
ECE 552 / CPS 550

 Advanced Computer Architecture I

Lecture 17

Vectors

Benjamin Lee
Electrical and Computer Engineering

Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall11.html

ECE 552 / CPS 550 2

ECE552 Administrivia

13 November – Homework #4 Due

Project Status
- Plan on having preliminary data or infrastructure

8 November – Class Discussion
 Roughly one reading per class. Do not wait until the day before!

1. Mudge, “Power: A first-class architectural design constraint”

2. Lamport, “How to make a multiprocessor computer that correctly

executes multiprocess programs”

3. Lenoski et al. “The Stanford DASH Multiprocessor”

4. Tullsen et al. “Simultaneous multithreading: Maximizing on-chip

parallelism”

ECE 552 / CPS 550 3

Last Time
T

im
e

(p
ro

ce
ss

or
 c

yc
le

)

Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

ECE 552 / CPS 550 4

Vectors and Data-level Parallelism

ECE 552 / CPS 550 5

Data-level Parallelism

Vectors effective for data-level parallelism (DLP)
-- Vectors are most efficient way to exploit DLP

-- Superscalar (e.g., DLP as instruction-level parallelism) is less efficient

-- Multiprocessor (e.g., DLP as thread-level parallelism) is less efficient

Scientific Computing
-- Weather forecasting, car-crash simulation, biological modeling

-- Vector processors were invented for supercomputing, but fell out of favor

after the advent of multiprocessors

Multimedia Computing
-- Identical ops on streams or arrays of sound samples, pixels, video frames

-- Vector processors were revived for multimedia computing

ECE 552 / CPS 550 6

Vector Processor History

Vectors widely used for supercomputing (1970s-1990s)
-- Cray, CDC, Convex, TI, IBM

Transition away from vectors (1980s-1990s)
-- Fitting a vector processor into a single chip was difficult

-- Building supercomputers from commodity components was easier

Vectors are re-emerging as SIMD
-- SIMD – single instruction multiple data

-- SIMD provides short vectors in all ISAs

-- Provides multimedia acceleration

ECE 552 / CPS 550 7

Parts of a Vector Processor

Scalar processor
-- Scalar register file

-- Example: 32 registers, each with 1 32-bit element

-- Scalar functional units (arithmetic, load/store, etc…)

Vector register file
-- Each register is an array of elements

-- Example: 32 registers, each with 32 64-bit elements

-- MVL – maximum vector length = max # of elements per register

Vector functional units
-- Integer, floating-point, load/store, etc…

-- Some datapaths (e.g., ALUs) shared by vector, scalar units

ECE 552 / CPS 550 8

Parts of a Vector Processor

ECE 552 / CPS 550 9

Vector Supercomputers

Cray-1, 1976

Scalar Unit

 - Load/Store architecture

Vector Extension

 - Vector registers

 - Vector instructions

Implementation

 - Hardwired control (no microcode)

 - Pipelined functional units

 - Interleaved memory system

 - No data caches

 - No virtual memory

ECE 552 / CPS 550 10

Vector Programming Model

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions
ADDV v3, v1, v2

v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLR Vector Length Register

v1
Vector Load and
Store Instructions
LV v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register

ECE 552 / CPS 550 11

Vector ISA Benefits

Compact – single instruction defines N operations
-- also fewer branches

Parallel – N operations are (data) parallel
-- no dependencies between vector elements

-- like VLIW, no complex hardware for dynamic scheduling

-- scalable; additional functional units give additional performance

Expressive – memory ops describe access patterns
-- vector memory ops exhibit continuous or regular access patterns

-- vector memory ops can prefetch and/or effectively use memory banks

-- amortize high latency for 1st element over large sequential pattern

(bursts of data transfer…1st element incurs a long latency….subsequent

elements are pipelined to produce a new element per cycle)

ECE 552 / CPS 550 12

Basic Vector Instructions

Suppose 64-element vectors

Instr Operands Operation Comment

VADD.VV V1, V2, V3 V1 = V2 + V3 vector + vector

VADD.SV V1, R0, V2 V1 = R0 + V2 scalar + vector

VMUL.VV V1, V2, V3 V1 = V2 * V3 vector x vector

VMUL.SV V1, R0, V2 V1 = R0 * V2 scalar x vector

VLD V1, R1 V1 = M[R1,…R1+63] load, stride=1

VLDS V1, R1, R2 V1 = M[R1,…R1+63*R2] load, stride=R2

VLDX V1, R1, V2 V1 = M[R1+V2(i), i=0 to 63] indexed gather

VST V1, R1 M[R1…R1+63] = V1 store, stride=1

VSTS V1, R1, R2 M[R1,…R1+63*R2] = V1 store, stride=R2

VSTX V1, R1, V2 M[R1+V2(i), i=0 to 63] = V1 indexed scatter

ECE 552 / CPS 550 13

Vector Code Example

C code # Scalar Code # Vector Code

for (i=64 ; i>0 ; i--) LI R4, 64 LI VLR, 64

C[i] = A[i] + B[i]; loop: VLD V1, R1

 L.D F0, 0 (R1) VLD V2, R2

 L.D F2, 0 (R2) ADD.VV V3, V1, V2

 ADD.D F4, F2, F0 VST V3, R3

 S.D F4, 0 (R3)

 DADDIU R1, 8

 DADDIU R2, 8

 DADDIU R3, 8

 DSUBIU R4, 1

 BNEZ R4, loop

-- Load immediate (LI) with length of vector (64)

-- Vector length register (VLR)

ECE 552 / CPS 550 14

Vector Length

Vector register holds a max number of elements
-- MVL: Maximum vector length (e.g., 64)

-- But application vector lengths may not match MVL

Vector length register
-- VL: controls length of any vector operation (add, multiply, load, store)

-- Example: vadd.vv with VL10 is equivalent to:

 for(i=0; i<10; i++) {V1[i] = V2[i] + V3[i]}

-- Before sequence of vector instructions, VL set to number <= to MVL

How can we code applications where the vector

length is not known until run-time?

ECE 552 / CPS 550 15

Strip Mining

Strip Mining
-- Suppose application VL > MVL

-- Generate loop that handles MVL elements per iteration

-- Translate each loop iteration into a single vector instruction

Example: AX+Y
-- First loop for (N mod MVL) elements. Remaining loops for MVL elements

VL = (N mod MVL); # set VL to be a smaller vector

for (i=0 ; i<VL ; i++) # 1st-loop translates into a single set

 Y[i] = A*X[i] + Y[i]; # of vector instructions

low = (N mod MVL) # low – strips off beginning elements

VL = MVL # set VL to be max vector length

for (i=low ; i<N ; i++); # 2nd-loop translates into N/MVL sets

 Y[i] = A * X[i] + Y[i]; # of vector instructions

ECE 552 / CPS 550 16

Vector Instruction Execution

Use deep pipeline (fast clock)

to execute operations for

each vector element.

Simplify pipeline control

because elements in vector
are independent  no

hazards.

V1 V2 V3

V3[i]  V1[i] * V2[i]

Six stage multiply pipeline

ECE 552 / CPS 550 17

Opt 1 – Chaining

Consider the following code with vector length of 32
vmul.vv V1, V2, V3

vadd.vv V4, V1, V5 # very long RAW hazard

Chaining
-- V1 is not a single entity, but a vector of individual elements

-- Pipeline forwarding can work for individual elements

Flexible Chaining
-- Chain any vector to any other active vector operation

-- Requires more read/write ports in the vector register file

ECE 552 / CPS 550 18

Opt 2 – Multiple Datapaths
ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

Execution using
one pipelined

datapath

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

Execution using
four pipelined

datapaths

4 adders  4 elements / cycle

N/4 cycles

1 adder  1 element / cycle

N cycles

ECE 552 / CPS 550 19

Opt 2+: Multiple Lanes

-- Vector elements interleaved across lanes

-- Example: V[0, 4, 8, …] on Lane 1, V[1, 5, 9,…] on Lane 2, etc.

-- Compute for multiple elements per cycle

-- Example: Lane 1 computes on V[0] and V[4] in one cycle

-- Modular, scalable design

-- No inter-lane communication needed for most vector instructions

ECE 552 / CPS 550 20

Opt 3 – Conditional Execution

Suppose you want to vectorize this code:
for (i=0 ; i<N ; i++) {

 if(A[i] != B[i]) {A[i] -= B[i]; } }

Solution: vector conditional execution
-- Add vector flag registers, single-bit mask per vector element

-- Use vector-compare to set the vector flag register

-- Use vector flag register to control vector-sub

-- Vector op executed only if corresponding flag element is set

vld V1, Ra

vld V2, Rb

vcmp.neq.vv M0, V1, V2 # vector compare for mask

vsub.vv V3, V2, V1, M0 # conditional vadd

vst V3, Ra

ECE 552 / CPS 550 21

Vector Memory

Multiple, interleaved memory banks (e.g., 16)

Provides memory-level parallelism when filling vector registers

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address
Generator

ECE 552 / CPS 550 22

Supercomputing to Multimedia

Support narrow data types
-- Allow each vector register to store 16-, 32-, or 64-bit elements

-- Use a control register to indicate width of register elements

Support fixed-point arithmetic
-- Minor modification to functional units

Support element permutations for vector reductions
-- for(i=0 ; i<N ; i++) {S += A[i]}

-- Rewrite as:

 for(i=0 ; i<N ; i+=VL) {S[0:VL-1]+=A[i:i+VL-1];} # S[…], A[…] are

 for(i=0 ; i<VL ; i++) {S+=[S[i];} # vectors of VL elements

-- First loop trivially vectorizable

-- Second loop vectorizable by splitting vector register S into two vector

registers. Take a binary-tree approach to reduction

ECE 552 / CPS 550 23

SIMD in Superscalar Processors

SIMD extends conventional ISA
-- SIMD – single instruction, multiple data

-- MMX, SSE, SSE-2, SSE-3, 3D-Now, Altivec, VIS

Objective: Accelerate multimedia processing
-- Define vectors of 16-, 32-bit elements in regular registers

-- A logical vector register may span multiple physical registers

-- Apply SIMD arithmetic on these vectors

Advantages
-- No vector register file, which would require additional area

-- Simple extensions (new opcodes, modified datapath)

ECE 552 / CPS 550 24

SIMD Challenges

SIMD vectors are short with fixed size
-- Cannot capture data parallelism wider than 64 bits

-- Recent shift from 64-bit to 128-bit vectors (SSE, Altivec)

SIMD does not support vector memory accesses
-- Strided or indexed access require equivalent multi-instruction sequences

-- Without vector memory accesses, much lower benefits in performance

and code density

ECE 552 / CPS 550 25

SIMD versus Vectors

-- QCIF and CIF numbers are in clock cycles per frame

-- All other numbers are in clock cycles per pixel

-- MMX results assume no first-level cache misses

-- Courtesy: Christos Kozyrakis, Stanford

ECE 552 / CPS 550 26

Intel Larrabee

Vector Multiprocessor

-- 2-way superscalar, 4-way multi-threaded, in-order cores with vectors

-- Cores communicate on a wide ring bus

-- L2 cache is partitioned among the cores

 -- Provides high aggregate bandwidth

 -- Allows data replication and sharing

ECE 552 / CPS 550 27

Larrabee x86 Core

-- separate scalar, vector units with

separate registers

-- scalar unit: in-order x86 core

-- vector unit: 16 32-bit ops/clock

-- short execution pipelines

-- fast access to L1 cache

-- direct connection to L2 cache subset

-- instructions support prefetch into L1

and L2 caches

ECE 552 / CPS 550 28

Larrabee Vector Unit

Vector Instruction Set

-- 32 vector registers (512 bits each)

-- vector load/store with scatter/gather

-- 8 mask registers for conditional exec.

-- mask registers select lanes for an instruction

-- mask registers allow separate execution
kernels in each lane

Vector Instruction Support

-- Fast read from L1 cache

-- Numeric type conversion and replication in

memory path

ECE 552 / CPS 550 29

Vector Power Efficiency

Power and Parallelism
-- Power(1-lane) = [capacitance] x [voltage]^2 x [frequency]

-- If we double number of lanes, we double peak performance

-- Then, if we halve frequency, we return to original peak performance.

-- But, halving frequency allows us to halve voltage

-- Power (2-lane) = [2 x capacitance] x [voltage/2]^2 x [frequency/2]

-- Power (2-lane) = Power(1-lane)/4 @ same peak performance

Simpler Logic
-- Replicate control logic for all lanes

-- Avoid logic for multiple instruction issue or dynamic out-of-order execution

Clock Gating
-- Turn-off clock when hardware is unused

-- Vector of given length uses specific resources for specific # of cycles

-- Conditional execution (masks) further exposes unused resources

ECE 552 / CPS 550 30

Summary

Vector Processors
-- Express and exploit data-level parallelism (DLP)

SIMD Extensions
-- Extensions for short vectors in superscalar (ILP) processors

-- Provide some advantages of vector processing at less cost

