
ECE 152 / 496
Introduction to Computer Architecture

Intro and Overview
Benjamin C. Lee
Duke University

Slides from Daniel Sorin (Duke)
and are derived from work by

Amir Roth (Penn) and Alvy Lebeck (Duke)

Spring 2013

2
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Instructor

•  Professor: Benjamin C. Lee
•  Office: Hudson Hall 210
•  Email: benjamin.c.lee@duke.edu
 à subject of all emails to me must begin with ECE496

•  Office Hours: TBD
•  If you have class at all of these times, email me to meet

3
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Undergrad Teaching Assistants

•  Undergraduate TAs (UTAs):
•  Oliver Fang
•  James Hong
•  Amay Jhaveri
•  Oliver Fang
•  Zachary Michaelov

•  Will help with
•  Answering email questions about homeworks and project
•  Holding office hours to help with CAD software

•  Will NOT bail you out at 3am when deadline is at 10am

4
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Course Website

•  Course Web Page
http://people.duke.edu/~bcl15/class/
class_ece496spr13.html

•  Lecture slides available on web before or shortly after class
•  Print them out and bring them with you to class
•  Value (just reading slides) << Value (attending class)

•  Missing class = missing important course material

•  Most important info for course is on website
•  Please check it before emailing me or TAs

•  You are required to monitor web page
•  Homework and project assignments will appear on web page
•  I will announce them as well

5
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Sakai and Piazza for ECE496

•  I will communicate with you via email
•  You must check your email

•  Sakai
•  Assignments are posted online, submitted online
•  Grades are managed online

•  Piazza
•  Post all questions to Piazza
•  TA’s and I will answer questions on the forum

6
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Textbook

•  Text: Computer Organization & Design (Patterson & Hennessy)
•  4th edition of the textbook
•  You are expected to complete the assigned readings

•  We will not cover material in the textbook in a strictly
linear fashion

7
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Workload

•  Readings from textbook
•  Homework assignments (performed in groups of 2)

•  Pencil and paper problems
•  Small programming problems

•  Project (performed in groups of 2)
•  Building the Duke152-S11 computer in real hardware!
•  Programming the Duke152-S11 computer you built
•  You will choose project partners, and I will ensure that group

grading is done fairly by end-of-semester questionnaires
•  Project will be broken up into smaller parts to make it more

manage-able
•  Project Part 1: Building a register file, due: Jan 18

8
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

This is not an easy class

•  In case you don’t believe me, listen to your colleagues

9
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Seriously, this is not an easy class

10
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Grading

•  Grade breakdown
•  Homework 20%
•  Project 35% (graded as a group, but fairly)
•  Midterm Exam 20%
•  Final Exam 25%

•  I strongly believe in partial credit
•  Please explain your answers to get as much credit as possible

•  Late homework policy
•  10% reduction for each day late
•  No credit after the homework is graded and handed back

•  Assignments take a lot of time, so start them early
•  Yes, this means you! And you and you and especially you.

11
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Academic Misconduct

•  Academic Misconduct
•  Refer to Duke Honor Code
•  Studying together in groups is encouraged
•  Homework and project must be in groups of 2

•  You may choose a different partner for each homework
•  You will choose one partner for all parts of project

•  Common examples of cheating:
•  Running out of time and using someone else's output
•  Borrowing code from someone who took course before
•  Using solutions found on the Web

•  I will not tolerate any academic misconduct!
•  Historically, this course has “led the league” in cases of academic

misconduct that have led to suspensions and expulsions
•  Software for detecting cheating is very, very good … and I use it

12
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Goals of This Course

•  By end of semester:
•  You will know how computers work

•  What’s inside a computer?
•  How do computers run programs written in C, C++, Java,

Matlab, etc.?
•  You will design your own computer, build it in real hardware, and

program it!
•  You will understand the engineering tradeoffs to be made in the

design and implementation of different types of computers
•  You may, like me, decide to become an architect. J

•  If, at any point, it’s not clear why I’m talking about
some topic, please ask!

13
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Outline of Introduction

•  Administrivia
•  What is a computer?
•  What is computer architecture?
•  Why are there different types of computers?
•  How do we tell computers what to do?

14
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Reading Assignment

•  Patterson & Hennessy
•  Chapter 1
•  This is a short and relatively easy-to-read chapter
•  Please read it such that afterwards you’d feel comfortable

teaching the material to an ECE 52 student

•  For those of you who haven’t done digital logic design in
a while, you may want to go back to your ECE 52
textbook

•  Digital logic design is a pre-requisite for this course, but I
understand if some of you haven’t done this in a while

•  You should be able to design combination logic and finite state
machines – otherwise, you’re going to have a very rough
semester

15
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

What is a Computer?

•  A computer is just a digital system
•  Consists of combinational and sequential logic
•  One big, honking finite state machine
•  A computer would be a very exciting ECE 52 project

•  Seriously, it’s just a digital system
•  Yes, but what does this digital system do?

•  Whatever you tell it to do! No more, no less

•  A computer just does what software tells it to do
•  Software is a series of instructions

•  ICQ (In-Class Question): What instructions does a
computer need?

16
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Computers Execute Instructions

•  What kinds of instructions are there?
•  Arithmetic: add, subtract, multiply, divide, etc.
•  Access memory: read, write
•  Conditional: if condition, then jump to other part of program
•  What other kinds of instructions might be useful?

•  How do we represent instructions?
•  Digitally! With strings of zeros and ones
•  Remember: a computer is just a digital system!

•  So how do computers run programs in Java or C/C++ or
Matlab or whatever whippersnappers use these days?

•  None of us write programs in binary (zeros and ones) …
•  We’ll get to this in a few minutes

17
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Instruction Sets

•  Computers can only execute instructions that are in their
specific machine language

•  Every type of computer has a different instruction set that
it understands

•  Intel (and AMD) IA-32 (x86): Pentium, Core i7, AMD Opteron
“Magny Cours”, etc.

•  Intel IA-64: Itanium, Itanium 2
•  PowerPC: In Cell Processor and old Apple Macs
•  SPARC: In computers from Sun Microsystems/Oracle
•  ARM: In many embedded processors
•  MIPS: MIPS R10000 à this is the example used in the textbook

•  Note: no computer executes Java or C++
•  Not even Matlab

18
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Outline of Introduction

•  Administrivia
•  What is a computer?
•  What is computer architecture?
•  Why are there different types of computers?
•  How do we tell computers what to do?

19
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Hint: It Doesn’t Involve Skyscrapers …

•  Strictly speaking, a computer architecture specifies
what the hardware looks like (its interface), so that we
can write software to run on it

•  Exactly what instructions does it have
•  Number of register storage locations it has
•  And more that we’ll learn about later in semester

•  Important point: there are many, many different ways
to build digital systems that provide the same interface to
software

•  There are many microarchitectures that conform to same
architecture

•  Some are better than others! If you don’t believe me, I’ll trade
you my original Intel Pentium for your Intel Core i7

•  ICQ: So what’s inside one of these digital systems?

20
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

The Inside of a Computer

Control

Datapath

Memory

Processor/CPU
Input

Output

•  The Five Classic Components of a Computer

21
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

I/O Bus

memory bus

disk

CPU

Cache cache

Main
Memory

disk
controller

main
memory

disk

graphics
controller

network
interface

graphics Network

System Organization

I/O bridge

22
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

What Is ECE 152 All About?
•  Architecture = interface between hardware and software

Application

OS

Firmware Compiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

Software

Hardware

Interface between HW & SW

•  ECE 152 = design of CPU, memory, and I/O

23
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Outline of Introduction

•  Administrivia
•  What is a computer?
•  What is computer architecture?
•  Why are there different types of computers?
•  How do we tell computers what to do?

24
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Differences Between Computers

•  We have different computers for different purposes

•  Some can achieve performance needed for high-
performance gaming

•  E.g., Cell Processor in PlayStation 3

•  Others can achieve decent enough performance for
laptop without using too much power

•  E.g., Intel Pentium M (for Mobile)

•  And yet others can function reliably enough to be trusted
with the control of your car’s brakes

ICQ: What computers do you use?
ICQ: Which of those computers do you own?

25
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Kinds of Computers

•  “Traditional” personal computers
•  Laptop, desktop, netbook

•  Less-traditional personal computers
•  iPad, iPhone, Blackberry, iPod, Xbox, Wii, etc.

•  Hidden “big” computers
•  Mainframes and servers for business, science, government

•  E.g., the unreliable servers that run Duke email
•  Google has tens of thousands of computers (that you don’t see)

•  Hidden embedded computers
•  Controllers for cars, airplanes, ATMs, toasters, DVD players, etc.
•  Far and away the largest market for computers!

•  Other kinds of computers??

26
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Applications

Operating
Systems

Technology Programming Languages

History

Computer
Architecture

Forces on Computer Architecture

27
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

A Very Brief History of Computing

•  1645 Blaise Pascal’s Calculating Machine
•  1822 Charles Babbage

•  Difference Engine
•  Analytic Engine: Augusta Ada King first programmer

•  < 1946 Eckert & Mauchly
•  ENIAC (Electronic Numerical Integrator and Calculator)

•  1947 John von Neumannn
•  Proposed the Stored Program Computer
•  Virtually all current computers are “von Neumann” machines

•  1949 Maurice Wilkes
•  EDSAC (Electronic Delay Storage Automatic Calculator)

28
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Some Commercial Computers
Year Name Size (cu. ft.) Adds/sec Price

1951 UNIVAC I 1000 1,900 $1,000,000

1964 IBM S/360
Model 50 60 500,000 $1,000,000

1965 PDP-8 8 330,000 $16,000

1976 Cray-1 58 166 million $4,000,000

1981 IBM PC desktop 240,000 $3,000

1991 HP 9000 /
model 750 desktop 50 million $7,400

1996 PC with Intel
PentiumPro desktop 400 million $4,400

2002 PC with Intel
Pentium4

desktop/laptop/
rack 4 billion $1-2K

2002 PC with Intel
Itanium2 desktop/rack ~10 billion $1-2K

2008 Cell processor PlayStation3 ~200 billion ~$350 (eBay)

29
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Microprocessor Trends (for Intel CPUs)

30
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

What Do Computer Architects Do?

•  Full disclosure: I’m a computer architect
•  Design new microarchitectures

•  Very occasionally, we design new architectures

•  Design computers that meet ever-changing needs and
challenges

•  Tailored to new applications (e.g., image/video processing)
•  Amenable to new technologies (e.g., faster and more plentiful

transistors)
•  More reliable, more secure, use less power, etc.

•  Computer architecture is engineering, not science
•  There is no one right way to design a computer à this is why

there isn’t just one type of computer in the world
•  This does not mean, though, that all computers are equally good

31
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Outline of Introduction

•  Administrivia
•  What is a computer?
•  What is computer architecture?
•  Why are there different types of computers?
•  How do we tell computers what to do?

32
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

High Level Language
Program

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

 We Use High Level Languages

•  There are many high level languages (HLLs)
•  Java, C, C++, C#, Fortran, Basic, Pascal, Lisp, Ada, Matlab, etc.

•  HLLs tend to be English-like languages that are “easy” for
programmers to understand

•  In this class, we’ll focus on C/C++ as our running
example for HLL code. Why?

•  C/C++ has pointers
•  C/C++ has explicit memory allocation/deallocation
•  Java hides these issues (don’t get me started on Matlab)

33
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

High Level Language
Program

Assembly Language
Program

Compiler

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

 HLL à Assembly Language

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

•  Every computer architecture has its own assembly
language

•  Assembly languages tend to be pretty low-level, yet some
actual humans still write code in assembly

•  But most code is written in HLLs and compiled
•  Compiler is a program that automatically converts HLL to assembly

34
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Compiler

Assembler

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

 Assembly Language à Machine Language

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

•  Assembler program automatically converts assembly code
into the binary machine language (zeros and ones) that
the computer actually executes

35
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signals for
Finite State Machine

Compiler

Assembler

Machine Interpretation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

 Machine Language à Inputs to Digital System

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

Transistors turning on and off

36
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Representing High Level Things in Binary

•  Computers represent everything in binary
•  Instructions are specified in binary
•  Instructions must be able to describe

•  Data objects (integers, decimals, characters, etc.)
•  Memory locations
•  Operation types (add, subtract, shift, etc.)

37
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Basic Data Types
Bit: 0, 1

Bit String: sequence of bits of a particular length
 4 bits is a nibble
 8 bits is a byte
 16 bits is a half-word
 32 bits is a word
 64 bits is a double-word
 128 bits is a quad-word

Character:
 ASCII 7-bit code

Integers:
 2's Complement (32-bit or 64-bit representation)

Floating Point:
 Single Precision (32-bit representation)
 Double Precision (64-bit representation)
 Extended Precision (128-bit representation)

38
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Issues for Binary Representation of Numbers

•  There are many ways to represent numbers in binary
•  Binary representations are encodings à many encodings possible
•  What are the issues that we must address?

•  Issue #1: Complexity of arithmetic operations
•  Issue #2: Negative numbers
•  Issue #3: Maximum representable number
•  Choose representation that makes these issues easy for

machine, even if it’s not easy for humans (i.e., ECE 152
students)

•  Why? Machine has to do all the work!

39
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Review from ECE 52: 2’s Complement Integers

•  Use large positives to represent
negatives

•  (-x) = 2n - x

•  This is 1’s complement + 1
•  (-x) = 2n - 1 - x + 1

•  So, just invert bits and add 1

6-bit examples:
0101102 = 2210 ; 1010102 = -2210
110 = 0000012; -110 = 1111112

010 = 0000002; -010 = 0000002 à good!

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 -8
1001 -7
1010 -6
1011 -5
1100 -4
1101 -3
1110 -2
1111 -1

40
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Pros and Cons of 2’s Complement

•  Advantages:
•  Only one representation for 0 (unlike 1’s comp): 0 = 000000
•  Addition algorithm is much easier than with sign and magnitude

•  Independent of sign bits

•  Disadvantage:
•  One more negative number than positive
•  Example: 6-bit 2’s complement number
 1000002 = -3210; but 3210 could not be represented

All modern computers use 2’s complement for integers

41
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

•  Most computers today support 32-bit (int) or 64-bit integers
•  Specify 64-bit using gcc C compiler with long long

•  To extend precision, use sign bit extension
•  Integer precision is number of bits used to represent a number

Examples

1410 = 0011102 in 6-bit representation.

1410 = 0000000011102 in 12-bit representation

-1410 = 1100102 in 6-bit representation

-1410 = 1111111100102 in 12-bit representation.

2’s Complement Precision Extension

42
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

What About Non-integer Numbers?

•  There are infinitely many real numbers between two
integers

•  Many important numbers are real
•  Speed of light ~= 3x108
•  Pi = 3.1415…

•  Fixed number of bits limits range of integers
•  Can’t represent some important numbers

•  Humans use Scientific Notation
•  1.3x104

•  We’ll revisit how computers represent floating point
numbers later in the semester

43
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

What About Strings?

•  Many important things stored as strings…
•  E.g., your name

•  How should we store strings?

44
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

ASCII Character Representation

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 ack 007 bel
010 bs 011 ht 012 nl 013 vt 014 np 015 cr 016 so 017 si
020 dle 021 dc1 022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 etb
030 can 031 em 032 sub 033 esc 034 fs 035 gs 036 rs 037 us
040 sp 041 ! 042 " 043 # 044 $ 045 % 046 & 047 '
050 (051) 052 * 053 + 054 , 055 - 056 . 057 /
060 0 061 1 062 2 063 3 064 4 065 5 066 6 067 7
070 8 071 9 072 : 073 ; 074 < 075 = 076 > 077 ?
100 @ 101 A 102 B 103 C 104 D 105 E 106 F 107 G
110 H 111 I 112 J 113 K 114 L 115 M 116 N 117 O
120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W
130 X 131 Y 132 Z 133 [134 \ 135] 136 ^ 137 _
140 ` 141 a 142 b 143 c 144 d 145 e 146 f 147 g
150 h 151 i 152 j 153 k 154 l 155 m 156 n 157 o
160 p 161 q 162 r 163 s 164 t 165 u 166 v 167 w
170 x 171 y 172 z 173 { 174 | 175 } 176 ~ 177 del

Oct. Char

•  Each character represented by 7-bit ASCII code.
•  Packed into 8-bits

45
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Computer Memory

•  What is computer memory?

•  What does it “look like” to the program?

•  How do we find things in computer memory?

46
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

A Program’s View of Memory

•  What is memory? a bunch of bits
•  Looks like a large linear array
•  Find things by indexing into array

•  Index is unsigned integer

•  Most computers support byte (8-bit)
addressing

•  Each byte has a unique address (location)
•  Byte of data at address 0x100 and 0x101
•  Word of data at address 0x100 and 0x104

•  32-bit v.s. 64-bit addresses
•  We will assume 32-bit for rest of course,

unless otherwise stated
•  How many bytes can we address with 32

bits? With 64 bits?

1
2
3
4

•

2n-1

•
•

0 00110110
00001100

Byte
Address Memory

1

•

2n-1

•
•

0

2n-1-4

Word
Address

47
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Memory Partitions

•  Text for instructions
•  add dest, src1, src2
•  mem[dest] = mem[src1] + mem[src2]

•  Data
•  Static (constants, globals)
•  Dynamic (heap, new allocated)
•  Grows upward

•  Stack
•  Local variables
•  Grows down from top of memory

•  Variables are names for memory
locations

•  int x; // x is a location in memory

Stack

Data

Text
Reserved 0

2n-1

Typical
Address

Space

48
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

A Simple Program’s Memory Layout

...
int result; // global variable
main()
{
 int x; // allocated on stack
 ...
 result = x + result;
 ...

}

result 0x208

Stack

Data

Text
add r,s1,s2
Reserved 0

2n-1

x 0x400

3

5

49
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Pointers

•  A pointer is a memory location that contains the address
of another memory location

•  “address of” operator & in C/C++
•  Don’t confuse with bitwise AND operator (which is && operator)

Given
 int x; int* p;
 p = &x; // p points to x (i.e., p is the address of x)

Then
 *p = 2; and x = 2; produce the same result

0x26cf0

x 0x26cf0

p 0x26d00
... On 32-bit machine, p is 32-bits

50
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Arrays

•  In C++: allocate using array form of new
 int* a = new int[100];
 double* b = new double[300];
•  new[] returns a pointer to a block of memory

•  How big? Where?

•  Size of chunk can be set at runtime
•  delete[] a; // storage returned
•  In C:
 int* ptr = malloc(nbytes);
 free(ptr);

51
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

•  If x is a pointer, what is x+33?
•  A pointer, but where?

•  What does calculation depend
on?

•  Result of adding an int to a
pointer depends on size of
object pointed to

•  Result of subtracting two

pointers is an int

 (d + 3) - d = _______

Address Calculation

0 1 33 199

0 1 99 32 33 98
a[33] is the same as *(a+33)
if a is 0x00a0, then a+1 is
0x00a4, a+2 is 0x00a8
(decimal 160, 164, 168)

double * d = new double[200];

*(d+33) is the same as d[33]
if d is 0x00b0, then d+1 is
0x00b8, d+2 is 0x00c0
(decimal 176, 184, 192)

int *a = new int[100]

52
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

0 1 43 15 16 42

More Pointer Arithmetic

•  address one past the end of an
array is ok for pointer comparison
only

•  what’s at *(begin+44) ?

•  what does begin++ mean?

•  how are pointers compared using <
and using == ?

•  what is value of end - begin?

char* a = new char[44];
char* begin = a;
char* end = a + 44;

while (begin < end)
{
 *begin = ‘z’;
 begin++;
}

53
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

More Pointers & Arrays

int* a = new int[100];

0 1 99 32 33 98

a is a pointer
*a is an int
a[0] is an int (same as *a)
a[1] is an int
a+1 is a pointer
a+32 is a pointer
*(a+1) is an int (same as a[1])
*(a+99) is an int
*(a+100) is trouble

54
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Array Example
main()
{
 int* a = new int[100];
 int* p = a;
 int k;

 for (k = 0; k < 100; k++)
 {
 *p = k;
 p++;
 }

 cout << "entry 3 = " << a[3] << endl;

}

55
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Strings as Arrays

•  A string is an array of characters with ‘\0’ at the end
•  Each element is one byte (in ASCII code)
•  ‘\0’ is null (ASCII code 0)

0 1 43 15
s t ‘\0’ r i g

16 42

56
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Summary: Representing High Level in Computer

•  Everything must be represented in binary!
•  Computer memory is linear array of bytes
•  Pointer is memory location that contains address of

another memory location
•  We’ll visit these topics again throughout semester

57
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Outline of Introduction

•  Administrivia
•  What is a computer?
•  What is computer architecture?
•  Why are there different types of computers?
•  How do we tell computers what to do?

58
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

What You Will Learn In This Course

•  The basic operation of a computer
•  Primitive operations (instructions)
•  Computer arithmetic
•  Instruction sequencing and processing
•  Memory
•  Input/output
•  Doing all of the above, just faster!

•  Understand the relationship between abstractions
•  Interface design
•  High-level program to control signals (SW à HW)

59
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

Course Outline

•  Introduction to Computer Architecture
•  Instruction Sets & Assembly Programming (next!)
•  Central Processing Unit (CPU)
•  Pipelined Processors
•  Memory Hierarchy
•  I/O Devices and Networks
•  Multicore Processors
•  Performance Analysis & Advanced Topics (if time permits)

60
© 2012 Daniel J. Sorin
from Roth and Lebeck ECE 152

The Even Bigger Picture

•  ECE 52: Digital systems
•  ECE 152: Basic computers

•  Finish 1 instruction every 1 very-long clock cycle
•  Finish 1 instruction every 1 short cycle (using pipelining)

•  ECE 552: High-performance computers (plus more!)
•  Finish ~3-6 instructions every very-short cycle
•  Multiple cores each finish ~3-6 instructions every very-short cycle
•  Out-of-order instruction execution, power-efficiency, reliability,

security, etc.

•  ECE 559: Highly parallel computers, advanced topics
•  ECE 554: Fault tolerant computers
•  ECE 590: Energy-efficient computers

