN RS

® ECE 552 / CPS 550 19

Why Simple Cores?

Switch threads on cache miss
- If a thread accesses memory, flush pipeline switch to another thread

Simple Core Advantages
- Minimize flush penalty with short pipeline (4 cycles in 5-stage pipeline)
- Reduce energy cost per op (out-of-order execution consumes energy)

Simple Core Trade-off

- Lower single-thread performance
- Higher multi-thread performance and energy efficiency

® ECE 552 / CPS 550 ®20

Superscalar (In)Efficiency

Issue width

Instruction
issue 811981 194
~_Completely idle cycle
(vertical waste)
b3: 1831
Time
Partially filled cycle,
— 1ie,IPC<4
(horizontal waste)

® ECE 552 / CPS 550 2]

Vertical Multithreading

Issue width

< n
« >

Instruction e
issue $3deedes
,___— Second thread interleaved
cycle-by-cycle

i
Time o

Partially filled cycle,

! — i.e,IPC<4

(horizontal waste)

Vertical multithreading reduces vertical waste with cycle-by-cycle interleaving.

However, horizontal waste remains.

® ECE 552 / CPS 550

22

Chip Multiprocessing (CMP)

Issue width

<
<

v

< 1
« >

200004
1l B
& 5 5 .
441 Completely idle cycle
— .
(vertical waste)
44
Sl
Time
44144 Partially filled cycle,
| «— 1i.e,IPC<4
o] (horizontal waste)
2s222d
228022
221222

Chip multiprocessing reduces horizontal waste with simple (harrower) cores.
However, (1) vertical waste remains and (2) ILP is bounded.

® ECE 552 / CPS 550 ®23

Simultaneous Multithreading (SMT)

Issue width

L ad e
L el

*4
*4

Time

i bl
L
b

+4
(11383835
+4lbas

Interleave multi-threaded instructions with no restrictions.
Tullsen, Eggers, Levy. University of Washington, 1995.

® ECE 552 / CPS 550 024

IBM Power4 - IBM Power5

Power4

- Single-threaded processor
- OQut-of-order execution, superscalar (8 execution units)

“i

¥
EHERELN
&) 5 5]]5]

B

B
H > HHIH
HHH

-
EI——|TIEEE
H

® ECE 552 / CPS 550

®25

Branch redirects

&
EI__ITIEEE

HHH

IE

1
i
: DO [H D1 [H D2 (H D3 [Xfer(H GD H-
: Instruction crack and
: group formation]
i
|
: Interrupts and flushes
Lo oo oo oo oo o oo oo o o s omm omm o mm omm o omm mm omm mm omm mm o omm mm o mm mm M mm mm mm mm mm e mm MmO O MmO mm M mm mm mm mm mm mm mm mm mm mm mm mm o mm mm mm o mm
Branch redirects Out-of-order processing
E I Branch
. Instruction fetch | ipeline
i — MP —ISSH RAF H EX (— P WB —Xfer
. Load/store
:____E IF e ke J pipeline
~| MP -ISS || RF |{ EA |—{DC —IFmt —|WB [—{Xfer
i 00 51 H o2 H o2 Hxter lan H- e Ies L
E . D1 D2 [D3 HXfer | GD MP ISSRF [EX Fixed-point Xfer
: G formation and pipeline
: insiruction decode | MP [{1ssH{ AF %ﬂ
i F6 , WB [—{Xfer
: Floating-
E point pipeline

e s e e e e i e e e e e e e S e G N N G N S e S et e

gp IBM Power5 Data Flow

- Program Counter: duplicate and alternate fetch between two threads
- Return Stack: duplicate since different threads call different sub-routines
- Instruction Buffer: queue instructions separately

- Decode: de-queue instructions depending on thread priority

- Dynamic
Branch prediction] instruction

selection
t Shared Shared
Branch| | Return| | Target I execution
history | B| stack | | cache queues e

tables LSUO Data Data
Alternate [II:IID [D:D:D [H]IU EXUO I:III:I] Translation Cache
Instruction | l | | | | | -
- buffer 0 Group formation = e D]:,D:D LU [[:D.]]]
Instruﬁtlon (= i ¢ et e | XL 1 :l Group l::l Slorel
cache : . . . J completion queue
Dispatch FPUO
instruction | I l l I l l | ” D:DID FPU1 H”_UJ

Instruction decode

translation
Thread D:D_—.[D CRL Data Data
priority Shared- Read Write translation | |cache
register shared- shared-
mappers register files register files L2
cache

I Shared by two threads [Thread 0 resources BN Thread 1 resources l

® ECE 552 / CPS 550 027

IBM Power4 - IBM Power5

Support multiple instruction streams

- Increase L1 instruction cache associativity

- Increase instruction TLB associativity

- Mitigate cache contention from instruction streams

- Separate instruction prefetch and buffering per thread
- Allow thread prioritization

Support more instructions in-flight

- Increase the number of physical registers (e.g., 152 to 240)
- Mitigate reqister renaming bottleneck

Support larger cache footprints

- Increase L2 cache size (e.g., 1.44MB to 1.92MB)
- Increase L3 cache size
- Mitigate cache contention from data footprints

Powerd core is 24% larger than Power4 core

® ECE 552 / CPS 550 28

Instruction Scheduling

\\),
B\ L,
LTy ol

ICOUNT: Schedule thread with fewest instructions
in flight

(1) prevents one thread from filling issue queue

(2) prioritizes threads that efficiently move
instructions through datapath

(3) provides an even mix of threads, maximizing
parallelism

® ECE 552 / CPS 550

29

SMT Performance

Intel Pentium4 Extfreme SMT
- Single program
- 1.01x speedup for SPECint and 1.07x speedup for SPECfp

- Multiprogram (pairs of SPEC workloads)
- 0.9-1.6x for various pairs

IBM Power 5

- Single program
- 1.23x speedup for SPECint and 1.16x speedup for SPECfp

- Multiprogram (pairs of SPEC workloads)
- 0.89-1.41x for various pairs

INntuition

- SPECint has complex control flow, idles processor, benefits from SMT
- SPECfp has large data sets, cache conflicts, fewer benefits from SMT

® ECE 552 / CPS 550 ©30

LD |
Caliv

gp SMT Flexibility

For SW regions with high thread
level parallelism (TLP), share
machine width across all threads

Issue width

<
<

»

EedEeE i
ead LS S S

sedee

Time 4

Exd
i3

Rl bl
Bl

EEEEidEEd EEE
tasat s EEL LSS
i i

® ECE 552 / CPS 550

For SW regions with low thread
level parallelism (TLP), reserve
machine width for single thread
instruction level parallelism (ILP)

Issue width

Time

et bl
e bl led

®3]

Types of Multithreading

)
\\l\ (
o\ b5
R ey R

Simultaneous

Superscalar Fine-Grained Coarse-Grained Multipro|cessing Multithreadin
]]] BEENN BEEX
B NN] N
s HHl] N
- HEN T HEN HEN
2 NN N E
S EEEE SSS NS EEEE
. HE NINN NINN N =
s | BEENN BENLE
HEN NN N
l = = CININ
HEN FIEN []
B N J:Q* N NE
B Thread 1 Thread 3 Thread 5
N Thread 2 | Thread 4 ldle slot
® ECE 552 / CPS 550

32

Summary

Out-of-order Superscalar
« Processor pipeline is under-utilized due to data dependencies

Thread-level Parallelism
« Independent threads more fully use processor resources

Multithreading

« Reduce vertical waste by scheduling threads to hide long latency
operations (e.g., cache misses)

« Reduce horizontal waste by scheduling threads to more fully use
superscalar issue width

® ECE 552 / CPS 550 ©33

Acknowledgements

\!)/
Saing ..y“f

These slides contain material developed and copyright by
- Arvind (MIT)

- Krste Asanovic (MIT/UCB)

- Joel Emer (Intel/MIT)

- James Hoe (CMU)

- Arvind Krishnamurthy (U. Washington)

- John Kubiatowicz (UCB)

- Alvin Lebeck (Duke)

- David Patterson (UCB)

- Daniel Sorin (Duke)

® ECE 552 / CPS 550 34

