
MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35

COMPUTER
ARCHITECTURE
TECHNIQUES FOR
POWER-EFFICIENCY

i

MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35

ii

MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35

iii

Synthesis Lectures on Computer
Architecture

Editor
Mark D. Hill, University of Wisconsin, Madison

Synthesis Lectures on Computer Architecture publishes 50 to 150 page publications on topics
pertaining to the science and art of designing, analyzing, selecting and interconnecting hardware
components to create computers that meet functional, performance and cost goals.

Computer Architecture Techniques for Power-Efficiency
Stefanos Kaxiras and Margaret Martonosi
2008

Chip Mutiprocessor Architecture: Techniques to Improve Throughput and Latency
Kunle Olukotun, Lance Hammond, James Laudon
2007

Transactional Memory
James R. Larus, Ravi Rajwar
2007

Quantum Computing for Computer Architects
Tzvetan S. Metodi, Frederic T. Chong
2006

MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35

Copyright © 2008 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Computer Architecture Techniques for Power-Efficiency

Stefanos Kaxiras and Margaret Martonosi

www.morganclaypool.com

ISBN: 9781598292084 paper
ISBN: 9781598292091 ebook

DOI: 10.2200/S00119ED1V01Y200805CAC004

A Publication in the Morgan & Claypool Publishers series

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #4

Lecture #4

Series Editor: Mark D. Hill, University of Wisconsin, Madison

Library of Congress Cataloging-in-Publication Data

Series ISSN: 1935-3235 print
Series ISSN: 1935-3243 electronic

iv

MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35

COMPUTER
ARCHITECTURE
TECHNIQUES FOR
POWER-EFFICIENCY
Stefanos Kaxiras
University of Patras, Greece
Kaxiras@ece.upatras.gr

Margaret Martonosi
Princeton University
mrm@princeton.edu

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #4

M&C M o r g a n & C l a y p o o l P u b l i s h e r s

v

MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35

vi

ABSTRACT
In the last few years, power dissipation has become an important design constraint, on par with
performance, in the design of new computer systems. Whereas in the past, the primary job
of the computer architect was to translate improvements in operating frequency and transistor
count into performance, now power efficiency must be taken into account at every step of the
design process.

While for some time, architects have been successful in delivering 40% to 50% annual
improvement in processor performance, costs that were previously brushed aside eventually
caught up. The most critical of these costs is the inexorable increase in power dissipation and
power density in processors. Power dissipation issues have catalyzed new topic areas in computer
architecture, resulting in a substantial body of work on more power-efficient architectures.
Power dissipation coupled with diminishing performance gains, was also the main cause for
the switch from single-core to multi-core architectures and a slowdown in frequency increase.

This book aims to document some of the most important architectural techniques that
were invented, proposed, and applied to reduce both dynamic power and static power dissipation
in processors and memory hierarchies. A significant number of techniques have been proposed
for a wide range of situations and this book synthesizes those techniques by focusing on their
common characteristics.

KEYWORDS
Computer power consumption, computer energy consumption, low power computer design,
computer power efficiency, dynamic power, static power, leakage power, dynamic voltage/
frequency scaling, computer architecture, computer hardware.

MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35

vii

Contents
Acknowledgements . xi

1. Introduction . 1
1.1 Brief history of the “power problem” . 1
1.2 CMOS Power Consumption: A Quick Primer . 3

1.2.1 Dynamic Power . 3
1.2.2 Leakage . 4
1.2.3 Other Forms of CMOS Power Dissipation. .5

1.3 Power-Aware Computing Today . 5
1.4 This Book . 6

2. Modeling, Simulation, and Measurement . 9
2.1 Metrics . 9
2.2 Modeling basics. .11

2.2.1 Dynamic-power Models .12
2.2.2 Leakage Models . 13
2.2.3 Thermal models . 15

2.3 Power Simulation . 17
2.4 Measurement . 18

2.4.1 Performance-Counter-based Power and Thermal Estimates 19
2.4.2 Imaging and Other Techniques . 20

2.5 Summary .21

3. Using Voltage and Frequency Adjustments to Manage Dynamic Power 23
3.1 Dynamic Voltage and Frequency Scaling: Motivation and Overview 23

3.1.1 Design Issues and Overview . 24
3.2 System-Level DVFS . 26

3.2.1 Eliminating Idle Time . 26
3.2.2 Discovering and Exploiting Deadlines . 28

3.3 Program-Level DVFS . 29
3.3.1 Offline Compiler Analysis . 29
3.3.2 Online Dynamic Compiler analysis . 32
3.3.3 Coarse-Grained Analysis Based on Power Phases 34

MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35

viii CONTENTS

3.4 Program-Level DVFS for Multiple-Clock Domains . 35
3.4.1 DVFS for MCD Processors . 35
3.4.2 Dynamic Work-Steering for MCD Processors . 38
3.4.3 DVFS for Multi-Core Processors . 40

3.5 Hardware-Level DVFS . 41

4. Optimizing Capacitance and Switching Activity to Reduce Dynamic Power 45
4.1 A Road Map for Effective Switched Capacitance . 46

4.1.1 Excess Switching Activity . 46
4.1.2 Capacitance . 49

4.2 Idle-Unit Switching Activity: Clock gating . 51
4.2.1 Circuit-Level Basics . 51
4.2.2 Precomputation and Guarded Evaluation . 53
4.2.3 Deterministic Clock Gating . 54
4.2.4 Clock gating examples . 56

4.3 Idle-Width Switching Activity: Core . 58
4.3.1 Narrow-Width Operands . 59
4.3.2 Significance Compression . 62
4.3.3 Further Reading on Narrow Width Operands . 64

4.4 Idle-Width Switching Activity: Caches . 64
4.4.1 Dynamic Zero Compression: Accessing Only Significant Bits 65
4.4.2 Value Compression and the Frequent Value Cache 66
4.4.3 Packing Compressed Cache Lines: Compression Cache and

Significance-Compression Cache . 68
4.4.4 Instruction Compression . 70

4.5 Idle-Capacity Switching Activity . 70
4.5.1 The Power-inefficiency of Out-of-order Processors 71
4.5.2 Resource Partitioning . 72

4.6 Idle-Capacity Switching Activity: Instruction Queue . 75
4.6.1 Physical Resizing . 75
4.6.2 Readiness Feedback Control . 77
4.6.3 Occupancy Feedback Control . 77
4.6.4 Logical Resizing Without Partitioning. .78
4.6.5 Other Power Optimizations for the Instruction Queue 80
4.6.6 Related Work on Instruction Windows . 81

4.7 Idle-Capacity Switching Activity: Core . 82

MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35

CONTENTS ix

4.8 Idle-Capacity Switching Activity: Caches . 84
4.8.1 Trading Memory Between Cache Levels . 86
4.8.2 Selective Cache Ways . 89
4.8.3 Accounting Cache . 91
4.8.4 CAM-Tag Cache Resizing . 94
4.8.5 Further Reading on Cache Reconfiguration . 97

4.9 Parallel Switching-Activity in Set-Associative Caches . 97
4.9.1 Phased Cache . 98
4.9.2 Sequentially Accessed Set-Associative Cache . 99
4.9.3 Way Prediction . 101
4.9.4 Advanced Way-Prediction Mechanisms . 104
4.9.5 Way Selection. .107
4.9.6 Coherence Protocols . 109

4.10 Cacheable Switching Activity . 110
4.10.1 Work Reuse . 112
4.10.2 Filter Cache . 114
4.10.3 Loop Cache . 115
4.10.4 Trace Cache . 116

4.11 Speculative Activity . 117
4.12 Value-dependent Switching Activity: Bus encodings . 120

4.12.1 Address Buses .121
4.12.2 Address and Data Buses .122
4.12.3 Further Reading on Data Encoding . 124

4.13 Dynamic Work Steering . 124

5. Managing Static (Leakage) Power . 131
5.1 A Quick Primer on Leakage Power . 133

5.1.1 Subthreshold Leakage . 134
5.1.2 Gate Leakage . 137

5.2 Architectural Techniques Using the Stacking Effect . 138
5.2.1 Dynamically Resized (DRI) Cache . 139
5.2.2 Cache Decay . 141
5.2.3 Adaptive Cache Decay and Adaptive Mode Control 147
5.2.4 Decay in the L2 . 153
5.2.5 Four-Transistor Memory Cell Decay . 155
5.2.6 Gated Vdd Approaches for Function Units . 156

MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35

x CONTENTS

5.3 Architectural Techniques Using the Drowsy Effect . 159
5.3.1 Drowsy Data Caches . 159
5.3.2 Drowsy Instruction Caches . 161
5.3.3 State Preserving versus No-state Preserving . 164
5.3.4 Temperature . 167
5.3.5 Reliability . 168
5.3.6 Compiler Approaches for Decay and Drowsy Mode 169

5.4 Architectural Techniques Based on VT . 171
5.4.1 Dynamic Approaches . 172
5.4.2 Static Approaches . 175
5.4.3 Dual-VT in Function Units . 176
5.4.4 Asymmetric Memory Cells . 178

6. Conclusions . 181
6.1 Dynamic power management via Voltage and Frequency Adjustment:

Status and Future Trends . 181
6.2 Dynamic Power Reductions based on Effective Capacitance and Activity

Factor: Status and Future Trends . 182
6.3 Leakage Power Reductions: Status and Future Trends . 184
6.4 Final Summary . 184

Glossary . 187

Bibliography. .189

MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35

xi

Acknowledgements
Stefanos:
I would like to thank my co-author Margaret Martonosi for our great collaboration. She has
been an inspiration for me since I met her. My thanks to Mark Hill and Michael Morgan for
seeing this project from conception to publication.

My wife, Angeliki, and our children Jason and Eugenia encouraged me throughout the
writing of this book with their love and laughter; and helped me move along with their tireless
prompts to “finish this book at last.” I owe them my love and thanks.

Many people helped by reading drafts, offering suggestions, and having detailed discus-
sions with us on book topics. I would especially like to thank Georgios Keramidas, Chronis
Xekalakis, Vasileios Kontorinis, Daniele Ludovici, Ioannis Sourdis, and Christos Strydis, who
have spent many hours reading drafts of this book. I am indebted to Georgios Keramidas for
his help with the material in Section 4.12.

My European colleagues in the HiPEAC Network of Excellence and the EU SARC
Integrated Project were especially patient with me during the past year. I thank all of them for
their understanding. My thanks to Erik Hagersten for his support; a portion of the book was
written in Sweden at a time when I was working for Erik’s company and teaching at Uppsala
University.

Finally, I would like to honor the memory of two dear friends and colleagues, Stamatis
Vassiliadis and David V. James who, sadly, passed away in the last 12 months.

Margaret:
First and foremost, I thank my colleague Stefanos Kaxiras; without his wisdom, enthusiasm,
and leadership, this book would not have happened. Likewise, I thank Mark Hill and Michael
Morgan for extending us the opportunity to work on this project. Thanks also to the reviewers
who offered us excellent feedback on how to make improvements to the presentation after the
first draft.

My graduate students over the years have, through their outstanding research, contin-
ually taught me more and more about computer architecture in general and about power-
efficiency in particular. This book comprises—directly and indirectly—many of their contri-
butions to the field. Finally, I thank my husband, Kevin Burkman. In addition to being my
best friend, he has also been my tireless coach on the value of non-procrastinatory behavior.
As I write this (unfortunately at the last minute!), I thank him for these two roles (and the
many others) he plays in my life.

MOCL005-FM MOCL005-FM.cls June 27, 2008 8:35

xii

kaxiras3 MOCL005.cls June 27, 2008 9:33

1

C H A P T E R 1

Introduction

In the 1980s and early 1990s, computer architecture experienced a phase in which quantitative
performance evaluations became the predominant driver for determining how to build effec-
tive, cutting-edge microprocessors and computer systems. While cost, area, and other metrics
remained important as limits to abide by, performance was during this period the main goal for
which designers optimized.

In the mid- to late- 1990s, power began to be an area of concern for architects. It became
clearer that as Moore’s Law scaling succeeded in reducing the feature sizes of semiconductor
devices, their areal power density and high processor clock rates would result in microprocessor
designs that were difficult or impossible to cool.

Interestingly, the CMOS power issues that our field currently faces are not the first
instance of power constraints affecting computer systems design. This chapter will first give a
history of power issues in computer systems, then lay out the trends and issues that lie ahead.

1.1 BRIEF HISTORY OF THE “POWER PROBLEM”
Power and cooling concerns are not strictly a twenty-first century issue for computing. In reality,
prior computing eras have also faced power and thermal challenges. For example, the ENIAC
machine built in 1947 dissipated 174 kW (233 horsepower) [29, 59]! A March 1949 article in
Popular Mechanics extrapolated from ENIAC’s 18 000 vacuum tubes toward a day in the future
where computers might need only 1000 vacuum tubes and therefore presumably drop toward
only 10 kW of power [92].

Figure 1.1 illustrates a time history of power trends for selected computers from 1950 to
the present. The y-axis of this plot shows areal power density, that is watts per unit surface area.
While very early (vacuum tube) computers were extremely high in power consumption, their
large areas kept power density relatively low. Furthermore, the switch from high-power vacuum
tubes to relatively lower-power bipolar transistors kept power dissipation manageable for some
time. For example, the Intel 4004 microprocessor had, in 1971, similar compute capability as
the multi-ton, room-sized ENIAC computer, and yet dissipated only a handful of watts.

kaxiras3 MOCL005.cls June 27, 2008 9:33

2 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

FIGURE 1.1: A history of areal power density trends across decades of computing technologies.
Reproduced from [54]. Copyright 1999 IEEE.

During the 1980s, the widespread use of bipolar semiconductor technologies and increas-
ingly dense transistor integration led to rapid rises in power dissipation and density. Challenges
in cooling and power delivery were not uncommon. For example, in this time period, IBM and
Cray produced servers and supercomputers that required liquid cooling in order to maintain
their very high performance targets [144, 160]. As another example, the BIPS research proces-
sor [121, 120] was notable in the early 1990s both due to its high performance and very high
clock rate: 300 MHz, as well as due to its record-setting power dissipation: 115 W.

The shift from bipolar technologies to CMOS technologies brought temporary relief
from power challenges, as shown in the timeline in the early 1990s. CMOS technology had
been in use before the 1990s, and had appealing power behavior in the sense that it primarily
dissipated power only at switching transitions. The complementary gate structure meant that
early gates drew little or no current between transition points, because in a stable state, the
gate has no clear path to ground. (At this point, CMOS technology scaling had not created
significant leakage paths yet.)

During the transition period of the 1980s, many viewed CMOS as too slow for widespread
use in the high-performance microprocessor arena. Though researchers in semiconductor device
technologies explored various alternatives (such as hybrids of bipolar and CMOS), the power
challenges with bipolar, however, became too great to ignore. These challenges drove the
switchover to CMOS, and along the way, technology improvements brought significant gains
to CMOS performance.

kaxiras3 MOCL005.cls June 27, 2008 9:33

INTRODUCTION 3

1.2 CMOS POWER CONSUMPTION: A QUICK PRIMER
The remainder of this book focuses primarily on the issues facing computer architects in
managing and optimizing CMOS power dissipation. We offer a brief primer here on these
issues, with more detail given in Chapter 2.

CMOS power consumption can be divided into several categories: dynamic power,
leakage power, glitching power, and others. We discuss these in the subsections that follow.

1.2.1 Dynamic Power
The dominant power category for many years has been dynamic power, which is given by the
proportionality: P = (proportional to) C V 2Af. Here, C is the load capacitance, V is the supply
voltage, A is the activity factor and f is the operating frequency. Each of these is described in
greater detail below.

Capacitance (C): To first order (i.e., the architect’s point of view rather than the more de-
tailed view of a circuit designer), aggregate load capacitance largely depends on the wire lengths
of on-chip structures. Architects can influence this metric in several ways. As one example,
building four smaller processor cores on-chip, rather than one large monolithic processor, is
likely to reduce average wire lengths considerably, since most wires will interconnect units
within a single core. Likewise, smaller cache memories or independent banks of cache can also
reduce wire lengths since many address and data lines will only need to span across each bank
array individually.

Supply voltage (V): For decades, supply voltage (V or Vdd) has dropped steadily with each
technology generation [113]. Because of its direct quadratic influence on dynamic power, this
has amazing leverage on power-aware design.

Activity factor (A): The activity factor is a fraction between 0 and 1 that refers to how
often wires actually transition from 0 to 1 or 1 to 0. While the clock signal obviously switches
at its full frequency, most other wires in the design have activity factors below 1. Strategies
such as clock gating are used to save energy by reducing activity factors during a hardware unit’s
idle periods. In particular, the clock gating technique ANDs a unit’s clock signal with a control
signal. When the control signal is 1, the unit will be clocked as expected. If the unit is known
to be unneeded for a cycle or more, the control signal can be set to 0, in which case the unit
will not be clocked; this can reduce the switching activity within it.

Clock frequency (f): The clock frequency has a fundamental and far-reaching impact on
power dissipation. Not only does clock frequency directly influence power dissipation, but it
also indirectly shapes power by its effect on supply voltage. Typically, maintaining higher clock
frequencies may require (in part) maintaining a higher supply voltage. Thus, the combined V 2 f
portion of the dynamic power equation has a cubic impact on power dissipation. Strategies such

kaxiras3 MOCL005.cls June 27, 2008 9:33

4 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

as dynamic voltage and frequency scaling (DVFS) recognize periods when lower microprocessor
performance is acceptable (e.g., in memory-bound or latency-tolerant regions of code) and
reduce (V , f) accordingly.

1.2.2 Leakage
While dynamic power dissipation represented the predominant factor in CMOS power con-
sumption for many years, leakage energy has been increasingly prominent in recent technologies.
Representing roughly 20% or more of power dissipation in current designs, its proportion is
expected to increase in the future [32, 113]. Leakage energy can come from several sources,
including gate leakage and sub-threshold leakage. Gate leakage is increasing in importance
and will be discussed in Chapter 5. Here, we briefly introduce only the concepts behind sub-
threshold leakage because they are fundamental to this chapter’s trends discussion.

Sub-threshold leakage power represents the power dissipated by a transistor whose gate
is intended to be off. While our idealized view of transistors is that they operate as switches, the
reality is that the relationship between current and voltage (the so-called IV curve depicted in
Figure 1.2) is analog and shows a non-zero amount of current even for voltages lower than the
threshold voltage (Vth) at which the transistor is viewed as switching “on.” This modest current
for Vdd less than Vth is referred to as the sub-threshold current. The power dissipation resulting
from this current is referred to as the sub-threshold leakage power, because the transistor
appears to leak charge to ground. Sub-threshold leakage power is given by the following
simplified equation:

P = V
(

ke−q Vth/(akaT)
)

.

FIGURE 1.2: Example of an “IV ” curve for a semiconductor diode. Although we informally treat
semiconductors as switches, their non-ideal analog behavior leads to leakage currents and other effects.

kaxiras3 MOCL005.cls June 27, 2008 9:33

INTRODUCTION 5

In this equation, V refers to the supply voltage, while Vth refers to the threshold voltage.
The exponential link between leakage power and threshold voltage is immediately obvious.1

Lowering the threshold voltage brings a tremendous increase in leakage power. Unfortunately,
lowering the threshold voltage is what we have to do to maintain the switching speed in the
face of lower supply voltages. Temperature, T, is also an important factor in the equation:
leakage power depends exponentially on temperature. The remaining parameters, q , a , and ka,
summarize logic design and fabrication characteristics. The exponential dependence of leakage
on temperature, and the interplay between leakage and dynamic energy will be discussed in
more detail in Chapter 2.

1.2.3 Other Forms of CMOS Power Dissipation
While dynamic and leakage power dominate the landscape, other forms of power dissipation
do exist. For example, short circuit or “glitching” power refers to the power dissipated during
the brief transitional period when both the n and p transistors of a CMOS gate are “on,”
thus forming a short-circuit path from power to ground. This is distinguished from dynamic
power because dynamic power typically refers to power dissipated due to discharging charged
capacitors; it would be dissipated even if transitions occurred instantaneously. In contrast,
glitching power refers to transitional power that occurs because of non-ideal transition times.

1.3 POWER-AWARE COMPUTING TODAY
From the early 1990s to today, power consumption has transitioned into a primary design
constraint for nearly all computer systems. In mobile and embedded computing, the connec-
tion from power consumption to battery lifetime has made the motivation for power-aware
computing very clear. Here, it is typically low energy that is stressed, although obviously
power/performance is also important for some embedded systems with high computational
requirements.

In desktop systems, the key constraint has become thermal issues. Excessive power
consumption is one of the prevailing reasons for the abrupt halt of clock frequency increases.
Currently, high-performance processor clocks have hit a “power wall” and are pegged at or
below 4 GHz. This is contrary to 2001 ITRS projections which predicted clocks in excess of
6 GHz by roughly 2006. Power consumption is also one important factor driving the adoption
of chip multiprocessors (CMPs) since they allow high-throughput computing to be performed
within cost-effective power and thermal envelopes.

1What is not shown in this simplified equation is the—also exponential—dependence of leakage power to the supply
voltage. This is discussed in Chapter 5.

kaxiras3 MOCL005.cls June 27, 2008 9:33

6 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

In servers and data centers, energy and thermal issues are important on an aggregate
scale. Recent internet data centers are estimated to draw in 50 MW of aggregate power or
more [175]. On the aggregate scale, reducing processor power can have high leverage; a rough
rule of thumb is that 1 W of power saved in the processor translates into an additional watt
saved in power supply efficiency, and another 1 W saved in cooling requirement reductions. A
recent report by the Boyd Co. indicates that within the United States, even the least expensive
possible data center sites will result in annual operating costs of roughly $10M per year for
a data center of 75 employees and electricity plays an increasingly major role in data center
siting costs [71]. For example, HSBC’s decision to build a large data center near Buffalo,
NY is said to have been strongly influenced by a New York State incentive package including
11 MW of cheap hydroelectric power. Likewise, Google, Microsoft, and Yahoo are all said
to be building large data centers along the Columbia River in Washington and Oregon for
proximity to inexpensive electricity [203].

Among researchers, circuits and VLSI specialists focused on the power problem much
earlier than architects. This comes as no surprise since people in circuits and VLSI came into
contact with chip power budgets well before architects. They also have more direct tools for
analyzing power issues (late in the design timeline) and direct circuit techniques to address
some of them. While architects addressed problems later than the “lower” hardware fields, their
advantage is in leverage. Addressing power issues early and holistically in the design process
has the potential for better and more adaptable power-performance tradeoffs.

By the late 1990s, power was universally recognized by architects and chip developers
as a first-class constraint in computer systems design. Today, power cannot be ignored in any
new microarchitectural proposal. At the very least, a microarchitectural idea that promises to
increase performance must justify not only its cost in chip area but also its cost in power. Thus,
much of the research described in this book was proposed in the last ten years.

1.4 THIS BOOK
The target readers of this book are engineers or researchers who are fairly fluent in computer
architecture concepts, but who want to build their understanding of how power-aware design
influences architectures. We envision a computer architecture graduate student or advanced un-
dergraduate, as well as industry engineers. We write this without assuming detailed knowledge
of transistor or circuits details, beyond the basics of CMOS gate structures.

In addition to offering background information on how and why power trends arise, we
also see the book as a compendium of basic strategies in power-aware design. While no book
of this length could enumerate all possible power-saving techniques, we try to include the most
fundamental ones known to the field as we write this in the Summer of 2007.

kaxiras3 MOCL005.cls June 27, 2008 9:33

INTRODUCTION 7

The structure of the book is as follows. Chapter 2 offers deeper background information
on power dissipation and describes the primary strategies for modeling, simulating, and mea-
suring power and related metrics. The rationale for this chapter is that one cannot optimize
power for a particular system if one lacks a clear view of that system’s power behavior. Therefore,
we view Chapter 2 as offering resources on experimental and measurement infrastructure that
every architect can tailor to the needs of their research or design.

Chapters 3 and 4 cover aspects of reducing dynamic power in CMOS computer systems.
We have chosen to arrange this material in terms of the basic equation for CMOS dynamic
power consumption: C V 2 A f . Thus, Chapter 3 covers strategies for managing power via voltage
(V) and clock frequency (f). This includes both dynamic voltage and frequency scaling, as well
as other possibilities.

Chapter 4 focuses on the activity factor (A) and capacitance (C). Activity factor is so
intrinsically tied to how architectural units are organized and used that it represents much
of the most straightforward power optimizations available to a computer architect. Other
important methods of reducing power consumption manage the capacitance (C) factor in
designs. At the most qualitative but intuitive level, shorter wires have lower capacitance; thus,
microarchitectures with simple local structures are likely to result in improved dynamic power
behavior. Such insights have driven many power-aware designs, such as memory banking
optimizations and even the overwhelming current trend towards chip multiprocessors (CMPs).
We have grouped the discussion of “A” and “C” together because they are often linked in design
strategies. For example, one can reduce the activity factor on buses or in arithmetic units by
segmenting long wires into individually controllable modules; this affects both C and A.

While dynamic power is important and represents much of the prior work in power-
aware architecture, there is no avoiding the fact that leakage energy has emerged as an equal or
greater challenge for computer architects today. Thus, in Chapter 5 we present a discussion of
techniques for lower static or leakage power in current and future computer systems. Finally,
Chapter 6 offers our conclusions.

kaxiras3 MOCL005.cls June 27, 2008 9:33

8

kaxiras3 MOCL005.cls June 27, 2008 9:33

9

C H A P T E R 2

Modeling, Simulation,
and Measurement

As the power problem has become prominent for computer architects, many ideas have been
proposed for managing power and energy issues through architectural techniques. In order to
compare these many ideas, quantitative techniques for architecture-level power modeling have
become very important. Thus, in this chapter, we discuss some of the key issues and techniques
for the field of architecture-level power modeling. This sets the foundation for later chapters
in which power-efficient ideas are discussed and compared.

2.1 METRICS
The metric of interest in power studies varies depending on the goals of the work and the type
of platform being studied. This subsection offers an overview of possible metrics, and discusses
the best practices regarding when to use them.

Energy: Energy, in joules, is often considered the most fundamental of the possible
metrics, and is of wide interest particularly in mobile platforms where energy usage relates closely
to battery lifetime. Even in non-mobile platforms, energy can be of significant importance. For
data centers and other “utility computing” scenarios, energy consumption ranks as one of the
leading operating costs and thus reducing energy usage is crucial [71, 203]

Power: Power is the rate of energy dissipation. The unit of power is watts (W), which is
joules per second. Power’s time component makes it the meaningful metric for understanding
current delivery and voltage regulation on-chip. Another related metric, areal power density,
is power per unit area. This metric is useful for thermal studies; 200 W spread over many
square centimeters may be quite easy to cool, while 200 W dissipated in the relatively small
(∼4 cm2) areas of today’s microprocessor dies becomes challenging or impossible to cool in a
cost-effective manner.

Energy-per-instruction: In some situations, however, focusing solely on energy is not
enough. For example, reducing energy at the expense of lower performance may often not
be acceptable. Thus, metrics combining energy and performance have been proposed. For

kaxiras3 MOCL005.cls June 27, 2008 9:33

10 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

example, energy-per-instruction (EPI) is sometimes used as a method of comparing energy
optimizations, particularly those that focus on general microarchitectural traits, rather than on
the runtime of a particular application.

Energy-delay product: While low power often used to be viewed as synonymous with lower
performance, that is no longer the case. In many cases, application runtime is of significant
relevance even in energy- or power-constrained environments. With the dual goals of low
energy and fast runtimes in mind, energy-delay product (EDP) was proposed as a useful metric
[85]. EDP offers equal “weight” to either energy or performance degradation. If either energy or
delay increase, the EDP will increase. Thus, lower EDP values are desirable. When comparing
scenarios that do not alter the instruction count or mix, EDP is roughly equivalent to the
reciprocal of MIPS2/Watt. Note the derivation below:

Delay = runtime
Energy = Watts ∗ runtime

EDP = Watts ∗ runtime ∗ runtime.
runtime = Instruction Count / MIPS

EDP = Watts ∗ (ICount / MIPS)2

EDP = ICount 2 ∗ 1/(MIPS2/Watt).

Unlike EPI, EDP’s inclusion of runtime means that this is a metric that improves for
approaches that either hold energy constant but execute the same instruction mix faster, or hold
performance constant but execute at a lower energy, or some combination of the two.

Energy-delay-squared and beyond: Following on the original EDP proposal, other work
has suggested alternative metrics, such as energy-delay-squared product (ED2P) or energy-
delay-cubed product (ED3P) [211, 251]. These alternatives correspond to MIPS3per Watt or
MIPS4per Watt. At a qualitative level, one can view these metrics as applying to the high-
performance arena where performance improvements may matter more than energy savings.

Delving deeper into these metrics, one can argue that ED2P makes the most sense
when considering fixed microarchitectures, but accounting for voltage scaling as a possible
energy management technique. In particular, consider the following rough trends: power is
proportional to CV 2 f , which for a fixed microarchitecture and design is proportional to V 3.
Performance, on the other hand, is roughly proportional to frequency. Since frequency varies
roughly linearly with voltage in the 1–3 V range, this means that performance is also roughly
proportional to voltage. As a result, when processors use voltage scaling as a primary power-
performance trade-off, metrics considering (perf)3 / power are the fair way to compare energy
efficiencies. This, in fact, is ED2P or MIPS3/Watt.

The broader question of how to weigh energy and performance is often answered specif-
ically in regards to particular designs, or even to particular modules and decisions within a

kaxiras3 MOCL005.cls June 27, 2008 9:33

MODELING, SIMULATION, AND MEASUREMENT 11

FIGURE 2.1: Performance/power tradoff zones. Reproduced from [84]. Copyright 2003 Intel.

design. In discussing design decisions in Intel’s Pentium M processor, Gochman et al. used a
particularly compelling graphic to convey the different options [84]. Figure 2.1 reproduces it
here.

The figure depicts performance gains (or loss) on the x-axis, and power improvements
or degradations on the y-axis. Clearly, a technique that degrades both power and performance
is of little appeal; these lie in the upper-left quadrant of the graph. The other three quadrants
contain regions that represent possible power-performance options under different constraints.
The magenta region represents the realm in which both performance and energy are improved.
The orange region represents cases where performance improves (e.g. subject to a thermal
constraint) despite overall energy loss, and the green region shows where energy improves
despite a loss in performance.

Other metrics and issues: The remainder of this chapter and book focuses on modeling
and research ideas primarily in the context of the above metrics. There are other metrics and
design goals that are also relevant, although space constraints preclude us from discussing them
in detail. In particular, we briefly discuss thermal modeling because of its relevance to leakage
energy modeling, but we cannot discuss thermal-aware design techniques in deep detail.

2.2 MODELING BASICS
This section gives an overview of modeling techniques for each of the primary power-related
issues: dynamic power, leakage power, and thermal behavior. Because issues of modeling
and simulation are particularly intertwined for leakage power and thermal behavior, we cover
simulators and simulation in these sections as well. Dynamic power simulation, however, is a
more mature and well-trodden area; as such, we cover it in Section 2.3 which follows.

kaxiras3 MOCL005.cls June 27, 2008 9:33

12 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

2.2.1 Dynamic-power Models
The most widely used and well-understood power models among architects are those that focus
on dynamic power consumption. Because dynamic power greatly exceeded leakage power until
recently, it is reasonable that early architects focused their attention on how to measure and
model its effects.

Drawing from the familiar CV 2Af equation previously presented, dynamic power models
typically focus on characterizing these terms. We start by considering a scenario in which V and
f are viewed as fixed, focusing mainly on C and A. We then move to consider other approaches
in which power predictions across technology generations (and therefore spanning values of V
and f) are attempted.

At a high level, dynamic-power models can be divided into analytical and empirical
techniques. Analytical techniques seek to express power behavior in terms of equations pa-
rameterized by module size or other characteristics. Empirical techniques, in contrast, have
focused on predicting the behavior of one possible chip design by appropriately scaling per-
module power behaviors observed for some other measured chip design. We focus on analytic
models here, but discuss empirical approaches when we touch on dynamic power simulation in
Section 2.3.

Early work in the architecture-level power modeling mainly focused on caches [20, 119,
123, 213]. This was in part due to the fact that caches represented up to 40% of the power budget
for some low-power embedded microprocessors [169]. In addition, caches are regular structures
which are easier to model. Both C and A can be fairly readily expressed using parameterizations
of cache size and organization. Thus, it makes sense that attention would be focused here
earlier.

Both capacitance and activity factor are expressions where the architect has some high-
level understanding and control, even though the ultimate details are dependent on the partic-
ulars of the circuit design chosen.

The activity factor is related both to the application program being executed (both its
data patterns and control) and to some circuit design choices. For example, for circuits that
pre-charge and discharge on every cycle (i.e., double-ended array bitlines) an A of 1 is used.
For wires that represent data buses, the activity factor can be chosen based on knowledge of
the 1/0 statistics in the data set being studied. In addition, clock gating (techniques that “gate”
the clock control signal to prevent its toggling within a particular sub-unit) reduce a sub-unit’s
activity factor during idle periods.

Estimating Capacitance: Like activity factor, capacitance depends in part on circuit design
choices. Even in relatively regular array structures, the aspect ratio, number of wire routing
layers, or other layout choices can influence capacitance. Nonetheless, with modest amounts
of knowledge about circuit design style, usefully accurate architecture-level power models are

kaxiras3 MOCL005.cls June 27, 2008 9:33

MODELING, SIMULATION, AND MEASUREMENT 13

FIGURE 2.2: The regularity of array structures such as simple caches allows them to be modeled using
a parameterized approach based on the number of bitlines and wordlines. (Figure taken from [38]).

possible. Figure 2.2 illustrates a possible model layout for array structures, and Table 2.1 shows
a set of parameterized capacitance estimators for a register file [38].

2.2.2 Leakage Models
Leakage energy did not capture the attention of architects until somewhat later than dynamic
energy. Its importance, however, has grown considerably over the past five years. In part, this
importance stems directly from the fact that leakage energy now represents 20–40% of the
power budget of microprocessors in current and near-future fabrication technologies [32, 119].
In addition, leakage energy plays a role in a harmful feedback loop with thermal issues, as we
will discuss below.

The original and still primary model of leakage behavior used by computer architects
centers around the following equation:

Ileak = µ0COX
W
L

ea+b∗(Vdd−Vdd0)v2
t

(
1 − e

−Vdd
vt

)
exp

(− |Vth0| − Voff

n · vt

)
.

In this equation, some of the parameters are clearly related to fabrication technology and
can largely be viewed by computer architects as constants. Thus, Butts and Sohi [41] created a

kaxiras3 MOCL005.cls June 27, 2008 9:33

14 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

TABLE 2.1: This Table Summarize Parameterized Equations That Express the Capacitance for
Different Key Nodes of the Cache Array in Figure 2.2. Cdiff Cgate, and Cmetal refer to the capacitance
of diffusion, gate and metal regions respectively. Adapted from [38].

Node Capacitance Equation

Regfile Wordline Capacitance = Cdiff (WordLineDriver) + Cgate (CellAccess)
∗ NumBitlines + Cmetal ∗ WordLineLength

Regfile Bitline Capacitance = Cdiff (PreCharge) + Cdiff (CellAccess) ∗ NumW dlines
+ Cmetal ∗ BLLength

CAM Tagline Capacitance = Cgate(CompareEn) ∗ NumberTags
+ Cdiff (CompareDriver) + Cmetal ∗ TLLength

CAM Matchline Capacitance = 2 ∗ Cdiff (CompareEn) ∗ TagSize
+ Cdiff (MatchPreCharge)
+ Cdiff (MatchOR) + Cmetal * MLLength

ResultBus Capacitance = 0.5 ∗ Cmetal ∗ (NumALU ∗ ALUHeight)
+ Cmetal ∗ (RegfileHeight)

model in which constants are subsumed into a clearer form, expressing Ileak as

= N · Kdesign · ktech · 10−VT/ST .

From this, Pleak can be expressed as

Pstatic = VCC · N · kdesign · Ileak.

The key insight here is that many detailed aspects of the circuit design choices can be abstracted
into the kdesign factor seen in these equations. The kdesign parameter in some sense represents the
degree of “stacking” seen by transistors in different types of circuit designs (e.g., array structures
versus static logic, etc.). The HotLeakage simulation framework [247] builds on Butts/Sohi
analytics to provide a simulation package for leakage energy.

To see how Butts and Sohi arrived at the simplified formulas, we start with the Berkeley
Predictive Model (BSIM3V3.2) formula that gives subthreshold leakage current as

IDsub = Is0 ·
(

1 − e
−Vds

vt

)
· e

Vgs−VT−Voff
n · vt

kaxiras3 MOCL005.cls June 27, 2008 9:33

MODELING, SIMULATION, AND MEASUREMENT 15

In this equation Vds is the voltage across the drain and the source and Vgs, the voltage
across the gate and the source terminal. Voff is an empirically determined model parameter
and vt is a physical parameter proportional to temperature—the exponential dependence to
temperature is immediately obvious. The term n encapsulates various device parameters. The
term Is0 depends on transistor geometry and can be written as Is0 × W/L. The Butts and Sohi
model examines and simplifies the above equation for a single device in its normal “off ” state,
where Vds = VCC and Vgs = 0. This makes the factor

(
1 − e

−Vds
vt

)

approximately 1 since Vds = Vdd � VT. By grouping more terms together, Butts and Sohi
simplify the formula to

IDsub =
(

W
L

)
× kTech × 10

(−VT
St

)
.

The simplified formula exposes only the relationship of leakage to transistor geometry, to
threshold voltage (VT), and indirectly to temperature via the s t term. Accounting for the many
(N) similarly sized transistors with similar characteristics in larger structures further simplifies
the formulas by encapsulating the various (W/L) terms of each transistor into a new parameter
kdesign. The formula for the static power consumption for the N transistors can then be expressed
as:

Pleakage = Vdd × N × kdesign × kTech × 10
(−VT

St

)
.

The parameters kdesign and kTech can be looked up from tables such as Table 2.2 for kdesign. The
number of devices, and the supply and threshold voltages are the only concerns of the architect
for estimating the leakage power of a design.

2.2.3 Thermal models
A remaining important piece of the modeling landscape is the ability to model thermal behavior.
A cyclic relationship exists between power and thermal modeling. On one hand, thermal
behavior depends on power dissipation and density, since temperature is essentially a function
of how much power is dissipated in a region versus how that region is cooled. On the other
hand, power also depends on temperature. This is particularly true due to the exponential
dependence of leakage energy on temperature as indicated in the equations in Section 2.2.2.

In addition to this cyclic dependence of power and temperature, another wrinkle in
thermal modeling concerns the timescale of interest for the model. For example, in terms of
provisioning the cooling capacity of a chip, a system, or a data center, long-term “steady-state”
temperature may be the metric of interest. In terms of either designing a microprocessor or

kaxiras3 MOCL005.cls June 27, 2008 9:33

16 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

TABLE 2.2: Kdesign parameters for Typical Circuits. Adapted from [41].

Circuit N Kdesign Notes

D flip flops 22/bit 1.4 Edge-triggered FF

D latch 10/bit 2.0 Transparent latch

2-input Mux 2/bit/input 1.9 +1.2/input over 2

6T RAM cell 6/bit 1.2 1 RW port

CAM cell 13/bit 1.7 1 RW, 1 CAM port

Static logic 2/gate input 11 Depends on speed, load, ±3

crafting OS-level management techniques, however, more localized heating information is
almost always necessary.

There are analogies between heat transfer and electrical phenomena upon which we can
build thermal models. Power dissipation results in heat, and this heat flows through regions
based on their thermal resistance (R). The amount of heat flow can be analogized to current
(I), and the heat difference between two regions on a chip is analogous to voltage (V). Because
there are time dependences in both the power dissipation and in its relationship to heat flow
and thermal impedance, a capacitance (C) is also modeled. Thus, time-dependent RC models
remain the best way to model localized thermal behavior on chip.

In some early work, TEMPEST modeled temperature based on power dissipation and
density values, but did so only for the chip as a whole, not for individual regions or architectural
units [65].

Perhaps the most important work on architecture-level thermal modeling thus far been
the HotSpot approach developed by Skadron et al. [206]. They propose and validate a compact
RC model for localized heating in high-end microprocessors. This model considers both the
lateral relationships between units on chip, as well as the vertical heating/cooling relationships
between the active portion of the silicon die and the attached heat spreader and heat sink layers
that seek to even out temperature and draw heat away from the active silicon.

There are several steps in producing a HotSpot thermal model. First, from a chip floorplan
and other technical details, one needs to deduce the R and C values that comprise the heat flow
network for the RC model. In general, thermal resistance and capacitance relate to the material’s
thickness and the surface area of heat flow. In addition, a thermal constant k represents the

kaxiras3 MOCL005.cls June 27, 2008 9:33

MODELING, SIMULATION, AND MEASUREMENT 17

material characteristics that influence heat conductivity, and another constant c represents the
material’s heat capacity:

R = t/k A,

C = c t A.

Such R and C values are computed both based on the areas (A) of different microar-
chitectural units, as well as on the areas, thickness (t), and materials of heat sinks and heat
spreaders. Thus, these RC networks can be composed automatically from parameters that give
the area and makeup of the microarchitecture and supporting heatsinks.

Once the RC network has been formed, it is translated into a set of differential equations,
and is solved numerically using a fourth-order Runge–Kutta method. Because temperature
varies slowly relative to processor speeds, the numerical solver need not be invoked on every
simulated cycle. Instead, typical approaches involve a solver roughly every 10 000 processor
cycles in order to track thermal trends on timescales of tens to hundreds of microseconds.

2.3 POWER SIMULATION
While the circuit design and design automation research communities researched CMOS
power issues earlier, architects first began studying power issues for CMOS designs in earnest
in the early to mid 1990s [88]. At first, architecture researchers interested in studying power
optimizations reported their quantitative results in terms of “proxy” metrics. For example,
Grunwald et al. studied power savings garnered by using confidence estimation to limit branch
speculation in cases where the branch was not very likely to succeed [88]. In this work, they
reported their power savings in terms of how many fewer mis-speculated instructions were
executed when confidence estimators are used.

While metrics like “mis-speculation reduction” can be useful and intuitive proxies for
reporting some results, their drawback is that they do not offer a common currency by
which to compare the power benefits of multiple distinct power-saving opportunities. Fur-
thermore, they do not extend naturally to studies of thermal issues and other power-related
problems.

For these reasons, architects in the late 1990s began working on architecture-level power
models that aim to directly estimate power and energy, just as cycle-level architecture simulators
aim to directly estimate performance.

Memory system simulation: An early example of power simulation came from the Cacti
tool. The Cacti tool was developed to study memory hierarchies in detail. While Cacti 1.0
[224] primarily provided estimates of area and latency for parameterized cache designs, Cacti
2.0 added in a dynamic power model. Because caches are almost always built as very regular array
structures of SRAM cells with supporting circuitry, it is natural that parameterized models for

kaxiras3 MOCL005.cls June 27, 2008 9:33

18 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

their behavior would include power estimates first. Subsequent versions of Cacti have refined
the dynamic power models and included leakage power models as well [217].

Whole-processor power simulators: While local power models for individual processor struc-
tures are a useful first step, processor design still required that architects be able to make high-
level, whole-processor analyses of power trade-offs, and to do so early enough in the design
pipeline that useful adjustments could be chosen. Thus, in 2000, two whole-processor power
simulation tools were discussed. SimplePower was introduced as a means of doing detailed
“whole processor” analyses of dynamic power. It focused on in-order five-stage pipelines, with
detailed models of integer ALU power as well as other regions of the chip.

Also introduced in 2000, the Wattch tool, like SimplePower, sought to provide detailed
whole-processor data on dynamic power [38]. Because it was built as an additional software
module to be used with the widely used SimpleScalar tool [40], Wattch has seen wide use
among architects. Wattch draws its cache modeling from Cacti, while providing parameterized
activity-based estimates for other units as well. Wattch simulates an out-of-order super-scalar
pipeline.

Both SimplePower and Wattch are examples of simulators based on analytic power
modeling techniques. In contrast, the IBM PowerTimer tool represents a microprocessor
power simulator based on empirical techniques [36]. Namely, PowerTimer estimates the power
consumption of a particular architectural module by using the measured power consumption of
the corresponding module in an existing reference microprocessor, and scaling it appropriate
to the size and design changes. For example, if the modeled design is identical to the reference
design except for a larger first-level cache, then all of its per-module power estimates would be
drawn from the reference chip’s measurements. For accesses to the first-level cache, the power
to be “charged” would be calculated by the reference chip’s cache power scaled by the expected
power scaling factor. This scaling factor would most simply be based on capacitance changes,
but might also include other more sophisticated effects based on cache design and layout.

Empirical power models tend to be most used in industry settings, because these architects
are able to access detailed power measurements from previous reference designs. While they
are quite useful for power projections into future variants of a design, they are more difficult for
larger design changes where the per-module proportional scaling cannot easily be applied.

2.4 MEASUREMENT
While simulation is appealing for early-stage design evaluations, it is difficult or impossible for
simulators to be deeply detailed and have sufficient speed for thorough parameter explorations.
Thus, for some studies, it becomes appealing to measure power/thermal metrics directly, rather
than simulating them.

kaxiras3 MOCL005.cls June 27, 2008 9:33

MODELING, SIMULATION, AND MEASUREMENT 19

Measuring total system power is, in fact, not particularly challenging. Data acquisition
systems or even simple ammeters can be used to collect such aggregate numbers. Likewise,
coarse-grained thermal measurements are also possible, by using software to read the on-die
temperature sensor that is sometimes made available to software [196].

Challenges do exist, however, in using real-system measurements to glean deeper in-
formation about system behavior. For example, consider the deceptively simple-looking task
of apportioning dynamic power into components that correspond to different hardware units
on the die. While off-chip ammeters can be used to deduce how much total power the chip
dissipates, there is no straightforward approach for users to determine a unit-by-unit power
breakdown. To respond to this challenge, Section 2.4.1 discusses a method in which hard-
ware performance counters are used as proxies for on-chip activity factors, in order to estimate
component-level power dissipation. The section then extends on this technique to show how
it can be used for thermal estimates as well.

2.4.1 Performance-Counter-based Power and Thermal Estimates
In essence, the simulation-based power estimators discussed earlier in this chapter use various
approaches to estimate capacitance, and then use cycle-level simulators to estimate the “activity
factors” indicating how often wires switch from zero to one or vice versa. Such approaches are
appealing because they allow power estimation before a system is built, and because they allow
one to explore parameter trade-offs to determine power’s dependence on design choices.

As an alternative to simulation, recent work has proposed methods for estimating activity
factors from hardware performance counters on live running systems [62, 114, 119]. Like
simulation, such methods still draw on other estimations for capacitance and voltage. The key
is that hardware performance counters can often serve as very accurate proxies for activity factor.

If one’s goal is to measure aggregate power dissipation averaged over several cycles, then
aggregate performance counters, such as instructions-issued-per-cycle, may offer surprisingly
good estimations with few counters required. For example, Fan et al. used such IPC estimates to
guide aggregate provisioning decisions in data centers [74]. Joseph and Martonosi used an early
version of such techniques to estimate power on an Intel Pentium Pro microprocessor [119]. For
subsequent microprocessors in which clock gating (and other techniques) mean more widely
varying power, these approaches needed to be refined in terms of how individual performance
counters were weighted and summed to provide an overall power estimate. Contreras and
Martonosi describe one such approach with offline linear estimates created based on specially
written benchmarks [62].

The techniques described above set up a relationship between total power and a sum of
performance-counter-provided activity factors, each weighted to generate accurate total power
values. While such approaches are good for tracking aggregate power as it varies in real time,

kaxiras3 MOCL005.cls June 27, 2008 9:33

20 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

they lack, however, the ability to discern where (i.e., in which units) the power dissipation is
most or least prominent. Such per-unit power attribution is useful both for guiding power-
efficient design optimizations, as well as for guiding thermal models of on-chip hotspots. For
example, a total power estimate will merely tell me if I am near or exceeding the overall chip
power budget or thermal capacity; it cannot tell me about whether I have one particular hotspot
on the chip that is nearing its local thermal limit.

Accurate and efficient per-unit power estimators can be built by exploiting the specific
hardware performance counters provided on nearly all high-performance microprocessors today.
For example, Isci and Martonosi demonstrated an accurate counter-based estimator for the Intel
Pentium 4 chips [114]. In this work, rather than aiming to provide a single total power estimate,
they instead selected 22 physical hardware blocks from a die photo, and aimed to estimate the
power of each of these units individually. Such floorplan-based per-unit estimates can be used
to drive long-running thermal studies. For a particular hardware unit i , the power estimate is
expressed as:

Power (i) = AccessRate (i) × ArchitecturalScaling (i) × MaxPower (i)
+ NonGatedPower (i).

AccessRate can be measured or deduced via hardware performance counters. The other
factors are determined by measurements using a set of benchmarks designed to isolate and
exercise units of the hardware as independently as possible. Overall, for a wide variety of both
SPEC benchmarks and desktop applications, their approach offers accuracy to within 2–4 W
over the full operating range (roughly 5–55 W) of the Pentium 4 implementation they studied.

2.4.2 Imaging and Other Techniques
In recent years, interesting direct methods for measuring chip activity have emerged based on
imaging technology. We briefly discuss these approaches here.

Thermal imaging: The central observation that drives this class of measurement techniques
is that the thermal behavior of a running microprocessor can be observed, under the right
conditions, as infrared (IR) radiation [91, 165]. The keys to such setups are in creating a system
in which: (i) the observations can be made on a running chip and (ii) the infrastructure required
to image the chip does not excessively perturb the running system.

The massive heatsinks currently used on microprocessors are clearly not infrared trans-
parent. In addition, since they spread the heat the microprocessor gives off, they make it
impossible to attribute hot spots in the IR image to particular localized hardware units. To
prepare a chip for thermal measurements based on IR imaging, the chip must be operated
without a conventional heat sink. Since this would normally cause the chip either to shut down
(we hope!) or to malfunction (we fear!), an alternative method of cooling must be used. This

kaxiras3 MOCL005.cls June 27, 2008 9:33

MODELING, SIMULATION, AND MEASUREMENT 21

alternative cooling is normally provided by pumping a liquid that is infrared transparent (such
as mineral oil) over the microprocessor.

In addition to providing dynamic cooling for the chip, the measurements also can benefit
if the chip can be thinned in order to provide a more direct imaging path to the active silicon
layer. That is, due to the bonding techniques typically used today, the active silicon layer lies
face down in the socket, with the thicker silicon wafer material above it. Thinning down this
material allows the chip to still function while allowing the imaging equipment to capture the
heating effects without spreading.

Power estimates from thermal images: Previously, we described a methodology in which
hardware performance counters first drove a power measurement from which some thermal
estimates could be deduced. Here, an opposite approach applies. Namely, from the thermal
imaging techniques just described, one can garner good still photos or videos of running chips
in which the color of the IR image corresponds to temperature. One can provide an intuitive or
qualitative sense of hotspots simply by overlaying these IR images with a floorplan of the chip:
units that are chip hotspots will be colored red [91, 165].

From these IR images, one can also provide more quantitative data regarding chip tem-
peratures and power dissipation. For example, if there are small on-chip digital thermometers,
then one can calibrate between thermal readings at a particular point on the chip versus the
detailed image data for that point on the chip. Such calibrations allow one to provide image
processing filters that calibrate the camera and the setup to provide accurate absolute (not
simply relative) temperature data.

In addition, one can back-calculate from this temperature to deduce the per-unit power
dissipation that must have led to them. For example, Mesa-Martinez et al. used an “inverse
heat transfer” solution based on genetic algorithms to “match” the collected thermal images
back to a consistent model for how per-unit power dissipation must have varied in order to
produce those images [165].

2.5 SUMMARY
Overall, this chapter has provided an introduction to the aspects of CMOS power consumption
that are relevant to computer architecture in current and next-generation designs. By summa-
rizing metrics, models, and simulation techniques, we have offered the groundwork from which
subsequent chapters can discuss power optimization techniques themselves.

kaxiras3 MOCL005.cls June 27, 2008 9:33

22

kaxiras3 MOCL005.cls June 27, 2008 9:33

23

C H A P T E R 3

Using Voltage and Frequency
Adjustments to Manage

Dynamic Power

Issues addressing dynamic power have predominated the power-aware architecture landscape.
Amongst these dynamic power techniques, methods for addressing voltage and frequency have
dominated in turn. Most of these methods have focused on dynamic adjustments to supply
voltage, clock frequency, of both, and they go under the broad title of Dynamic Voltage and
Frequency Scaling, or DVFS. This chapter discusses the motivation for these techniques overall,
and gives examples drawn from different categories of techniques.

Chapter Structure: Decisions to engage voltage and frequency scaling are made at various
levels. The decision level, the level of the control policy, defines the structure of this chapter.
Starting from the top, the system (or operating system) level, the chapter unfolds to progressively
more focused levels: program (or program phase) level and the hardware (flip-flop) level. The
following section (Section 3.1) gives an overview of voltage/frequency scaling and discusses a
number of issues pertaining to the corresponding techniques.

3.1 DYNAMIC VOLTAGE AND FREQUENCY SCALING:
MOTIVATION AND OVERVIEW

The basic dynamic power equation: P = CV 2Af clearly shows the significant leverage possible
by adjusting voltage and frequency [47, 101]. If we can reduce voltage by some small factor, we
can reduce power by the square of that factor. Reducing supply voltage, however, might possibly
reduce the performance of systems as well. In particular, reducing supply voltage often slows
transistors such that reducing the clock frequency is also required. The benefit of this is that
within a given system, scaling supply voltage down now offers the potential of a cubic reduction
in power dissipation. The downside of this is that it may also linearly degrade performance. If
the program runs at lower power dissipation levels, but for longer durations, then the benefit
in terms of total energy will not be cubic. It is interesting to note that while voltage/frequency

kaxiras3 MOCL005.cls June 27, 2008 9:33

24 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

scaling improves EDP (because the reduction in power outpaces the reduction in performance),
it can do no better than break even on the ED2P metric (and this, only when the scaling factors
for frequency and voltage are the same).

Nonetheless, DVFS is appealing first because max-power limits may welcome max-power
reductions even if the energy is not reduced much. In addition, DVFS is appealing because
often we can discern ways, as this chapter will discuss, to reduce clock frequency without having
the workload experience a proportional reduction in performance.

3.1.1 Design Issues and Overview
From an architect’s perspective, key design issues for DVFS include the following:

(1) At what level should the DVFS control policies operate? Fundamentally, DVFS ap-
proaches exploit slack. Slack can appear at different levels and various DVFS approaches have
been proposed for each level. Approaches operating at the same level share a similar set of
mechanisms, constraints, and available information. We can discern three major levels where
DVFS decisions can be made:

� System-level based on system slack: At this level, the idleness of the whole system is the
factor that drives DVFS decisions (Section 3.2). In many cases, decisions are taken
according to system load. The whole processor (or embedded system, wireless system,
etc.) is typically voltage/frequency scaled to eliminate idle periods.

� Program- or program-phase-level based on instruction slack: Here, decisions are taken
according to program (or program phase) behavior (Section 3.3 for a single clock do-
main and Section 3.4 for multiple clock domains). Instruction Slack due to long-latency
memory operations is typically exploited at this level for DVFS in single-threaded pro-
grams. In multi-core processors, the ability to run parallel (multi-threaded) programs
opens up the possibility for the parallel program behavior to drive voltage/frequency
decisions.

� Hardware-level based on hardware slack: Finally, a recent approach, called Razor, goes
below the program level, right to the hardware (Section 3.5). Razor tries to exploit slack
hidden in hardware operation. This slack exists because of margins needed to isolate
each hardware abstraction layer from variations in lower levels. This slack is exploited
similarly to the way idle time is exploited at the system level.

(2) How will the DVFS settings be selected and orchestrated? In some cases, DVFS ap-
proaches may allow software to adjust a register which encodes the desired (V , f) setting. In
other cases, the choices will be made dynamically “under the covers” by hardware mechanisms

kaxiras3 MOCL005.cls June 27, 2008 9:33

USING VOLTAGE AND FREQUENCY ADJUSTMENTS TO MANAGE DYNAMIC POWER 25

alone. In either scenario, research questions arise regarding whether to make offline (e.g.,
compile-time) decisions about DVFS settings, versus online, reactive, approaches.

(3) What is the hardware granularity at which voltage and frequency can be controlled?
This question is closely related to the question above. The bulk of the DVFS research has
focused on cases in which the entire processor core operates at the same (V , f) setting but
is asynchronous to the “outside” work, such as main memory. In such scenarios, the main
goal of DVFS is to capitalize on cases in which the processor’s workload is heavily memory-
bound. In these cases, the processor is often stalled waiting on memory, so reducing its supply
voltage and clock frequency will reduce power and energy without having significant impact on
performance.

Other work has considered cases in which multiple clock domains may exist on a chip.
These so-called MCD scenarios might either be multiple clock domains within a single pro-
cessor core [199, 200, 216, 227, 228] or chip multiprocessors in which each on-chip processor
core has a different voltage/clock domain [67]. This dimension is explored in Section 3.4.

(4) How do the implementation characteristics of the DVFS approach being used affect the
strategies to employ? Some of the implementation characteristics for DVFS can have significant
influence on the strategies an architect might choose, and the likely payoffs they might offer.
For example, what is the delay required to engage a new setting of (V , f)? (And, can the
processor continue to execute during the transition from one (V , f) pair to another?) If the
delay is very short, then simple reactive techniques may offer high payoff. If the delay is quite
long, however, then techniques based on more intelligent or offline analysis might make more
sense.

(5) How does the DVFS landscape change when considering parallel applications on multiple-
core processors? When considering one, single-threaded application in isolation, one need only
consider the possible asynchrony between compute and memory. In other regards, reducing
the clock frequency proportionately degrades the performance. In a parallel scenario, however,
reducing the clock frequency of one thread may impact other dependent threads that are waiting
for a result to be produced. Thus, when considering DVFS for parallel applications, some notion
of critical path analysis may be helpful.

Another similar question regards whether continuous settings of (V , f) pairs are possible,
or whether these values can only be changed in fixed, discrete steps. If only discrete step-wise
adjustments of (V , f) are possible, then the optimization space becomes difficult to navigate
because it is “non-convex.” As a result, simple online techniques might have difficulty finding
global optima, and more complicated or offline analysis again becomes warranted.

Because DVFS is available for experimentation on real systems [111, 112, 2], and because
it offers such high leverage in power/energy savings, it has been widely studied in a variety of
communities. Our discussion only touches on some of the key observations from the architectural

kaxiras3 MOCL005.cls June 27, 2008 9:33

26 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

research arena, but we urge readers to explore research ideas from the design automation and
other communities as well.

3.2 SYSTEM-LEVEL DVFS
3.2.1 Eliminating Idle Time
Architectural techniques for dynamic voltage and frequency scaling first appeared in the lit-
erature pertaining to the system (or operating system) level. Commercial implementations
controlled at this level are also the most common form of DVFS (e.g., Intel’s Enhanced
SpeedStep and AMD’s PowerNow!TM).

Wiser, Welchm, Demers, and Shenker, all of Xerox PARC, first published on this type
of DVFS [223]. Wiser et al. observed that idle time represents energy waste. To understand
why this is, consider the case of a processor finishing up all its tasks well within the time of a
scheduling quantum. The remaining time until the end of the quantum is idle time. Typically,
an idle loop is running in this time but let us assume that the processor can be stopped and
enter a sleep mode during this time. One could surmise that a profitable policy would be to go
as fast as possible, finish up all the work and then enter the sleep mode for the idle time and
expend little or no energy. But that is not so.

As an example, let us assume that the time needed to finish up all the work is half the
time quantum. The idle time would then be the other half. At best, if the sleep mode wastes
no energy, half the energy that would be expended in a busy quantum can be saved in this
way. Consider now the case where we have the ability to dynamically scale both frequency and
voltage. Just by slowing down the clock, the work that needs to be done can be stretched to
cover the entire quantum. In our example, assuming that the clock period is doubled (frequency
is halved) to eliminate the idle time, power consumption drops by half. Thus, the energy needed
to complete the work is the same as going full speed for half the quantum and idling for
the rest. But, on top of that we can also scale the voltage which reduces power consumption
quadratically. The end result, with DVFS, is that the more we stretch a fixed amount of work
the more we gain, thus turning idle time into opportunity cost.1

With this motivation, Wiser et al. propose three scheduling algorithms, called OPT,
FUTURE, and PAST, aiming to eliminate idle time. Their work specifically targets idle time
as it is experienced in the operating system, i.e., the time taken by the idle loop, or I/O waiting
time. Of course, when one considers very long idle periods (e.g., periods measured in seconds)
and includes components such as the display or the disk of a portable system in the accounting
for total power, the best policy is to shut down all components (since the display and disk surpass

1An important point here is that static power consumption is not taken into account in this reasoning. We will
return to this in Chapter 5 where we discuss the implications of static power in relation to DVFS.

kaxiras3 MOCL005.cls June 27, 2008 9:33

USING VOLTAGE AND FREQUENCY ADJUSTMENTS TO MANAGE DYNAMIC POWER 27

the processor in power consumption). In this situation, the scheduling algorithms described
here may not be applicable.

The scheduling algorithms studied by Wiser et al. are meant to minimize the time spent
in the system’s idle loop for short bursts of idle activity. Instead of actually implementing
these algorithms in a real system, Wiser et al. collected traces and used them to model the
effects on the total power consumption of the processor. The traces contain timestamps of
context switches, entering and exiting the system idle loop, process creation and destruction,
and waiting or waking up on events. They come from workstations running a variety of different
workloads, such as software development and other typical engineering tasks. To prevent whole
system shut-down (processor, display, disk), any period of 30s or longer with a load below 10%
was excluded from consideration.

All three scheduling algorithms are interval-based. Traces are divided into fixed-length
intervals, and the proportion of time that the CPU is active within each interval is computed
individually. At the end of each interval, the speed of the processor for the upcoming interval is
decided. The goal is to minimize—eliminate if possible—idle time. If, however, the quantum
deadline is missed, i.e., the processor cannot finish its assigned work within the quantum limits,
any unfinished work spills over to the next quantum. From the three scheduling algorithms,
the first two are impractical since they can look into the future of the trace data, while the third
is a plausible candidate for implementation.

OPT, FUTURE, and PAST: OPT is a simplified Oracle algorithm that perfectly elimi-
nates idle time in every quantum by stretching the run times in a trace. It can look arbitrarily far
into the future. It provides a reference point for scheduling all work in a power-optimal way.
However, it makes several over-simplifications. First, it does not make a distinction between
“soft” and “hard” idle time. The hard idle time is necessary waiting (e.g., for I/O) that should
not be stretched or compressed. In addition, it does not care on how long a job is delayed, as
long as it finishes by the end of the trace. This may result in very slow response times especially
for the interactive jobs.

FUTURE is a simple modification of OPT that can only look into the subsequent interval.
The repercussion of this choice is that no work is delayed past the end of the next interval. For
large intervals, FUTURE approaches OPT in terms of energy savings, while for smaller ones
it falls behind. Like OPT, FUTURE is also unrealistic for an on-line implementation, since it
still peeks into the future.

The PAST algorithm, which is the only one of the three suitable for an on-line imple-
mentation, looks into the past in order to predict the future. As with the previous algorithms,
its interval size can be adjusted for different results. PAST works under the assumption that
the next interval is similar to the current one. Although this may seem naive, PAST stands up
quite well even compared to newer, more sophisticated, scheduling algorithms [89].

kaxiras3 MOCL005.cls June 27, 2008 9:33

28 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

Based on the current interval, PAST assesses the number of cycles that the proces-
sor is going to be busy in the next interval. If the processor, because of its speed setting,
misses the deadline to complete its work in the current interval, unfinished work spills over
to the next interval. If, on the other hand, the processor completes its work before the end
of the quantum, the remaining idle time is taken into account for the speed setting for the
next interval. The speed setting policy raises speed if the current interval was more busy
than idle and lowers speed if idle time exceeds some percentage of the quantum time. These
comparisons (busy versus idle, as a fraction of the quantum) are based on empirically de-
rived parameters which lead to speed changes that smooth the transitions from high to low
frequencies.

Wiser et al. examine several voltage minima and several interval sizes in relation to the
three algorithms. PAST tends to fall behind when a light-load interval is followed by a heavy-
load interval. Unfinished work spills over to the next interval causing speed to vary more from
interval to interval until PAST manages to catch up. Because of this, it is less efficient in power
consumption than either OPT or FUTURE.

In general, there is a trade-off between the number of missed deadlines and energy savings
which depends on interval size. The smaller the interval, the fewer the missed deadlines because
speed can be adjusted at a finer time resolution. But energy savings are smaller because there is a
frequent switching between high and low speeds. In contrast, with large intervals, better energy
savings can be achieved, but at the expense of more missed deadlines, more work spilled-over,
and, as a result, a decreased response time for the workload. Regarding actual results, Wiser et
al. conclude that, for their setup, the optimal interval size ranges between 20 and 30 ms yielding
power savings between 5% and 75%.

3.2.2 Discovering and Exploiting Deadlines
Whereas the DVFS techniques of Wiser et al. are based on the idle time as seen by the
operating system (OS) (e.g., the idle loop), Flautner, Reinhardt, and Mudge look into a more
general problem on how to reduce frequency and voltage without missing deadlines [78]. Their
technique targets general purpose systems that run interactive workloads.

What do “deadlines” mean in this context? In the area of real-time systems, the notion
of a deadline is well defined. Hard real-time systems have fixed, known deadlines that have
to be respected at all times. Since most real time systems are embedded systems with a well-
understood workload, they can be designed (scheduled) to operate at an optimal frequency
and voltage, consuming minimum energy while meeting all deadlines. An example would be a
mobile handset running voice codecs. If the real-time workload is not mixed with non-real-time
applications, then DVFS controlled by an on-line policy is probably not necessary—scheduling
can be determined off-line.

kaxiras3 MOCL005.cls June 27, 2008 9:33

USING VOLTAGE AND FREQUENCY ADJUSTMENTS TO MANAGE DYNAMIC POWER 29

Flautner et al. consider an entirely different class of machines. In general-purpose ma-
chines running an operating system such as Linux, program deadlines have to do more with
user perception than with some strict formulation. Thus, the goal in their work is to discover
“deadlines” in irregular and multiprogrammed workloads that ensure the quality of interactive
performance.

The approach to derive deadlines is by examining communication patterns from within
the OS kernel. Application interaction with the OS kernel reveals the, so-called, execution
episodes corresponding to different communication patterns. This allows the classification of
tasks into interactive, periodic producer, and periodic consumer. Depending on the classification
of each task, deadlines are established for their execution episodes. In particular, the execu-
tion episodes of interactive tasks are assigned deadlines corresponding to the user-perception
threshold, which is in the range of 50–100 ms. Periodic producer and consumer tasks are as-
signed deadlines corresponding to their periodicity. All this happens within the kernel without
requiring modification of the applications.

Having a set of deadlines for the interactive and the periodic tasks, frequency and voltage
settings are then derived so that the execution episodes finish within their assigned deadlines.
The approach can result in energy savings of 75% without altering the user experience [78].

3.3 PROGRAM-LEVEL DVFS
Dropping deeper, the program and program-phase level includes all DVFS techniques that
apply to whole programs or program phases. These include both offline techniques with analysis
performed by compilers, as well as online and phase-based techniques.

3.3.1 Offline Compiler Analysis
DVFS control is exposed to the software level through instructions that can set particular values
of (V , f). These mode-set instructions are provided in nearly all contemporary microprocessors,
including Intel XScale [112] and AMD Mobile K6 Plus [2]. However, the use of these
instructions has been largely at the process/task level under operating system control. More
recent work has studied program-aware DVFS in which adjustment code is inserted into the
application executable itself.

Because DVFS adjustments incur some time and energy cost each time they are applied,
it is tempting to use offline analysis techniques to carefully plan and optimize their invocation.
The goal is to identify regions for which (V , f) adjustments can be helpful, and, where possible,
to coarsen these granularities in order to amortize the overheads of DVFS adjustment.

Much work has been done on scheduling DVFS adjustments. We focus here on several
of the more “applied” works.

kaxiras3 MOCL005.cls June 27, 2008 9:33

30 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

Profile-assisted compiler approach: Hsu and Kremer’s work provided a heuristic technique
that lowers the voltage for memory-bound sections [103]. The intuition behind their approach
is that if the processor and memory operate largely asynchronously from each other, then the
processor can be dialed down to much lower clock frequencies during memory-bound regions,
with considerable energy savings but no significant performance loss. They implemented their
technique within the SUIF2 source-to-source compiler infrastructure (gcc compilers were used
to generate object code).

The compiler algorithm is based on heuristics and profiling information to solve a
minimization problem. Using the author’s description, the problem can be stated as follows:

Given a program P , find a program region R and a frequency f (lower than the maximum
frequency fmax) such that, if R is executed at the reduced frequency f and with reduced voltage,

� the total execution time (including the voltage/frequency scaling overhead) is not
increased more than a small factor over the original execution time, and

� the total energy usage is minimized.

Candidate regions are considered to be loop nests, call sites, called procedures, statement
sequences (straight-line code), or even the entire program. Restricting regions to the above
programming constructs has the benefit of making the number of DVFS switchings tractable,
since the number of times such regions execute can be determined with reasonable accuracy
either statically or by profiling. DVFS occurs only on entering and exiting a region. Finally,
candidate regions are selected by size, so DVFS switchings occur only for significantly large
pieces of code.

To implement a compiler algorithm to solve this minimization problem, two pieces of
information are needed for each candidate region R: an estimate of its execution time at a
frequency f , denoted T(R, f), and the number of times N(R) the region executes during the
lifetime of the program. T(R, f) and N(R) are computed, depending on the programming
construct involved, according to the rules shown in Figure 3.1.

T(R, f) values for regions, that do not decompose further into smaller regions, are
provided by profiling—along with the N(R) values that cannot be computed statically.2 Using
the T(R, f) and N(R) information, compiler heuristics then select the appropriate regions to
annotate for DVFS.

Hsu and Kremer use an experimental setup to measure power in laptops (with Linux and
GNU compilers). With the help of a digital power meter and by annotating the programs with
mode-set instructions, which select DVFS settings on AMD mobile Athlon 4 and Transmeta

2The authors cite analytic techniques to compute T(R, f) given information for T(R, fmax), but these techniques
were not used in practice.

kaxiras3 MOCL005.cls June 27, 2008 9:33

USING VOLTAGE AND FREQUENCY ADJUSTMENTS TO MANAGE DYNAMIC POWER 31

R: if() then R1 else R2
T(R,f) = T(R1,f)+T(R2,f)
N(R) = N(R1)+N(R2)

R: loop()R1

if statement:

explicit loop structure:

T(R,f) = T(R1,f)
N(R) is profiled

R: call F()
call site:

T(R,f) = T(F,f)*N(R)/N(F)
N(R) is profiled

R: sequence(R1,...,Rn)
sequence of regions:

T(R,f) = {T(Ri,f): 1<=i<=n}
N(R) = N(R1) = ... = N(Rn)

F: procedure F() R
procedure:

T(R,f) = T(,f)
N(R) = { (Ri): Ri is a call site to F()}

FIGURE 3.1: Rules for deriving execution time and number of invocations for regions. Adapted
from [103].

Crusoe processors, they show concrete results for their compiler technique for total system power.
Hsu and Kremer report energy savings of up to 28% with performance degradation of less than
5% for the SPECfp95 benchmarks.

Analytic techniques: While heuristic techniques offer some benefits, subsequent work has
sought to refine these techniques toward optimal or bounded-near-optimal solutions. For ex-
ample, subsequent work by Saputra et al. provided an exact mixed-integer linear programming
(MILP) technique that can determine the appropriate (V , f) setting for each loop nest [197].
An MILP approach is required because discrete (V , f) settings lead to a non-convex optimiza-
tion space. Their technique reports improvements in energy savings compared to prior work.
However, it does not account for the energy penalties incurred by mode switching. Further-
more, the long runtimes of straightforward MILP approaches make their integration into a
compiler somewhat undesirable.

Work by Xie et al. expanded on these ideas in several ways [229, 230]. First, they
expanded the MILP approach by including energy penalties for mode switches, providing a
much finer grain of program control, and enabling the use of multiple input data categories
to determine optimal settings. In addition, they determined efficient methods for solving the
MILP optimization problem with boundable distance from the true optimal solution. While
the time and energy savings offered by the MILP approach vary heavily depending on the
application performance goal and the (V , f) settings available, as much as 2X improvements
have been shown in some cases.

kaxiras3 MOCL005.cls June 27, 2008 9:33

32 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

FIGURE 3.2: Dynamic compilation system. Reproduced from [226]. Copyright 2005 IEEE.

3.3.2 Online Dynamic Compiler analysis
While offline compiler analysis can use global program knowledge and detailed analysis to plan
DVFS adjustments, it lacks knowledge about runtime characteristics such as data inputs and
caching behavior that can greatly impact program behavior. Thus, much work has been done
on more dynamic techniques for determining where to place DVFS adjustments.

In a more recent work by Wu et al. the authors studied methods using dynamic compila-
tion techniques to analyze program behavior and also to dynamically insert DVFS adjustments
at the locations determined to be most fruitful [226]. Wu et al. implemented a prototype of this
runtime DVFS optimizer (RDO) and integrated it into an industrial-strength dynamic opti-
mization system (a variant of the Intel PIN system [159]). A block diagram of their approach
is shown in Figure 3.2.

The dynamic optimizer begins by dispatching “cold” code for execution. A monitor
determines whether this code is frequently executed. In this case, the RDO optimization is
applied along with other conventional performance optimizations of the dynamic optimizer.

The RDO flowchart is depicted in Figure 3.3. The first order of business is to determine
the “hotness” of functions and first-level loops in main(). These code regions are instrumented
for frequency-of-execution profiling. If they become “hot,” they are then considered for DVFS
optimization. To decide on the optimization, an analytic model determines whether a region is
memory-bound or CPU-bound. If the region is clearly memory-bound, it is instrumented with
DVFS mode-set instructions. This is because memory-bound code has enough slack so that

kaxiras3 MOCL005.cls June 27, 2008 9:33

USING VOLTAGE AND FREQUENCY ADJUSTMENTS TO MANAGE DYNAMIC POWER 33

FIGURE 3.3: RDO flowchart. Reproduced from [226]. Copyright 2005 IEEE.

slowing it down does not hurt the overall performance and can save power. DVFS approaches,
after all, are exploiting slack. If the code is CPU-bound, it is left alone since slowing it down
could seriously degrade the performance. If a decision for memory- or CPU-boundedness
cannot be made and the region is large enough, it is divided up into smaller regions and the
algorithm repeats for each of the smaller regions.

The analytic model determines slack in the CPU due to memory operations. The model
divides CPU execution into execution that happens concurrently with outstanding memory
operations and execution that depends on memory operations (Figure 3.4). The concurrent
execution, hidden behind the latency (tasym mem) of a memory operation can be stretched to
take up slack. The more a code region is characterized by this type of execution the slower it
can run without affecting the end performance too much. At run-time, the analytic model is
approximated using hardware performance counters. These counters provide information on
the number of retired micro-operations (µops) per memory bus transaction (which relates to
the memory latency tasym mem), and the number of completed instructions during outstanding
memory (operations which relates to the portion of concurrent execution) [226].

Power measurements were taken on an actual system using RDO on a variety of bench-
marks. The experimental setup consisted of a voltage/current measurement unit (measuring the
voltage and current drawn by the target processor), a signal conditioning unit (to reduce noise
in measurements), a data acquisition unit, and a second computer acting as a data logging and

kaxiras3 MOCL005.cls June 27, 2008 9:33

34 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

FIGURE 3.4: Slack in CPU due to memory operations. Rproduced from [226]. Copyright 2005 IEEE.

processing unit. On average, their results achieved an energy-delay product (EDP) improve-
ment (over non-DVFS approaches) of 22.4% for SPEC95 FP, 21.5% for SPEC2K FP, 6.0%
for SPEC2K INT, and 22.7% for Olden benchmarks. These represent three to five times better
results than a baseline approach based on static DVFS decisions.

3.3.3 Coarse-Grained Analysis Based on Power Phases
The previously discussed compiler approaches used detailed off-line or on-line program analysis
to discern useful DVFS adjustment points. The online techniques of Wu et al. achieved their
detailed program knowledge through relatively high-overhead dynamic monitoring. Thus, it is
tempting to look for techniques that maintain such detailed knowledge but reduce monitoring
overhead. Since most general-purpose processors include a suite of user-readable hardware
performance counters, it is possible to build up a history of program behavior from seeing
aggregate event counts.

In particular, early work by Isci and Martonosi demonstrated how these event counts can
be viewed as identifying “fingerprints” of program phase behavior [115]. Essentially, this work
aggregated power data based on different hardware counters into a summation of different
power subcomponents. If each subcomponent is treated as one dimension in a vector space,
then these so-called power vectors can be used to identify unique aspects of power behavior
that call for different management approaches.

More recently, Isci, Contreras, and Martonosi elaborated on their technique by including
a predictor table that can predict future power behavior based on recently observed values [116].
This so-called Global Phase History Table (GPHT) is inspired by hardware branch predictors,
but is implemented in software by the operating system. Like a branch predictor, it stores a
“history table” of recently measured application metrics that are predictive of proper DVFS
adjustments. For example, one prototype implementation measured “memory operations per

kaxiras3 MOCL005.cls June 27, 2008 9:33

USING VOLTAGE AND FREQUENCY ADJUSTMENTS TO MANAGE DYNAMIC POWER 35

micro-operation,” and used this as an indicator of the memory boundedness indicative of likely
DVFS effectiveness. For each pattern of past behavior stored in a history entry, a different
prediction of next-step behavior can be made. For each next-step prediction, there is a one-
to-one mapping to an appropriate DVFS setting. If the DVFS setting is different from the
current setting, then the V , f are adjusted accordingly. When guided by the GPHT, DVFS
was found to achieve EDP improvements as high as 34% for the highly variable benchmarks
that this approach targets.

3.4 PROGRAM-LEVEL DVFS FOR MULTIPLE-CLOCK DOMAINS
Some of the early architectural work on DVFS actually focused on opportunities within
multiple-clock-domain (MCD) processors. The rationale for MCD processors is that as feature
sizes get smaller, it becomes more difficult and expensive to distribute a global clock signal with
low skew through the processor die. Thus, researchers have explored globally-asynchronous
locally-synchronous (GALS) techniques.

Scaling voltage/frequency independently for each clock domain within a processor can
be done dynamically (Section 3.4.1) or statically (Section 3.4.2); both cases aim to exploit slack
in the execution of individual instructions.

Finally, the emerging architectural paradigm for deep sub-micron technologies, the
multi-core paradigm, can be considered as an MCD design where synchronous cores op-
erate asynchronously to each other. DVFS techniques for multi-cores are discussed in
Section 3.4.3.

3.4.1 DVFS for MCD Processors
In GALS approaches, a processor core is divided into synchronous islands, each of which is
then interconnected asynchronously but with added circuitry to avoid metastability. The islands
are typically intended to correspond to different functional units, such as the instruction fetch
unit, the ALUs, the load-store unit, and so forth. A typical division is shown in Figure 3.5.

In early GALS DVFS work, Marculescu and her students considered the performance
and power implications of GALS designs [216, 117]. In [117], they first predicted that going
from a synchronous to a GALS design caused a drop in performance, but that elimination of the
global clock would not single-handedly lead to drastic power reductions. In fact, from a power
perspective, GALS designs are initially less efficient when compared to synchronous architec-
tures. Their potential, however, lies in the flexibility offered by having several independently
controllable clocks. As with other DVFS opportunities, the key lies in finding inter-domain
slack that one can exploit. For example, in some MCD designs, the floating point unit could be
clocked much more slowly than the instruction fetch unit, because its throughput and latency
demands are lower. Iyer and Marculescu’s results show that for a GALS processor with five

kaxiras3 MOCL005.cls June 27, 2008 9:33

36 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

FIGURE 3.5: Synchronous versus GALS processor. Reproduced from [117]. Copyright 2002 IEEE.

clock domains, the drop in performance ranges between 5% and 15%, while power consumption
is reduced by 10% on the average. Thus, fine-grained voltage scaling allows GALS to match
or exceed the power efficiency of fully synchronous approaches.

In a similar timeframe, research from Albonesi’s group also explored DVFS opportunities
in MCD processors [199, 200]. Similar to the Iyer and Marculescu MCD division of the CPU
(Figure 3.5), Semeraro et al. divide the processor into five domains: Front end, Integer, Floating
point, Load/Store, and External (Main Memory). The division is shown in Figure 3.6 along
with the relevant clock parameters. The domains interface via queues.

The work by Semerao et al. primarily focused on the control policies by which (V ,
f) settings could be optimized for such microarchitectures. Their early work used offline
scheduling to accomplish good (V , f) settings, but subsequent work explored control-theoretic
approaches for managing MCD processors.

Offline approach: Semeraro et al. use an offline approach in [200] to select the times and
frequency values for DVFS in an application. The application is executed (at maximum speed)
in a simulator that creates an event trace. The events correspond to primitive operations in
the processor (for example, for a load instruction: fetch, dispatch, address calculation, memory
access, and commit events are traced). The events are connected with resource constraints and

kaxiras3 MOCL005.cls June 27, 2008 9:33

USING VOLTAGE AND FREQUENCY ADJUSTMENTS TO MANAGE DYNAMIC POWER 37

tnioP gnitaolFregetnI

Load/Store

External (Main Memory)Front End

L1-I Cache

L2 Cache

L1-D Cache

Load/Store QueueFP Issue QueueInteger Issue QueueInteger Issue Queue

Integer ALUs &
Register File

FP ALUs &
Register File

Main
Memory

Fetch Unit

ROB, Rename,
Dispatch

Value(s)Parameter

0.65 V — 1.20 VDomain Voltage
250 MHz — 1.0 GHzDomain Frequency

49.1 ns/MHzFrequency Change Rate
110ps, normally distributed about zeroDomain Clock Jitter

30% of 1.0 GHz clock (200ps)Synchronization window

FIGURE 3.6: MCD processor and clock parameters. Adapted from [199].

data dependencies into a temporal-ordered directed acyclic graph (DAG). A DAG is created
for an interval of 50K instructions and is then processed in two phases.

In the first phase, each event in the DAG that is not on the critical path is stretched,
as if each instruction could run at its own frequency. A multi-pass “shaker” algorithm tries to
distribute slack evenly in the DAG wherever it exists. This step concludes when all slack in the
DAG is removed and each instruction is assigned to run at one of the allowed frequencies (e.g.,
one of the 32 frequencies for the Transmeta Crusoe or one of the 320 in the Intel XScale).

Since executing each instruction at a different frequency is not practical, the second phase
processes the results of the first phase and aims to find a single minimum frequency per interval
for each domain. This is done under the constraint that each domain finishes its work with
no more than a fixed—externally set—factor of time dilation. Finally, intervals with the same
or similar frequencies are merged together to create larger combined intervals—and this is
continued recursively—with the intent of reducing the number of reconfigurations. In contrast
to the first phase where DVFS reconfiguration was considered instantaneous and for-free, in
the second phase realistic DVFS overhead (for the two processors studied) is taken into account.

Online approach: By analyzing the resource utilization of various CPU structures in [199],
Semeraro et al. discovered that there is a significant correlation between the number of valid
entries in the input queues for each domain and the desired frequency of the domain as derived
by their offline method (see above). In other words, the occupancy of these queues reveals the

kaxiras3 MOCL005.cls June 27, 2008 9:33

38 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

throughput of the corresponding domain.3 When a queue fills up—its utilization increases—the
throughput of its domain is low. The analysis of Semeraro et al. revealed that (i) decentralized
control of the different domains is possible and (ii) the utilization of the input queues is a good
indicator for the appropriate frequency of operation.

Based on the observations of their analysis, Semeraro et al. devised an online DVFS con-
trol algorithm for multiple domains called Attack/Decay. This is a decentralized, interval-based
algorithm. Decisions are made independently for each domain at regular sampling intervals.
The algorithm tries to react to changes in the utilization of the issue (input) queue of each do-
main. During sudden changes, the algorithm sets the frequency aggressively to try to match the
utilization change. This is the Attack mode. If the utilization increased by a significant amount
since the last interval, the frequency is also increased by a significant factor. Conversely, when
utilization suddenly drops, frequency is also decreased. In the absence of any significant change
in the issue queue, frequency is slowly decreased by a small factor. This is the Decay mode.

The algorithm tries to balance the utilization of the various domains independently by
varying their speeds. This, however, does not account for a natural change in the performance
of the program. To capture this effect, the performance of the processor in terms of IPC is
tracked from interval to interval. If there is an inherent change in the IPC that is not related
to frequency adjustments in the domains, then no frequency changes are allowed for the next
interval. The IPC is the only global information needed in this algorithm.

On average, across a wide range of MediaBench, Olden, and Spec2000 benchmarks, their
algorithm achieved a 19% reduction (from a non-DVFS baseline) in energy-per-instruction
and a 16.7% improvement in energy-delay product. The approach incurred a modest 3.2%
increase in cycles per instruction (CPI). Interestingly, their online control-theoretic approach
was able to achieve a full 85.5% of the EDP improvement offered by the prior offline scheduling
approach. Wu et al. extended the online approach using formal control theory and a dynamic
stochastic model based on input-queue occupancy for the MCDs [228].

3.4.2 Dynamic Work-Steering for MCD Processors
As an alternative to dynamic voltage/frequency scaling of multiple clock domains, one can
statically provide multiple components for the same function clocked at different frequencies.
For example, one can provide a fast and power-hungry pipeline and a slow but power-efficient
pipeline. With two such pipelines, the problem is no longer about selecting domain frequencies
to eliminate stack, but instead is about steering instructions to the appropriate slow or fast

3The occupancy of the instruction queue is also used for resizing it to reduce its switching activity factor as we discuss
in Section 4.6.3.

kaxiras3 MOCL005.cls June 27, 2008 9:33

USING VOLTAGE AND FREQUENCY ADJUSTMENTS TO MANAGE DYNAMIC POWER 39

pipeline to accomplish this. This is a work-steering strategy that is also revisited in Chapter 4
for effective capacitance optimizations (Section 4.13).4

Fields, Bodik, and Hill use this work-steering approach as an example of how instruction
slack can be exploited [76]. In their study, they show that there exists a significant slack in
instructions. In many instances, instructions can be delayed several cycles without any impact
on the program’s critical path and hence its performance [76]. Furthermore, they classify the
instruction slack into local, global, and apportioned. Local slack exists when an instruction can
be delayed without any impact on any other instruction. Global slack exists when delaying an
instruction does not delay the last instruction of the program (i.e., there is no impact on the
total execution time). Apportioned slack refers to the amount of slack for a group of instructions
that can be delayed together without impact on execution. Apportioned slack depends on how
it is calculated from the instructions’ individual slack [76].

To measure slack, Fields et al. use an offline analysis (similar to the Semeraro et al.
offline approach used in [200] and described in Section 3.4.1) that creates a dependence
graph of the execution taking into account both data dependencies and microarchitectural
resource constraints. Their offline approach allows the calculation of all three types of slack.
Their results show that there is enormous potential for exploiting slack by slowing down
instructions [76].

More interestingly, Fields et al. show that one can dynamically predict slack in hardware.
This is of significance since it allows for the possibility of fine-grain—on a per-instruction
basis—control policies. Online control policies discussed previously for DVFS in MCD pro-
cessors cannot treat each instruction individually. There is simply no possibility of dynamically
changing the frequency of execution individually for each instruction; instead, the frequency of
each domain is adjusted according to the aggregate behavior of all the instructions processed in
this domain over the course of a sampling interval (Section 3.4.1).

With work steering, the execution frequencies are fixed for each execution pipeline—as
is the case for the fast and slow pipelines in Figure 3.7–and the instructions are steered toward
the appropriate pipeline. All that is needed to implement work steering is to have a good idea
of the slack of each instruction. And this is where prediction comes into play. According to
Fields et al., for 68% of the static instructions, 90% of their dynamic instances have enough
slack to double their latency. This slack “locality” allows slack prediction to be based on sparsely
sampling dynamic instructions and determining their slack.

Slack prediction would not be feasible if slack could not be measured efficiently at
run-time. To determine whether an instruction has slack, Fields et al. employ an elegant delay-

4There too, multiple components are provided, offering a range of power/performance characteristics, and work
(computation) is dynamically steered according to run-time conditions and goals.

kaxiras3 MOCL005.cls June 27, 2008 9:33

40 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

FIGURE 3.7: Work steering for a fast and a slow pipeline. Reproduced from [76]. Copyright 2002
IEEE.

and-observe approach. An instruction is delayed for a number of cycles and then observed to
see if it becomes critical.

Criticality, in turn, is tested with a token that is passed from instruction to instruction,
starting from the delayed instruction, and passed to all dependent instructions. The token
is dropped if it is not passed to an instruction at the very last moment before it becomes
ready to execute. In other words, the token is dropped if it has slack. If the token is still in
existence well after an instruction is delayed, then the instruction, thus far, is in the critical
path.

Slack determined by sampling is stored, per-instruction, in a PC-indexed predictor.
This prediction is used in subsequent dynamic instances of the instruction for steering. If an
instruction’s predicted slack can accommodate the increased latency of a slow pipeline, then the
instruction can be steered to this pipeline for execution without an impact on the performance.
Fields et al. confirm this in their results, showing that a control policy based on slack prediction
is second-best, in terms of performance, only to the ideal case of having two fast pipelines
instead of a fast and a slow pipeline [76]. However, execution in the slow pipeline yields
significant benefits in power consumption.

3.4.3 DVFS for Multi-Core Processors
As chip multiprocessors (CMPs) become the predominant general-purpose, high-performance
microprocessor platform, it becomes important to consider how DVFS management can be
applied to them most effectively. One major design decision concerns whether to apply DVFS
at the chip level or at the per-core level. As with other MCD designs, per-core DVFS is
considered more expensive; it requires more than one power/clock domain per chip, and
synchronizer circuits are required to avoid metastability between domains. On the other hand,
multiple clock domains may be employed anyway for circuit design or reliability reasons, in
addition to voltage and frequency control.

kaxiras3 MOCL005.cls June 27, 2008 9:33

USING VOLTAGE AND FREQUENCY ADJUSTMENTS TO MANAGE DYNAMIC POWER 41

Research has explored the benefits of per-core versus per-chip DVFS for CMPs. For
example, on a four-core CMP in which DVFS was being employed to avoid thermal emergen-
cies (rather than simply to save power), a per-core approach had 2.5× better throughput than
a per-chip approach [67]. This is because the per-chip approach must scale down the entire
chip’s (V , f) when even a single core is nearing overheating. With per-core control, only the
core with a hot spot must scale (V , f) downwards; other cores can maintain high speed unless
they themselves encounter thermal problems.

While a multi-core processor can be used to run independent programs for throughput,
its promise for single-program performance lies in thread-level parallelism. Managing power
in a multicore when running parallel (multi-threaded) programs is currently a highly active
area of research. Many research groups are tackling the problem, considering both symmetric
architectures which replicate the same core and asymmetric architectures that feature a variety
of cores with different power/performance characteristics [146].5 Independent DVFS for each
core [15], a mixture chip-wide DVFS and core allocation [153], or work-steering strategies at
the program level in heterogeneous architectures [146, 170] are considered.

3.5 HARDWARE-LEVEL DVFS
The main premise in much of the DVFS work is that a system, a task, or a program can
be slowed down with disproportionally small impact on its performance (or the perception of
performance for interactive tasks), while at the same time obtaining significant savings in power
consumption by voltage scaling. This can only be achieved by intelligently reducing frequency
to remove slack: idle time in the system, slack in tasks with deadlines, or instruction slack due
to memory accesses in memory-bound program phases. A similar idea can be applied at the
hardware level. Ernst, et al. proposed a DVFS variation intended to remove slack in the timing
of the hardware itself. Their approach is called Razor [73].

The driving motivation is to scale the supply voltage as low as possible for a given
frequency while still maintaining correct operation. What prevents scaling the voltage below a
critical level for a given frequency is the built-in margins in a process technology. For a given
frequency, a voltage level is allowed which is safely above the lowest voltage level needed for the
worst-case process and environment variability in the design. In other words, the relation between
voltage and frequency is such that it guarantees correct operation with significant margin from
the worst-case scenario.

This, however, diminishes the value of DVFS since the useful voltage range for DVFS
shrinks with each new process technology. Going below the critical voltage level (subcritical
voltage) for a given frequency invites trouble: timing faults. Faults, however, are unlikely to

5Similarly to the architecture described in Section 3.4.2 but allowing multiple cores to be active at the same time.

kaxiras3 MOCL005.cls June 27, 2008 9:33

42 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

FIGURE 3.8: Razor flip-flop (on the left). Example operation (on the right). In cycle 2, incorrect results
of the logic stage L1 are latched in the main latch. This is detected by the Razor flip-flop and the error
is signaled in cycle 3. The error is corrected, the main latch receives the correct value from the shadow
latch and operation is resumed in cycle 4. Reproduced from [73]. Copyright 2003 IEEE.

occur because worst-case conditions appear very infrequently. On the other hand, the more
voltage is reduced below the critical level, the more likely faults become.

The idea behind Razor is to lower the voltage until timing faults start to occur. These
timing faults are detected by the hardware itself using special, “safe” flip-flops that detect
timing violations. Something analogous can be done by tuning the supply voltage during
processor operation to meet a predetermined delay through an embedded inverter delay chain.
This global approach still requires margins in the voltage levels, since it does not account for
local variations. In contrast, Razor adapts dynamically to local conditions.

The Razor flip-flop (Figure 3.8) double-samples pipeline stage values: once with the fast
clock and a second time with a time-delayed clock. This is done by using two latches. The main
latch latches the data on the fast clock. A shadow latch, controlled by the time-delayed clock,
latches the data for the second time. To guarantee that shadow latches always latch correct data,
subcritical voltage is constrained at design time to levels that allow the shadow latch set-up
times to exceed the delay of the logic—even in worst-case conditions.

The values latched by the main latch and the shadow latch are then compared with a
metastability-tolerant comparator. If the values sampled with the fast clock are the same with
those sampled with the delayed clock then no error has occurred. This is the common case. If,
however, a timing error occurred then the values do not match. In this case, an error signal is
raised by the faulting flip-flop.

The error signal restores the incorrect value of the main latch using the value of the
shadow latch. All other Razor flip-flops in the same pipeline stage are also restored (regardless
of whether they have generated a timing error). To recover the whole pipeline after a Razor
error, two techniques can be used. The first uses clock gating to stall the whole pipeline for a
single cycle so that the correct values can be restored in the flip-flops. Operation then resumes

kaxiras3 MOCL005.cls June 27, 2008 9:33

USING VOLTAGE AND FREQUENCY ADJUSTMENTS TO MANAGE DYNAMIC POWER 43

FIGURE 3.9: Pipeline recovery with global clock gating. A timing error in the EX stage results in the
MEM stage receiving the correct value too late. Global clock gating stops the whole pipeline so the
correct value can be restored in the Razor flip-flops. Operation then resumes one cycle later with the
correct values. Reproduced from [73]. Copyright 2003 IEEE.

with the correct values. This guarantees forward progress since a faulting instruction simply
continues execution in the next pipeline stage with the correct value. This technique is shown
in Figure 3.9.

If global clock-gating is not possible in an aggressively clocked design due to impact
on the cycle time, the second alternative technique: a counterflow pipelined approach—which
scales well with clock cycle—can be used (Figure 3.10). In this case, the faulting Razor flip-flop
distributes a bubble signal toward the end of the pipeline and a flush signal toward its front.
The bubble ensures that the faulting instruction will take an additional cycle to complete its
remaining stages, while the instructions following the faulting instruction are flushed.

Besides the timing errors that are detected by the Razor flip-flop, there is also a more
serious error that can happen—albeit with a very small probability. This is when the Razor
flip-flop detects that its error signal, after a timing error, is potentially in a meta-stable state.
In this case, the Razor flip-flop raises a panic signal (two cycles after the actual timing error)
to invoke higher-level control. Such an error is treated as a mis-speculation. A panic signal
from the faulting Razor flip-flop flushes the whole pipeline, including the faulting instruction,
restores the correct state, and replays the affected instructions.

FIGURE 3.10: Counterflow recovery of the pipeline after a timing fault. Flush and bubble signals are
distributed from the faulting Razor flip-flop toward the the front- and the back-end of the pipeline,
respectively. Reproduced from [73]. Copyright 2003 IEEE.

kaxiras3 MOCL005.cls June 27, 2008 9:33

44 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

FIGURE 3.11: Razor voltage control system. The error rate is measured (Esample), compared to a
reference error rate (Eref) and a voltage level is selected to minimize their difference. Reproduced from
[73]. Copyright 2003 IEEE.

Timing errors, and the more rare meta-stability errors, have a negative impact on perfor-
mance. Absence of errors, on the other hand, could mean that voltage is not scaled aggressively
enough for the frequency. The Razor voltage control system is based on monitoring the error
rate and works to maintain a constant error rate, Eref If the measured error rate Esample is less
than the reference rate, then the voltage is further scaled downwards. In the opposite case, the
voltage is increased to reduce the error rate.

Razor has been tested in real chips (modified ARM cores) and has been shown to work
well. Substantial power savings (64% reported in their first paper [73]) can be expected by
breaching the voltage margins in the designs. But lowering the voltage for any significant
gain is also bound to cause a significant number of timing errors which will then affect both
performance and energy. Performance overhead from timing misspeculations is at about 3% in
their first study.

kaxiras3 MOCL005.cls June 27, 2008 9:33

45

C H A P T E R 4

Optimizing Capacitance and
Switching Activity to Reduce

Dynamic Power

The capacitance (C) and the switching activity factor (A) in the dynamic power equation are
intimately intertwined. In fact, it is not uncommon to see the dynamic power equation written
as: P = V 2 × f × Ceffective, where Ceffective, the effective switched capacitance, is the product of
A and C. The switching activity factor, a fraction between 0 and 1, simply expresses how much
of the circuit’s total capacitance is charged and discharged—on average—during each cycle at
the operating frequency f .

Undoubtedly, architecture and microrachitecture exert fundamental influence on both
capacitance and switching activity. It is generally accepted that instruction-level parallelism
(ILP), or more precicely the complexity required to dynamically uncover and exploit ILP,
brought dramatic increases in both factors. This, coupled with the phenomenal frequency
increase in CMOS technology, resulted in the exacerbated power problem of today. The
complexity of a processor, how aggressively it exploits parallelism—in particular ILP—the
bit-width of its structures, etc., directly affect switching activity. On the other hand, the size
of a processor’s structures and how well it is organized to exploit locality (for instance, whether
functional units are clustered or not) determine the number of transistors and their intercon-
nects, hence directly affecting capacitance.

While capacitance is more effectively manipulated at the circuit and process technology
level, switching activity is effectively optimized at the architectural or microarchitectural level.
More importantly, while capacitance is determined and fixed at design time, switching activity
can change by run-time optimizations. Not surprisingly, a plethora of architectural techniques
focus on dynamically optimizing switching activity.

Chapter structure: Fundamentally, the majority of the proposed techniques aim at elimi-
nating unnecessary switching activity during computation; we call such switching excess switching
activity. The trick is to find it and eliminate it, without inordinately harming performance. In

kaxiras3 MOCL005.cls June 27, 2008 9:33

46 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

many cases, such techniques inadvertently affect capacitance—at design time. Because they can
affect both factors, more broadly, their goal is to reduce the effective switched capacitance. An
orthogonal approach to such optimizations is to dynamically steer work to structures designed
to offer a range of power/performance levels.

The structure of this chapter is based on a categorization of the excess switching ac-
tivity (and by extension a categorization of the effective switched capacitance). The following
section, Section 4.1, presents this categorization (summarized in Table 4.1) and creates the
road map for the main body of the chapter. Work steering approaches conclude the chapter
(Section 4.13).

4.1 A ROAD MAP FOR EFFECTIVE
SWITCHED CAPACITANCE

Techniques to reduce effective switching capacitance have been developed for every major pro-
cessor structure—the datapath, the ALU, the caches, the instruction scheduling hardware, and
so on. In many cases, techniques for different structures share a common line of attack because
they focus on the same root cause of excess switching activity. Motivated by this observation,
the main body of this chapter unfolds based on a categorization of the excess switching activity
(presented in Section 4.1.1).

The categorization of excess switching activity also implies a corresponding categoriza-
tion of the effective switched capacitance when one takes into account the potential impact on
capacitance. Section 4.1.2 gives a short overview on how architectural techniques presented in
this chapter can affect capacitance. However, for the rest of the chapter, we will not explicitly
refer to capacitance except in a few places where it is needed.

Finally, the chapter concludes with a section on dynamic work steering (Section 4.13).
Approaches in this class statically provide multiple units that can perform the same work but
with different power/performance characteristics. Rather than trying to optimize away excess
switching activity in a single unit, these approaches simply steer computation to the appropriate
unit according to runtime requirements for power or performance. Because any of the types of
excess switching activity can potentially be handled with dynamic work steering, we consider
this strategy to be orthogonal to the optimization techniques for excess switching activity.

4.1.1 Excess Switching Activity
To classify excess switching activity, we ask the following question: why is it there in the
first place? We distinguish a number of causes, which lead to seven different activity types.
These types are summarized in Table 4.1, along with the corresponding causes for their
existence (column two), the typical granularity where they appear (column three), a quick

kaxiras3 MOCL005.cls June 27, 2008 9:33

T
A

B
L

E
4.

1:
T

yp
es

of
sw

itc
hi

ng
ac

tiv
iti

es
th

at
ca

n
be

re
du

ce
d

to
sa

ve
po

w
er

.A
n

ad
di

tio
na

lL
in

e
of

A
tt

ac
k

th
at

ca
n

po
te

nt
ia

lly
ap

pl
y

to
m

an
y

ty
pe

s
of

sw
itc

hi
ng

ac
tiv

ity
an

d
di

ff
er

en
tg

ra
nu

la
ri

tie
s

is
D

yn
am

ic
W

or
k

St
ee

ri
ng

,p
re

se
nt

ed
se

pa
ra

te
ly

in
Se

ct
io

n
4.

13

E
xc

es
s

Sw
it

ch
in

g
A

ct
iv

it
y

C
au

se
G

ra
nu

la
ri

ty
L

in
e

of
A

tt
ac

k
E

xa
m

pl
e

T
ec

hn
iq

ue
Se

ct
io

n

Id
le

-u
ni

t
C

lo
ck

-i
nd

uc
ed

sw
itc

hi
ng

in
un

us
ed

(id
le

)u
ni

ts
Fu

nc
tio

na
lu

ni
t

C
lo

ck
ga

tin
g

C
lo

ck
-g

at
ed

Fu
nc

tio
na

lU
ni

ts
[1

1,
21

8,
15

2,
57

,5
8]

4.
2

Id
le

-w
id

th
B

it-
w

id
th

to
o

w
id

e
fo

r
ty

pi
ca

lo
pe

ra
tio

ns
C

ro
ss

se
ct

io
n

of
FU

s,
da

ta
pa

th
s,

ca
ch

es
A

da
pt

in
g

to
na

rr
ow

-w
id

th
op

er
an

ds

C
lo

ck
-g

at
ed

hi
gh

-o
rd

er
bi

ts
in

A
L

U
s

[3
7,

44
],

ca
ch

e
co

m
pr

es
si

on
[2

21
,2

35
,2

34
,2

37
,1

41
]

4.
3,

4.
4

Id
le

-c
ap

ac
ity

P
ro

ce
ss

or
st

ru
ct

ur
es

si
ze

d
to

su
pp

or
tp

ea
k

IL
P

no
tf

ul
ly

ut
ili

ze
d

in
ty

pi
ca

lp
ro

gr
am

s

L
ar

ge
pr

oc
es

so
r

st
ru

ct
ur

es
:i

ns
tr

uc
tio

n
qu

eu
es

,c
or

e
w

id
th

,
ca

ch
es

D
yn

am
ic

re
si

zi
ng

in
st

ru
ct

io
n

qu
eu

e
re

si
zi

ng
[4

2,
80

,1
82

],
ca

ch
e

re
si

zi
ng

[2
44

,8
,2

1,
68

,9
,1

68
,2

41
,

13
1]

4.
5,

4.
6,

4.
7,

4.
8

P
ar

al
le

l-
sp

ec
ul

at
iv

e
P

ar
al

le
l(

sp
ec

ul
at

iv
e)

ac
tiv

ity
fo

rs
pe

ed
C

ac
he

s,
co

he
re

nc
e

H
/W

Se
ri

al
iz

in
g

or
fil

te
ri

ng
pa

ra
lle

la
ct

iv
ity

W
ay

pr
ed

ic
tio

n
an

d
ot

he
r

te
ch

ni
qu

es
fo

rs
et

-a
ss

oc
ia

tiv
e

ca
ch

es
[9

5,
87

,1
33

,1
09

,1
83

,
24

2,
24

9,
16

8,
24

1,
13

1]
C

oh
er

en
ce

,[
17

1]

4.
9

C
ac

he
ab

le
(r

ep
et

iti
ve

)
R

ep
et

iti
ve

co
m

pu
tin

g
w

ith
th

e
sa

m
e

in
pu

ts
,

or
re

pe
tit

iv
e

m
em

or
y

ac
ce

ss
in

g

A
rc

hi
te

ct
ur

al
st

ru
ct

ur
es

:
FU

s,
ca

ch
es

C
ac

hi
ng

—
or

m
em

oi
za

tio
n

W
or

k
re

us
e

[5
6,

86
,1

07
,2

08
],

fil
te

rc
ac

he
[1

42
],

lo
op

bu
ff

er
s

[1
50

,2
4,

25
,2

32
,1

0,
11

0]
,

tr
ac

e
ca

ch
es

[1
93

,2
10

]

4.
10

Sp
ec

ul
at

iv
e

A
ct

iv
ity

w
as

te
d

on
w

ro
ng

sp
ec

ul
at

io
n

O
ut

-o
f-

or
de

rc
or

e
E

xe
cu

tio
n

th
ro

tt
lin

g
P

ip
el

in
e

&
se

le
ct

iv
e

ga
tin

g
[1

61
,1

6]
4.

11

V
al

ue
-d

ep
en

de
nt

D
at

a
va

lu
e

en
co

di
ng

no
to

pt
im

al
FU

,d
at

ap
at

hs
A

pp
ly

in
g

di
ff

er
en

t
da

ta
en

co
di

ng
B

us
en

co
di

ng
s

[1
76

,7
5,

27
,2

8,
17

3,
21

2,
26

,1
88

,5
5,

23
3]

4.
12

47

kaxiras3 MOCL005.cls June 27, 2008 9:33

48 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

description of the prevailing line of attack (column four), and example techniques used to
eliminate this type of switching activity (column five). Here, we describe each of the seven
activity types in more detail.

� Idle-Unit Switching Activity: This is excess switching activity triggered by clock tran-
sitions in otherwise unused portions of the hardware. The classic example of this type
is an ALU adder that switches every single clock cycle even when it is not producing
any useful results. The straightforward solution is to gate the clock to the whole unit
(Section 4.2).

� Idle-width switching activity1: This type of activity is the result of a mismatch in
the implemented width of various processor structures (datapaths, ALUs, register files,
caches) and the actual width used in many common operations. For example, operating
on 8-bit quantities in 32-bit hardware entails unnecessary switching simply because the
original design is wider than what is actually needed for such operations. The solution
is to dynamically adjust the hardware to narrow width operands. Techniques dealing with
this type of activity encompass datapaths, sequential logic (Section 4.3), and caches
(Section 4.4). Value compression also falls in this category, considering compressed
values as a special case of narrow-width values (since all the significant information is
carried with fewer bits).

� Idle-capacity switching activity1: Another type of “over-provisioned” activity results
when a program does not use the provided hardware structures in their entirety. This
is not to say that the original design is over-provisioned in all cases. In fact, processor
structures are finely (and laboriously) balanced to provide peak performance for target
workloads. Rather, the wording is meant to stress that sometimes there is a mismatch
between what is offered and what is needed and this creates opportunities for dynamic
capacity optimizations. Idle-capacity switching activity is especially evident in large
CAM structures (e.g., instruction queues), where searching entails activity proportional
to size. Again, this type of activity can be avoided by resizing structures to match program
behavior (Section 4.5). Often, dynamic resizing also affects capacitance requiring the
segmentation of long wires into smaller segments. Relevant techniques for reducing
the switching activity of the instruction window hardware, the core (as a whole) and
the caches are presented in Sections 4.6, 4.7, and 4.8, respectively.

1Idle-unit, and idle-width/idle-capacity are similar to some degree—useless activity that can be eliminated—but a
distinction is made so that the first (unit) concerns excess activity in whole units or structures and the last two
(width and capacity) concern excess activity in slices across units or structures. The distinction is subtle and has to do
with program behavior: idle-unit switching activity has to do with what resources the program does not use in their
entirety; idle-width or idle-capacity switching has to do with partial use of resources.

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 49

� Parallel switching activity: Significant activity is also expended in parallel for
performance. An example is the parallel search of all the ways of an associative cache
while it is known beforehand that all but one—at most—will fail to produce a hit
(Section 4.9). Another example is the parallel activity in snoopy caches that keeps them
coherent. Some of this parallel switching activity can be eliminated at the expense of
some performance. In contrast to unnecessary or over-provisioned activity which, theoreti-
cally, can be eliminated without an impact on performance, reducing parallel switching
activity requires sophisticated schemes that trade performance for power (Section 4.9).

� Cacheable switching activity: Repetitive switching activity can be avoided if it relates
to operations whose results can be cached and reused. The repetitive nature of this
switching activity is due to program locality. Once we recognize such behavior, we
can convert computing activity to cache lookups, which are designed to use less power
on average (Section 4.10). A real-world example are the trace caches in the Intel
P6 architecture, which are intended to avoid expensive decoding/uop translation of
frequently reappearing IA-32 instructions. Caching cache operations (reads and writes)
lead to techniques such as filter caches or loop buffers (Section 4.10).

� Speculative switching activity: This type of activity is unique to out-of-order proces-
sors supporting speculative execution. Speculatively executing incorrect instructions
is wasted activity. The line of attack here is to throttle speculative execution when the
confidence for its usefulness is low (Section 4.11).

� Value-dependent switching activity: Power consumed in this case depends on the actual
data values. Thus, a different encoding of the data can potentially reduce power con-
sumption. Although switching activity in circuits largely depends on their inputs (e.g.,
the switching activity of an adder depends on what it adds), one of the most successful
areas for applying data encodings is data communication. The prime example is bus
switching activity where power is consumed only if bus lines are switched to different
logic values (Section 4.12). In this case, a different data encoding can reduce bus line
transitions.

4.1.2 Capacitance
The total capacitance of a chip, C, does not change dynamically; it is fixed at design time.
Architecture, microarchitecture, and circuit design, however, do influence the magnitude of
C by dictating both the total number of transistors and their interconnect. In an imple-
mentation, floorplanning and place-and-route methodologies also play a significant role in
determining C, affecting the actual length of the wires on chip, but we do not examine
them here. We limit our discussions on how architecture affects C—for example: via the

kaxiras3 MOCL005.cls June 27, 2008 9:33

50 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

size of structures, via locality, or by breaking up larger monolithic structures into smaller
chunks.

While the total capacitance of a chip depends on both the capacitance of its transistors
and the capacitance of its wires, the latter becomes increasingly important with every process
generation. The dynamic power formula actually describes the power expended by charging
and discharging the node capacitance at the output of every logic gate. Burd and Brodersen
[39] describe this capacitance, CL, as: CL = CW + CFixed.

The first term, CW, is the product of a technology constant and the device width, W .
For a single node, CW consists of the input capacitance of the subsequent gates plus some of
the diffusion capacitance of the node’s output. Although there is a significant control over the
device width W , its optimization becomes a complex interplay between power and delay which
is best handled at the cicruit level.

Architecture, on the other hand, largely determines the number of nodes required in a
design (e.g., structure sizes) and their fan-out. Some low-power architectural techniques aim to
reduce the total effective capacitance by adding more hardware which raises the total capacitance.
The goal in this case is to reduce the overall switching activity enough to produce net gains in
power consumption.

The true playground for the architect is the second term, CFixed, which is composed
of the remaining part of the diffusion capacitance of the gate’s output (not dependent on
W) and the capacitance of the (wire) interconnect connecting the gate’s output to the inputs
of subsequent gates. Wire capacitance can be reduced by effective placement and routing,
but also by architectural choices. More importantly, reducing wire capacitance yields benefits
simultaneously in power and speed (latency).

Wire capacitance directly affects lanetcy which is determined by the wire’s R × C product.
Architectural techniques to aleviate latency (for example, clustered functional unit organiza-
tions, multiscalar-like architectures [209], NUCA caches [140], tiled CMPs, etc.) also affect
C. Consider, for instance, that a non-uniform cache architecture (NUCA) breaks up large
monolithic memory banks into smaller chunks to address long wire latencies found in bit-lines
and wordlines. In the process, however, this changes the effective capacitance of the cache.

Besides large-scale architect ural choices that enhance locality (i.e., promote the use
of shorter wires), many low-power architetcural techniques require the partitioning of large
structures into smaller segments. Such techniques are commonly based on two circuit-level
techniques that affect wire-capacitance: wire partitioning and bit-line segmentation.

� Wire partitioning: This technique breaks up long wires in order to reduce their wire
delay. The resultant segmented wire can be shortened by electrically “turning off” part
of it. This eliminates switching in the disabled part, and reduces the capacitance of the
active part (see “Sidebar: Wire Partitioning”).

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 51

� Bit-line segmentation: This technique reduces the apparent capacitance of a long bit-
line, as seen by the memory cells and the peripheral circuitry (precharge circuits and
sense amps). The net effect is that for the same cache activity, less capacitance is
switched. This technique is further described in “Sidebar: Bit-line Segmentation”.

4.2 IDLE-UNIT SWITCHING ACTIVITY: CLOCK GATING
The techniques presented in this section aim to reduce or eliminate excess activity that does
not have any effect on the computation being performed. This type of excess activity appears
at different granularities: from the tiniest circuits and individual flip-flops, to whole functional
units, or even larger structures and whole subsystems (e.g., memory, I/O, CPU). Idle-unit
switching activity is caused by the clock being fed to an idle unit—at any of the granularities
mentioned above—which, for that particular time, does nothing useful with respect to the
computation being performed.

Clock gating: Gating the clock to the particular idle unit using a control signal is the way
to eliminate such a switching activity. Clock gating is the central mechanism used in many of the
techniques and policies that we discuss later in this chapter. However, we make a distinction
between the mechanism of clock gating and the high-level policies that make use of this
mechanism at various granularities. Higher-level policies are described according to the type
of excess activity they were destined for. For instance, the following two applications of clock
gating are not simply lumped under the current heading but are explained elsewhere.

� Value gating, which is presented in Section 4.3, has to do with the unused width in the
datapath in the presence of narrow-width operands.

� Pipeline balancing, which is presented in Section 4.5, is a way to adjust the issue width
of an out-of-order microarchitecture to fit program needs.

In both of these examples, it is the high-level policy which engages clock gating that is
of interest and not the clock gating mechanism per se. In this section, we concentrate solely on
the mechanism of clock gating as it applies to basic circuits, to larger logic blocks, and finally
to the processor core.

4.2.1 Circuit-Level Basics
At the granularity of a small circuit or an individual flip-flop, clock gating reduces power
by preventing unnecessary charging and discharging of the circuit’s capacitances [152]. For a
flip-flop, the capacitance of interest is the cumulative capacitance connected to the clock. This
capacitance, shown as Cg in Figure 4.1, is charged and discharged in every clock cycle. Using
an AND gate to gate the clock with a control signal, we replace the capacitance of the flip-flop
with the capacitance of the AND gate when the control signal is 0: the AND gate transistors

kaxiras3 MOCL005.cls June 27, 2008 9:33

52 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

clk

data out

ctrl

data out
clk

Pull-Down
Logic

In

Out

Pull-Down
Logic

In

Out

ctrl
clk

clk

CL

CLCg

Cg

Cg

Cg

FIGURE 4.1: Clock gating in flip-flops and dynamic cells.

switch with the clock, but the flip-flop transistors do not. Since the capacitance of the gate is
much smaller than that of the flip-flop, power is saved.

For logic we distinguish two cases: static and dynamic (domino) logic. For static logic,
to eliminate any switching it is enough to prevent the inputs from changing. Usually, this
can be accomplished by clock gating the input latches (or flip-flops). However, in the case of
dynamic logic, which constitutes the bulk of the high-performance logic in a processor, things
are different. Power can be consumed even if the inputs to the circuit do not change. In dynamic
logic, the output is precharged to Vdd and a pull-down network can discharge the output
node to Gnd if needed. So, if the logic function implemented by the circuit evaluates to 0, its
output node will be charged and discharged in every cycle, even with constant inputs. Thus,
in a dynamic logic cell, besides the capacitance connected to the clock (Cg), its own output
capacitive load (CL) comes into play and can switched (precharged and discharged) every
cycle.

At this granularity, clock-gating can be applied at the Register Transfer Level (RTL)
with simple transformations on the unoptimized designs. For example, in flip-flops where the
input is guarded by a condition, this condition can be used to gate the clock instead (Figure 4.2,
left side). When such a flip-flop is part of a pipeline, the same condition can be propagated to
gate subsequent stages (Figure 4.2, right side) using additional latches that are always clocked.
Because additional hardware is required for clock gating, the benefit should be large enough to
warrant it. Today, such transformations are routinely applied by all major RTL compilers. In
contrast, at coarser granularities, high-level control policies are needed to decide when to gate
the clock to whole blocks.

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 53

cond

in out

clk

in out
clk

cond

cond

in out

clk clk
Combinatorial

circuit

in
clk

cond

Combinatorial
circuit

out

clk
clk

FIGURE 4.2: Automatic clock gating transformations at the RTL level.

4.2.2 Precomputation and Guarded Evaluation
At a coarser granularity, at the level of a logic block, systematic approaches for clock gating
have been proposed. Two prominent techniques are precomputation [11] and guarded evaluation
[218].

Introduced by Alidina, Monteiro, Devadas, Ghosh, and Papefthymiou, precomputation,
as the name suggests, aims to derive a precomputation circuit for a logic block. The precom-
putation circuit under some condition subsumes the operation of the larger logic block. One
example would be a multiplexed precomputation architecture in which a large logic block F is
split into two new separate blocks F(x = 0) and F(x = 1), where x is a control variable that also
drives the output multiplexor for these two blocks. Only the block producing the output needs
to be evaluated, while the operation of the other block can be gated by x.

In contrast, guarded evaluation, proposed by Tiwari, Malik, and Ashar, aims to shut
down—clock gate—part of the original circuit which, under some condition, is not needed in
evaluating the final output. The idea (shown in Figure 4.3) is to find a subset F of the gates of
the original circuit that generate a signal x. If there is a readily available signal S that determines
whether the evaluation of the signal x has any effect on the final output of the whole circuit,
then S can be used to clock gate F . In other words, S determines whether x is a don’t care for the
final output. If x is a don’t care, F need not switch for the correct evaluation of the output. Even
if S is not available at the start of the computation, it can still be used to advantage in stopping
the evaluation of F . However, in such a case, partial evaluation of F takes away some of the
power savings. Tiwari et al. develop a theoretical framework and the related algorithms for
automatically determining parts of a circuit that can be disabled on a per-cycle basis. Applying
their methodology on a number of benchmark circuits, the authors show substantial power
savings.

kaxiras3 MOCL005.cls June 27, 2008 9:33

54 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

x
output

Combinatorial Circuit

S

F x
output

Combinatorial Circuit

S

F

GUARDED EVALUATION of F

Guard Latches

FIGURE 4.3: Guarded evaluation: a signal S determines when the output x of a set of gates F is a don’t
care for the generation of the final output. S can be used to gate the inputs to F, effectively shutting
down F when it is not needed for the evaluation of the final output. Adapted from [218].

4.2.3 Deterministic Clock Gating
At a still higher level, at the level of processor core, deterministic clock gating—gating the
clock to processor structures when they are known to be idle—provides noticeable power sav-
ings without performance loss. It safely improves EDP by not compromising performance
[152]. With perfect clock gating, power savings (over the unoptimized design) are propor-
tional to the average part of the hardware that a program leaves idle during each cycle of its
execution.

Although the idea is straightforward and used in actual processors from early on [58],
its application on a superscalar pipeline was not published until 2003. In the mean time, a few
predictive clock-gating techniques had already been proposed (we will discuss some of those
later in this chapter). Li, Bhunia, Chen, Vijaykumar, and Roy give a detailed description of
deterministic clock gating in a superscalar pipeline [152]. They consider a high-performance
implementation using dynamic domino logic for speed. This means that—besides latches—the
pipeline stages themselves must be clock-gated. As per our discussion above, it is not enough
to stop their inputs from changing; their clock must be stopped as well.

In both cases, the deterministic nature of clock gating stems from the ability to deduce
a few cycles in advance the idleness (or use) of a latch or a pipeline stage. Once a decision to
stop the clock is made, it is carried via additional (always clocked) latches to the correct stage or
latch and delivered at the right cycle. Clock gating control proceeds down the pipeline similarly
to a bubble.

Figure 4.4 shows the 8-stage, superscalar, pipeline used by Li et al. in their study [152].
The pipeline stages and latches that can be deterministically clock-gated are shown shaded.
The decision to gate a stage (or the latches of a stage) must be taken at a previous pipeline
stage—i.e., well in advance of the cycle that is gated.

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 55

L1

F
et

ch
 (

IF
)

L2

D
ec

od
e

(I
D

)

L3

R
en

am
e

(R
N

)

L4

Is
su

e
(I

Q
)

L5

R
eg

 R
ea

d
(R

F
)

L6

E
xe

cu
te

 (
E

x)

L7

M
em

or
y

(M
em

)

L8

W
rit

eB
ac

k
(W

B
)

D-Cache
Decoder

Latch clock-gating control

Pipeline stage clock-gating

Latch clock-gating control

“Extended” latches

FIGURE 4.4: Deterministic Clock Gating. Pipeline latches and pipeline stages that can be clock-gated
are shown shaded.Adapted from [152].

The Fetch and Decode stages and their latches are never clock-gated since instructions
are needed almost every cycle. Decode stage information (i.e., number of decoded instructions)
determines the glock gating of the issue latches (L3).2 Unfortunately, there is no time to gate
the L2 latches by the time this information is available. Although the Rename stage could be
gated, it is also left clocked.

Decode stage information can be used to clock-gate up to the Issue stage. There, in-
structions are buffered in an instruction queue. Further power optimizations for the instruction
queue are presented in Section 4.5. Every cycle, a decision is made anew by the scheduler on
which instructions to forward to the next stage for execution. This information, passed via the
“extended” always-clocked latches, can now be used to clock-gate all the subsequent pipeline
latches, as well as the execution units, the data cache—in particular its ports—and the result-bus
drivers.

Issue-stage information comes too late to clock-gate the Issue-latches themselves (L4)
or the Register Read stage, but on time to clock-gate the rest of the latches (L5, L6, L7, and
L8). Similarly, execution units can be clock-gated with Issue-stage information. At issue time,
we know what functional unit is needed and by when.

Load/store instructions determine the clock gating for the data cache. Depending on the
number of memory accesses during a cycle, data cache ports—essentially the dynamic logic
of the decoder and its wordline drivers—are clock gated. Although this is a straightforward

2A similar concept but at a finer granularity is used to clock gate the unused width of the datapath; this concept is
presented separately in Section 4.3.

kaxiras3 MOCL005.cls June 27, 2008 9:33

56 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

application of clock gating, more sophisticated techniques to reduce cache power are presented
in Sections 4.4 and 4.9.

Finally, information from the Execute stage is used two cycles later to clock-gate the
Writeback stage. In the Writeback stage, data is put on the result bus and routed to the
Instruction queue to wake up any waiting instructions. Clock-gating in the Writeback stage
is somewhat different than in other dynamic-logic stages. Power is consumed only when bus
lines switch logic levels. Additional techniques to reduce bus switching are presented in Section
4.12. To prevent spurious switching when the result bus is idle, the data latches feeding the
bus-line drivers are clock-gated to shield bus lines from any changes.

Li et al. evaluate deterministic clock gating (DCG) [152] with Wattch. By applying
DCG to all the latches and stages described above, they report power savings of 21% and 19%
(on average) for the SPEC2000 integer and floating point benchmarks, respectively. They also
compare deterministic clock gating to a predictive clock gating technique, Pipeline Balancing
(PB) [19], which is presented in detail in Section 4.7. Pipeline Balancing adjusts the width of
the superscalar pipeline by gating functional unit clusters to match the needs of programs. Being
a coarser grain technique, it misses some of the opportunities to gate idle hardware, resulting—
according to Li et al.—in power savings of less than 10%. PB, being also a predictive technique,
can also err and negatively affect performance (incurring a 2–3% slowdown on average) which
is why DCG fares even better (compared to Pipeline Balancing) in terms of EDP.

4.2.4 Clock gating examples
Today, virtually all processor designs use clock gating to some degree. It is interesting that
not only low-power designs but also many high-performance processors utilize extensive clock
gating because of its nonextant impact on performance. Two prominent examples (one high-
performance, the other low-power) are the IBM’s Power5 [57] and Intel’s XScale processors
[58].

Power5: Dynamic clock gating is extensively used in this high-performance IBM pro-
cessor [57]. According to IBM, the use of clock gating yields a reduction in switching power
by more than 25% without affecting either performance or frequency. The larger the unit that
is clock gated, the more likely it is to cause di/dt problems, i.e., large swings in the current
of the power rails that charge these units when the clock signal is reinstated. For this reason
POWER5 implements fine-grain gating domains, limiting the induced noise. All clock gating
events are programmable, which allows extensive control over clock gating. Figure 4.5 shows a
clock gating circuit (adapted from [57]) of the Power5. There are both global and local clock
gating enable signals but the actual gating decision is taken by logic dedicated to each gated
unit. This logic produces the Dynamic Stop signal depending on the usage characteristics of the
gated unit.

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 57

enable

Dynamic Stop

Mesh clock

C2 latches

Scan-only
latches Local disable

Global disable

Gated c1

clock

LOGIC

FIGURE 4.5: Clock gating in the Power5. Adapted from [57].

XScale core: The Intel Xscale processor is a low-power processor boasting an impressive
DVFS range. While its low power abilities come mainly from DVFS, it is also highly optimized
for low power at the circuit and architectural levels [58]. The design of the processor is mostly
static CMOS logic supporting full clock stop. The processor implements three power-saving
modes (besides its extensive DVFS abilities): Idle mode (full clock stop via clock gating), Standby
mode which stops the phased locked loop (PLL) and puts the processor in reverse body bias for
low leakage, and finally Sleep mode, which does not even retain state.

The low-power design features of an Xscale core are detailed by Clark et al. [58]. At the
circuit design level, the implementation utilizes pulse-clocked latches instead of ordinary master–
slave latches, cutting down on clock power consumption by 30%. Pulse-clock latches do not
need explicit clock gating (as was described in Section 4.2.1 for ordinary flip-flops) and result
in less switching activity for the sequential elements they feed.

Clock pulses to drive the pulse-clocked latches are generated by distributed units called
Local Clock Buffers (LCBs), which are fed by a balanced global clock network. Clock gating
in XScale is implemented at the LCBs. Each LCB has enable signals which can stop the pulse
generation. Because of the overhead of pulse generation and clock gating, each LCB must feed
at least five latches. This is the smallest unit in the Xscale core that can be individually clock
gated.

Clock gating in the Xscale is implemented at three different levels. First, at the PLL
to implement the processor-wide Idle mode by halting all clock activity; second, at the global
clock level (GCLK) with 83 unique enable signals; third at the individual LCB level with 400
distinct enable signals [58]. Although no further details are disclosed for the policies to engage
clock gating, deterministic clock gating described above can be easily implemented in such a
framework.

Xscale cache: Architecturally, the Xscale is a simple, single-pipeline, in-order processor.
The pipeline is 7-stage for integer operations, 8-stage for memory, and 9-stage when executing
the compact ARM Thumb instruction set. The pipeline is optimized for the high-frequency
operation and its low complexity makes it very power efficient.

kaxiras3 MOCL005.cls June 27, 2008 9:33

58 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

wordlines

data
array

sense amps

CAM
tag

...

align & output

wordlines

data
array

sense amps

CAM
tag

...

align & output

BANK N

wordlines

data
array

sense amps

CAM
tag

...

BANK 0

tag offset

align & deliver

BANK 1

Cache enable

Bank0 enable

EGCLK
CAMCLK0

EGCLK

GCLKA0

GCLKB0generation

A & B
clock

Bank1 enable

BankN enable

...
1KByte

FIGURE 4.6: 32-Bank CAM-tag cache in Xscale. Adapted from [58].

One of Xscale’s distinguishing architectural features for low power is its CAM-tag
organization of its 32KB instruction and data caches. A CAM-tag cache organization (as
opposed to a RAM-tag organization) combines address decoding with tag comparison in one
step. It allows highly associative caches (e.g., 32-way in the Xscale) with very low miss rates
while, at the same time, being very power efficient at that performance level [244].

Figure 4.6 shows the organization of a 32KB cache in the Xscale. The cache comprises 32
independent banks of 1KB each. Each bank is composed of a CAM-tag array and a data array.
A tag match in the CAM drives the corresponding wordline of the data array. The cache is
extensively clock-gated: only one of the 32 banks (1KB) is enabled during an access. This limits
the CAM rows that are searched to the rows of a single 32-way set. Once the clock for the
CAM tag match of a bank is gated (the CAMCLK in Figure 4.6), no additional clocks can be
generated for that bank (i.e., clocks A and B in Figure 4.6) inhibiting any further activity. Clark
et al. emphasize that this extensive clock gating goes beyond any previous design in making
this a very power-efficient cache [58].

4.3 IDLE-WIDTH SWITCHING ACTIVITY: CORE
Idle-Width switching activity is the excessive switching activity which arises from a mismatch
between the designed bit-width of a processor and the actual bit-width needed in frequently

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 59

occurring operations. It is specific to operations, i.e., it appears when operations are performed—
whether ALU or memory operations (e.g., cache reads and writes). The main approach to
address this type of activity is to dynamically detect narrow-width operands and to either adapt
the width of the machine accordingly or, alternatively, pack multiple narrow-width operations
together. This goes for both the datapath, which we discuss here, and the caches discussed in
(Section 4.4).

The meaning of “narrow-width” has changed over time. Starting from a simple
definition—a value having only few significant bits in the low-order bit positions—the term
evolved to significance compression by relaxing some of the initial constraints; full-fledged frequent
value compression, that creates “narrow values” in caches, is a small step further.

4.3.1 Narrow-Width Operands
One of the most prominent characteristics of a processor is the data width for which it is
designed and built. While there are plenty of older-generation low-power, low-performance,
8-bit processors, most recent designs are either 32- or 64-bits wide. Quite often, however, this
width is not exercised in operations. For instance, most address offsets are small and can easily
fit in 16 or even 8 bits [96], so address arithmetic does not use all of the provisioned width of
the machine. The difference between the provisioned width and the width of commonly used
operands is increased with the move to 64-bit architectures where most of the width of the
datapath remains unused.

Multimedia applications also use many small operands. In fact, this has been the moti-
vation behind SIMD ISA extensions such as Intel’s MMX and SSE/2/3, IBM’s AltiVec, and
others [187, 66]. These multimedia ISA extensions pack multiple sub-word operands in the
width of the machine and operate on all of them in parallel.

Brooks and Martonosi were among the first to propose techniques addressing Idle-
Width switching activity [37]. The motivation in their work is the abundance of narrow-width
operands in integer and multimedia applications. Figure 4.7 reproduces some of the relevant
statistics from their work for applications in the SPECint95 and the MediaBench benchmark
suites. The statistics show operand widths in the 64-bit Alpha ISA (with the DEC cc compiler
using aggressive optimizations). The left graphs show that a respectable portion (50%) of the
operations have both their operands “narrow” (16-bit wide or less). Furthermore, very few
operations have operands wider than 33 bits in a 64-bit machine (middle graph).

Exploiting narrow-width operands can be done in one of two ways:

1. By disabling the unused width of the hardware and eliminating switching in the
hardware slice that does not carry significant bits.

kaxiras3 MOCL005.cls June 27, 2008 9:33

60 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

FIGURE 4.7: The width of operands in SPECint95 for the 64-bit Alpha ISA From [37], Copyright
1999 IEEE.

2. By packing more than one narrow-width operation in the full width of the hardware.
Although this does not reduce power, it improves the performance and energy per
operation, resulting in better EDP.

Although these two techniques can share a common infrastructure in determining
narrow-width operands, each serves a different purpose—the first directly reduces power while
the second aims to increase performance. Both can co-exist in an implementation and either
one can be activated at any given time according to system-wide needs. There is also the
possibility of using both techniques concurrently, packing operations whenever possible but
disabling high-order bits of the ALU when there is only a single (narrow-width) operation
passing through.

Dynamically detecting narrow-width operands: Data in Figure 4.7 show that applications
have operands whose significant bits span the full range of bit widths.3 So where is the line
drawn between narrow and wide? Initially, a fixed division at 16 bits was proposed: anything
16-bit wide or less is defined as narrow width and is treated as a 16-bit quantity; anything
greater than that is taken to be a full 64-bit operand [37]. As Figure 4.7 attests, this division
defines about one-half of the operands as narrow.

The detection of narrow-width operands is accomplished dynamically (although static
compiler analysis can also be a useful tool). Every value created in the ALU or loaded from the
cache is checked for its effective size. If 48 of its leading bits are all zeros or ones (for a two’s
complement negative value), it can be represented and manipulated with just its lower 16 bits.
In this case, the value is tagged as narrow. A single bit “width” tag follows the value throughout
the machine.

Value gating: disabling the unused width: This technique directly reduces power by elimi-
nating useless switching. This is done by disabling switching in the unused parts of the ALU

3Note that, for now, we assume that significant bits are strictly low-order bits. Subsequently, we relax this restriction.

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 61

A
Latch
High

A
Latch
Low

16

48

CLK

CLK
A-zero-48

A63-16

A15-0

A
Latch
High

A
Latch
Low

16

48

CLK

CLK

B63-16

B15-0

FU

0

16

Result
(to registers)

64

48 1

48

B-zero-48

Operand A

Operand B Zero
Detect

Result-zero-48

FIGURE 4.8: Clock-gating ALUs for narrow-width operands. Adapted from [37].

if both operands of an operation are tagged as narrow [37]. Potentially, part of the ALU could
be safely disabled even if only one of the arguments is narrow but it would be too complicated
to guarantee this beforehand. If both arguments are narrow, only their 16 lower bits are latched
on the ALU latches. This ensures that no switching occurs for the 48 upper bits and is akin to
clock gating the unused portion of the ALU (for static logic). To create the correct wide result,
the appropriate bits (zeros or ones) are multiplexed on to the result bus. This technique yields
significant power savings for the CPU’s integer unit comprising of an adder, a booth multiplier,
bit-wise logic, and a shifter. Specifically, in an Alpha-class, 4-instruction-wide superscalar,
the average power consumption of the integer units can be reduced by 55% and 58% for the
SPECint95 and the Mediabench benchmark suites, respectively [37].

Operation packing: packing narrow-width values: While Value Gating adjusts the width
of the machine to the operand width, in this technique two operations with narrow-width
operands are simultaneously issued to a single full-width ALU. This can increase performance
(if there is contention for the ALUs) without incurring significant power overhead (since
switching activity remains approximately the same) and as a consequence improve EDP.

The implementation is simple: issue logic detects two instructions that perform identical
operations, are ready-to-issue, and that have all of their operands tagged as narrow-width. A
set of multiplexors shifts the significant part of the operands of one of the operations into the
high-order bits of the ALU inputs. The significant parts of the operands of the other operation
remain at their normal position in the low-order bits. The combined operations are executed in
the ALU in SIMD mode, similarly to SIMD multimedia extension instructions. The CPU is

kaxiras3 MOCL005.cls June 27, 2008 9:33

62 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

assumed to have support for SIMD instructions, e.g., it can segment the carry chain at 16-bit
intervals. The overhead for this technique consists of the set of multiplexors to shift operands
into high-order bits and the result to low order bits. Additionally, increased complexity is
required in the issue logic.

Speculative-operation packing: Packing operands together effectively increases the CPU’s
issue bandwidth but the resulting speedup is small. The problem is that both operands of an
operation are required to be narrow-width in order for packing to be considered. This is too
restrictive. The odds of packing operations together can be significantly improved if we simply
require at least one operand to be narrow width, but not necessarily both. There is a good
chance that an operation between a narrow and a wide operand will not affect high-order bits.
In this case, the high-order bits of the wide operand can be carried over to the result, while its
low-order bits form a narrow operand.

It would be, however, too complex to guarantee, before performing the actual operation,
that the high-order bits remain intact. The solution is provided by architectures supporting
speculative execution: operations can be packed speculatively, as if their arguments were all
narrow-width. If something goes wrong, the packed operations are squashed and re-executed
(replayed) separately. The telltale sign of something going wrong is an overflow in the segmented
carry chain, meaning that high-order bits are indeed affected by the operation.

This optimization brings the speedup of packing narrow width operations to approx-
imately 4% for SPECint95 and 8% for Mediabench for an Alpha-class, 4-instruction-wide,
superscalar CPU [37]. Speedup increases with the width of the machine as more instructions
become available to choose from and pack together. This is a good result considering that the
55–58% power savings mentioned above for the first clock gating technique concern the integer
units only, which in reality consume about a 10% of the processor’s total power.

4.3.2 Significance Compression
Until now we have discussed a fixed-width definition (16-bits) of narrow-width operands and
allowed for significant bits only in low-order positions. Relaxing these two constraints leads to
a more general approach proposed by Canal and González [44], called significance compression.
The idea is to compress non-significant bits (strings of zeros or ones) anywhere they appear in
the full width of an operand. Each 32-bit word is augmented with a 3-bit tag describing the
“significance” of each of its four bytes. A byte can be either significant or a sign extension of its
preceding byte (i.e., just a string of zeros or ones). Of course, the first low-order byte cannot
be a sign extension of any other byte and is always taken to be significant. The tags encode the
significance of a byte in the manner shown in Table 4.2.

Canal and González report that the majority of values (87%) in SPECint and Mediabench
benchmarks can be compressed with significance compression [44], although a good 75% of

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 63

TABLE 4.2: Byte Significance in a 32-bit Word. Adapted from [44].

Tag Byte % of values
(Arbitrary Significance (S) in SPECInt95

Enumeration) (e for sign extension) and Mediabench

0 eeeS 61

1 eeSS 14

2 SSSS: NON-COMPRESSED 13

3 eSSS 7

4 SSeS 2

5 SeSS 2

6 eSeS 1

7 SeeS 1

all values is narrow-width using the Brooks–Martonosi 16-bit definition (i.e., only the first
and possibly second bytes are significant). In other words, relaxing the two restrictions of the
original narrow-width definition gives an additional 12% of “compressable” values.

Byte-serial pipelines: A complete pipeline can be built around this significance compression
scheme [44]. Only significant bytes flow through the pipeline and are operated on. The rest are
carried and stored via their tags. This opens up the possibility of a very low-power byte-serial
pipeline, which is a single byte wide. If more than one significant byte needs to be processed at a
pipeline stage, then this stage simply repeats for the significant bytes. However, the performance
hit on this pipeline is severe: CPI (cycles per instruction) increases 79% over a full width (32-bit)
pipeline. Activity savings range from 30% to 40% for the various pipeline stages.

A significant improvement in performance, without necessarily increasing switching
activity, can be gained by doubling the width of the pipeline from one to two bytes in selected
stages. This is done for the register file read and in the ALU stages which are the major
bottlenecks. In this byte semi-parallel pipeline, the additional byte is enabled if there is more
than one significant byte to be processed. This results in a performance hit over a full-blown
pipeline of just 24% while retaining the 30–40% activity savings.

Increasing the pipeline width to four bytes (byte-parallel pipeline) and enabling only the
parts that correspond to the significant bytes of a word, retains most of the activity savings

kaxiras3 MOCL005.cls June 27, 2008 9:33

64 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

and further improves performance, bringing it very close (6–2% slowdown depending on
optimizations) to a full pipeline operating on uncompressed operands [44]. The byte-parallel
pipeline brings us back to the first narrow-width technique which gates unused high-order
bits albeit operating at a different granularity (at the byte level) and without requiring that
significant bits be consecutive LSBs.

4.3.3 Further Reading on Narrow Width Operands
The idea of narrow width values has been applied to other structures as well. Ergin, Balkan,
Ghose, and Ponomarev apply it to register files [72]. The intent is not so much to reduce power
consumption, but to alleviate register pressure by making better use of the available physical
registers. Similarly to packing two narrow values in the inputs of functional units or packing
compressed lines in caches, multiple narrow values are packed in registers.

A number of these values can be packed in a register either “conservatively” or “specu-
latively.” Conservatively means that a value is packed only after it is classified as narrow. This
happens after a value is created by a functional unit. When a narrow value is packed in a
different register than the one it was destined for, the register mapping for the packed value
is updated in all the in-flight instructions. In contrast, “speculative packing” takes place in the
register renaming stage, without certain knowledge of the width of the packed value. Packing
and physical register assignment is performed by predicting the output width of instructions.
The prediction history (per instruction) is kept in the instruction cache. The technique works
well for performance—increases IPC by 15% in the SPEC2000—but may not offer significant
advantages for power due to its complexity.

A different approach is followed in the work of Rochecouste, Pokam, and Seznec [192].
What they propose is to design a processor with dedicated narrow width datapaths—a width-
partitioned microarchitecture (WPM). This is a work steering technique for this type of excess
activity and is detailed in Section 4.13.

Finally, a scheme to pack multiple compressed instructions to improve instruction fetch
bandwidth and power has been proposed by Hines, Green, Tyson, and Whalley [100]. But
because this scheme uses Frequent Value Compression, which is explained next, we leave the
details for the end of Section 4.4.

4.4 IDLE-WIDTH SWITCHING ACTIVITY: CACHES
Techniques addressing idle-width activity can be also extended to cache operations (reading
and writing the cache). For example, power can be saved by accessing only the significant or
the compressed part of a word. This results in reading or writing fewer bits, and corresponds to
clock gating unused parts of the ALU or the datapath. Alternatively, multiple cache lines can be
compressed and packed in the space of an uncompressed line. This improves the performance

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 65

TABLE 4.3: Cache Compression Techniques

Technique Compression Power Benefit

Dynamic Zero
Compression, Villa,
Zhang, and Asanović
[221]

Limited significance
compression (only
zero bytes)

Accessing only significant bits

Frequent Value Cache
(FVC), Yang and Gupta
[235, 234]

Frequent value
compression

Accessing a small index to a
dictionary containing the value
instead of the full value

Compression Cache (CC)
Yang, Zhang, and
Gupta [237]

Frequent value
compression

Accessing a small index to a
dictionary containing the value
instead of the full value,

Increasing efficiency (hit rate) by
packing more lines in the cache

Significance compression
cache, Kim, Austin, and
Mudge [141]

Significance
compression

Accessing only significant bits,
Increasing efficiency (hit rate) by

packing more lines in the cache

of the cache and corresponds to the dynamic packing of narrow-width operands in the datapath
[37]. Table 4.3 lists the techniques presented in this section.

4.4.1 Dynamic Zero Compression: Accessing Only Significant Bits
A representative technique for accessing only significant bits is Dynamic Zero Compression (DZC)
proposed by Villa, Zhang, and Asanović [221]. This technique uses significance compression,
anywhere in a word, at a byte granularity, but it only compresses zero bytes (not string-of-
ones bytes). Zero bytes are detected before a write to the cache and are stored as a one bit
tag per byte (called Zero Indicator Bit or ZIB). ZIBs require an area overhead of around
9% [221].

Non-zero bytes are stored in their entirety with their ZIB unset and are accessed in the
usual manner. A zero byte, however, is only accessed by reading its ZIB. No other bits are
read because the ZIB gates their byte wordline signal. Since the storage cells are prohibited
from discharging their bit-lines, a compensating circuit must be present in the corresponding

kaxiras3 MOCL005.cls June 27, 2008 9:33

66 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

senseamps to create zeros without actually reading anything. Depending on the outcome of
the ZIB senseamp, the rest of the byte’s senseamps are either allowed to detect values on
the bit-lines (the byte is nonzero) or are forced to produce zeros (because the whole byte is
zero).

Detailed SPICE simulations of this scheme for a 16KB data cache (in a TSMC 0.25 µm
CMOS process) show an overall read latency overhead of 2 FO4 (Fan-Out 4) gates and a 26%
reduction in dynamic power (10% for instruction caches) for the SPECint95 and Mediabench
benchmark suites [221].

4.4.2 Value Compression and the Frequent Value Cache
Significance compression (suppression of strings-of-zeros or strings-of-ones) is a rudimentary
form of compression. It is a small step to go from there to a compression scheme that can be
applied to general values. However, such a scheme cannot be overly complex; no more energy
should be expended in compressing and decompressing values than the energy saved by using
them. A simple, yet effective compressor must be selected for this purpose.

One solution can be found in frequent value locality, a program property, first shown
by Zhang, Yang, and Gupta [248] and independently by Larin [148]. Frequent value locality
means that a small number of distinct values often accounts for a large portion of the value
stream that is accessed. This set of frequently occurring values changes slowly during the
execution of a program [130]. Frequent value locality motivated approaches to increase the
effective capacity of the L1 cache by packing more compressed cache lines in the cache [237]
and to reduce cache power consumption by accessing fewer bits [235, 234]. Both approaches
achieve their goal via frequent value compression.

In frequent value compression, a dictionary is loaded with the frequent values of a program.
Every occurrence of a frequent value in the cache is then replaced by an index to the actual value
in the dictionary. By virtue of its small size the dictionary can be accessed quickly and provide
the actual value with little delay. Typical frequent values include 0, 1, –1, and program-specific
values. For example, the SPEC2000 benchmark perl very often uses the value 0x78787878 (in
the Simplescalar simulator infrastructure). Frequent values are preloaded in the dictionary by
profiling the program beforehand. Alternatively, the dictionary enters a short learning period
in the beginning of each program until it fills up with values. Dynamic directories that are
updated during run-time have been also proposed [130]. The set of useful frequent values is
small: just eight frequent values account for 48% of the memory accesses (on average) in several
of the SPEC2000 benchmarks.

Frequent value compression is important because it is simple. In terms of power, it is
one of the most efficient compression mechanisms. In terms of compression ability it goes well

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 67

Low-order bit array

High-order bit array (24 bits x 4)

(8 bits x 4)

word 3 word 2 word 1 word 0
index index index32-bit value

0 1 1 1
Compression tag bits

FIGURE 4.9: Frequent value cache (FVC). The low-order bit array provides dictionary indices for the
compressed words or the low-order 8 bits of uncompressed words. In the latter case, a second access is
required to retrieve the 24 high-order bits. Adapted from [235].

beyond significance compression, but to go any further, complexity and power consumption
increase significantly.

Frequent value cache: The frequent value cache (FVC), built around this compression
scheme, specifically targets power consumption [235, 234]. In FVC, a cache line can contain
both compressed and uncompresed words. Their status is determined by additional bits in the
line’s tag. A compressed word is simply an index to the frequent value dictionary. The index
occupies the low-order bits of the original value leaving the rest of the word empty. Assume that
the index occupies the eight low-order bits, allowing for a 256-entry frequent-value dictionary.

The key challenge is how to structure the cache to reduce the energy cost when a
compressed word is accessed. FVC does this by splitting cache lines into two different data
arrays: the first array (shown on the right in Figure 4.9) holds only the 8 low-order bits of
each word in the cache line, while the second array (shown on the left) holds the remaining
24 high-order bits of each of the words. Initially, only the first array is accessed. Thus, only
the indices of the compressed words or the eight low-order bits of uncompressed words are
obtained. If the requested word is compressed (indicated by the corresponding tag bit) minimal
energy was spent to access exactly what was needed—the dictionary index. The dictionary is
accessed next to obtain the actual value, but this is not nearly as expensive as accessing the
cache. If the accessed word is uncompressed, only its 8 low-order bits are accessed. The rest 24
high-order bits are still needed. For this, the second array is accessed in the subsequent cycle.

Both the dictionary access and the access to the second array increase cache latency,
but the dictionary access much less so. Yang and Gupta report an overall increase of about
3% in the execution time of SPEC95 benchmarks but at the same time a 29% reduction of

kaxiras3 MOCL005.cls June 27, 2008 9:33

68 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

energy for a 64KB L1 cache [235]. The energy reduction comes, of course, from efficiently
accessing compressed values. The cost of accessing the smaller low-order bit array plus the cost
of accessing the dictionary is less than the cost of accessing the full cache line in a standard
cache organization.

4.4.3 Packing Compressed Cache Lines: Compression Cache
and Significance-Compression Cache

DZC and FVC save power solely by accessing fewer bits for compressed items. In both
techniques, the space freed by compression simply remains empty in the cache. This empty
space can be exploited by squeezing more than one compressed lines in a cache frame [237, 141].
This is equivalent to narrow-width operand packing in the datapath and, likewise, is intended
to increase cache utilization. Besides the power savings of accessing compressed values (reading
fewer bits), increasing cache utilization yields indirect power savings since the lower part of the
memory hierarchy is accessed less frequently.

☞ packing techniques: There are two techniques to pack compressed lines in cache frames:
variable packing and fixed packing.

� Variable packing aims to maximize the utilization of the available cache space by
compressing and packing a variable number of cache lines into a cache frame. Cache
line boundaries within a frame are not fixed since cache lines can be compressed
to different sizes. This necessitates an indirection for locating the compressed lines
[6, 90]. Variable packing is expensive both in terms of power and latency due to
the complex compression and placement of lines in cache frames. It is therefore
best suited for L2 implementations [6]. The possible power benefit of variable
packing in the L2 comes from increasing the hit ratio, not from accessing the
compressed lines. Variable packing is not a veritable low-power technique since it
is quite expensive on its own. We will not expand further, but for a good discussion
of variable packing, see the work by Alameldeen and Wood [6] and the work of
Halnor and Reinhardt [90].

� In fixed packing, a preset number of cache lines are packed in a cache frame if they
can be compressed to fit in pre-allocated spaces. Fixed storage requirements come
at the price of reduced opportunities for compression—some cache lines simply do
not compress enough to fit. But in contrast to variable packing, an implementation
based on fixed packing [235, 234, 141, 130] achieves power benefits not only from
fewer accesses to the next cache level, but also from power-efficient accesses to
compressed data.

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 69

0 1234 0 5678 1 9abc def0 -1

0

1

-1

00

01

10

Frequent
Encoding

001 000 001 010 011 100 110 101

8 32-bit words in the uncomprtessed cache line

1234 5678 9abc def0

Value

Map of Compressed line 1 in the tag array

Incompressible words go in the data array

xyz

z: compression bit =
0 : uncompressed, xy is the position of the word in the data array

1: compressed, xy is the index to the frequent value dictionary{
Map fields describe individual words:

Compressed line 2Compressed line 1

Cache frameFrequent Values
encoded as indices
go in the tag array

FIGURE 4.10: Frequent value compression for fixed packing. Adapted from [237].

Compression cache: The compression cache (CC) is a fixed packing technique (see “Sidebar:
Packing Techniques”) proposed by Yang, Zhang and Gupta [237]. Like FVC it uses frequent
value compression.4 Unlike FVC which does not attempt to pack cache lines into frames, in
CC each cache frame holds either an uncompressed line or two compressed lines. Two tags per
cache frame are provided to handle the latter case. Two lines in the space of one implies that
each would have to compress at least to half its size—a difficult feat in most cases. Instead, a
little extra space in the tag array is provided to facilitate compression.

Here is how it works. Compression is carried out by separating a line’s frequent-value
words from its incompressible words. The latter are concatenated and stored in the data array,
occupying up to one-half of the cache frame (Figure 4.10). Obviously, for this to work, no
more that half of the line’s words can remain uncompressed but, ultimately, this limits the
opportunities for compression. Frequent values are moved to the tag array along with the line’s
tag. There, they are replaced by their corresponding dictionary indices and stored in a “map” of
the uncompressed cache line. The map provides the means to reconstruct the positions of all
the words in the compressed line.

Despite CC’s performance orientation, it still provides power savings by reducing activity
in lower levels of the memory hierarchy. Yang, Zhang, and Gupta show that CC provides energy
savings over a direct mapped cache, ranging from 1% to 26% depending on configuration [237].

4FVC was actually proposed later by two of the same authors.

kaxiras3 MOCL005.cls June 27, 2008 9:33

70 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

Significance-compression cache: Following in the footsteps of Yang et al. work, Kim et al.
[141] propose a scheme where lines are compressed using sign compression. Again, two com-
pressed lines can fit in the space of one, which means that the compression ratio must be at least
50%. For this to happen, all 32-bit words in a line must be sign-compressed to 16 bits. Although
this is possible, it is not very common. To increase the chances of fitting two lines into one,
extra space is provided in the data array for words that cannot be compressed by significance
compression. According to Kim et al [141], the inclusion of the extra space to accommodate
just one incompressible word per line makes a significant difference in the opportunities for
compression. Tolerating 25% incompressible data in cache lines yields energy savings on a par
with those in CC (about 23%) and for the same reasons.

4.4.4 Instruction Compression
Hines, Green, Tyson, and Whalley proposed the equivalent of the frequent value cache for
instructions [100]. They observe that, similarly to data, instructions too exhibit locality: a small
number of static instructions appear quite frequently in the dynamic stream. An impressive
80% of the dynamic stream in the MiBench suite can be easily captured with 64 different static
instructions. These can be stored in a dictionary—called Instruction Register File (IRF)—
similar to the frequent value dictionary. All instances of the frequent instructions in the code
can then be replaced by their index to the dictionary. This results in code compression, improved
fetch bandwidth, and energy savings. An innovation in their scheme is that the instructions in
the dictionary are parametrizable in their immediate field, so a few variations of the instruction
appearing in the static code can be covered by a single IRF entry. Hines et al. report that the
benefit in performance is not substantial, but the reduction in I-Fetch energy can reach 37%
for the MiBench [100] benchmark suite.

4.5 IDLE-CAPACITY SWITCHING ACTIVITY
Idle-capacity switching activity is essentially wasted activity related to out-of-order execution.
Similarly to the idle-width activity at the operation level, it appears because processor resources
(instruction queues, load/store queues, reservation stations, reorder buffers, caches, etc.) are
over provisioned to support a high-instruction throughput for target workloads.

Not every program, however, achieves the maximum instruction throughput and utilizes
these resources to full extent. This results in excessive power consumption for the achievable
performance. By re-balancing—most often resizing—processor resources to fit program needs,
power consumption can be trimmed to be commensurable to the attained performance. This is
the overarching goal of the techniques presented in this and the following three sections.

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 71

TABLE 4.4: Estimated Energy Growth Parameters
(Adapted From [252])

Register Rename Logic γ = 1.1

Instruction Issue Window γ = 1.9

Memory Disambiguation Unit γ = 1.5

Multiported Register File γ = 1.8

Data Bypass Mechanisms γ = 1.6

Functional Unitsa γ = 0.1
a Power consumed by a functional unit is largely
independent of the issue width.

4.5.1 Power-inefficiency of Out-of-order Processors
What we call idle-capacity switching activity is intuitive to anyone who has studied the workings
of an out-of-order processor: large structures, often using content addressable memory, are
provided for peak performance, but typically underutilized. To further increase performance,
these structures must be enlarged, but the resulting increase in performance pales in comparison
to the increase in power and area. It was not until 2000, when Zyuban and Kogge put this
intuition into a formalism and showed that out-of-order processors are inherently power-
inefficient [252].

But what do we mean by “power-inefficient?” Zyuban and Kogge argue that a micro-
architecture is energy-efficient if its energy consumption increases commensurably with its IPC
(instructions per cycle) when the microarchitecture is scaled in its issue width.

To support this formally, Zyuban and Kogge set out and develop energy models for
the key structures (register rename table, bypass mechanism, instruction window, load/store
window, register file, and functional units) in an out-of-order processor. By analyzing energy
consumption as the issue width of the machine is increased, they derive an “energy growth”
factor for each structure. This factor shows how the energy-per-instruction grows as a function
of the issue width. Table 4.4 shows their estimates for the energy growth factor [252].

The energy-per-instruction growth for a particular structure can then be described as

Ei ∼ (IW)γ ,

where IW is the issue width and γ is the structure’s energy growth factor. For instance, the

kaxiras3 MOCL005.cls June 27, 2008 9:33

72 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

instruction window has the worst γ and its energy consumption grows almost quadratically
with respect to the issue width.

Given the definition for the energy growth γ , Zyuban and Kogge show that an out-of-
order processor cannot be power efficient given the observed energy growth factors and the
achievable IPC at various issue widths. They do this by expressing EDP as a function of issue
width scaled by the energy growth.

Here is how it is done. We can express EDP (E × D) as a function of IPC which turns
out to be energy-per-cycle divided by IPC2.

E × D = energy
instruction

× cycles
instruction

= energy/cycle
IPC2

Substituting energy-per-cycle with the equivalent energy-per-instruction (Ei) multiplied
by IPC we get:

E × D = energy/cycle
IPC2

= Ei × I PC
IPC2

= Ei

IPC
(IW)γ

IPC
.

If we now assume that IPC is related to issue width via the equation:

IPC ∼ (IW)α,

we arrive at the following formula expressing EDP as a function of the issue width:

E × D ∼ (IW)γ−α
.

So the fundamental question in power efficiency is whether the increase in performance
(governed by α) resulting from an increase in the issue width (IW) outweighs the increase in
energy consumption (governed by γ). In the real world, α is significantly less than 1. Therefore,
any structure with γ greater than 1—and there are almost no exceptions to this—contributes
to power inefficiency. The instruction window turns out to be the worst offender.

4.5.2 Resource Partitioning
Two years prior and unrelated to the thread of research on the power inefficiency of out-of-
order processors spearheaded by Zyban and Kogge, Albonesi proposed a technique that would
form the basis for many of the solutions addressing program-level over-provisioned activity.
Albonesi’s technique is the resizing of processor structures and at the time it was proposed in
1998, it was not about power [7]. Albonesi’s goal was to devise complexity-adaptive structures
that traded latency with capacity. In effect, he proposed resizable structures that become faster
as they become smaller (or slower as they become larger).

The starting point for this idea is the observation that wire delay increases relatively to
gate delay as we go deeper into nanoscale technologies. This, in turn, means that we could not
possibly afford the latency of very long wires. To overcome this problem, repeater methodologies

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 73

Element0

Element1

Element0

Element1

Element2

Element3

Address Data Address Data
Bus Bus Bus Bus

buffer

buffer

FIGURE 4.11: Complexity-adaptive structures. Adapted from [7].

are used in which a long wire is partitioned into shorter segments by placing buffers at regular
intervals along its length. Most of the processor’s critical structures are (or will be) in need of
such methodologies.

The key observation made by Albonesi is that buffered wires readily lend themselves
to partitioning without any—significant—additional overhead. In other words, the ability to
disable part of a buffered wire (e.g., starting from some point onwards) comes almost for free
with buffering. The only catch is that tri-state buffers must be used in this case. Partitioning also
circumvents the problem of increased power consumption due to the repeaters (see “Sidebar:
Wire Partitioning”) by using only as much wire needed.

Large CAM or SRAM structures need long wires for their bit-lines and wordlines.
Implementing them with buffered wires endows such structures with the ability to partition
and deactivate some part of them—again, virtually for free. Figure 4.11 shows the main idea in
such structures.

Albonesi’s target was to devise a complexity adaptive architecture where various structures
can be resized to provide a size versus speed trade-off. This trade-off is adjusted to best suit
application needs. If, for example, an application would benefit from larger structures, even at
the expense of a slower clock, a complexity-adaptive architecture would adjust to provide this
trade-off. Conversely, applications that have no need for large structures but their performance
is tied to clock speed, benefit by scaling down resizable structures to achieve faster clocks. In
practice, varying the clock fast enough can be challenging. Moreover, slowing down everything
just to increase the size of a single structure can quickly bite into any potential benefits. For these
reasons, rather than slowing down the clock, the latency (in cycles) of the resized structures
could be increased instead.

Albonesi gives convincing examples by adapting two separate structures, the cache hi-
erarchy and the instruction queue, to the needs of various applications. He did this, however,
by examining all possible configurations for these structures and for the application as a
whole—although he also mentions finer-grain adaptability at the end. In other words, he

kaxiras3 MOCL005.cls June 27, 2008 9:33

74 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

did not specify, in this first paper, any mechanisms or policies needed to dynamically adapt the
hardware. This is one of the main contributions of the work that followed suit.

☞ Wire Partitioning: Because the delay of a wire is proportional to its R × C product,
and both R and C are proportional to the wire length, it follows that the wire delay is
proportional to the square of the wire length. Long wires can become unacceptably slow.
To solve this problem, a long wire is broken into smaller segments by placing repeaters
(inverters or buffers) at regular intervals along its length. The repeaters are driving each of
the smaller segments. Breaking a wire into k segments improves wire delay by a factor of k2

but the repeaters themselves introduce additional latency. However, there is a downside.
The total combined power consumption for driving the segmented wire can be

significantly higher than that of the original wire. In fact, the total energy needed for
the optimally-sized repeaters increases exponentially with k [39]. A segmentation factor
smaller than the optimal-delay factor is typically chosen so that the increase of power is kept
at bay.

To improve on power, the solution is to actually disable a part of the wire that is not
needed. This partitioning technique replaces the inverters or buffers with tristate devices
that have the ability to electrically disconnect a segment of the wire (see Figure 4.12).

Long
wire,
unacceptably

Segmented into 4

Total C, power, may increase
due to repeaters

long-latency Repeaters replaced Half of the wire disabled (dynamically)
segments with repeaters with tristate buffers

Total “active” C, power, fraction of the original

C
o
n
tr

o
l

C
o
n
tr

o
l

D
e
vi

ce
s

co
n
n
e
ct

e
d
 o

n
 w

ir
e

D
is

a
b
le

d
 D

e
vi

ce
s

FIGURE 4.12: Wire partitioning. Breaking a wire into multiple segments by inserting repeaters
along its length dramatically improves its delay (which is proportional to the square of the wire length)
but may end up increasing the total power required due to the additional overhead of the repeaters.
Architecturally, this organization can be exploited for low-power by replacing the repeaters with
tri-state buffers and dynamically disabling part of the wire (along with everything connected on that
part) when this is advantageous.

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 75

4.6 IDLE-CAPACITY SWITCHING ACTIVITY:
INSTRUCTION QUEUE

Following Albonesi’s work on complexity adaptive structures, a number of researchers proposed
to dynamically adapt the instruction queue to the needs of programs, but now having power
consumption—rather than performance— in their sights. Table 4.5 gives an overview of the
proposals we present here.

4.6.1 Physical Resizing
Buyuktosunoglu and Albonesi teamed up with Schuster, Brooks, Bose, and Cook from IBM and
published one of the first papers addressing over-provisioned activity in the instruction queue.

TABLE 4.5: Techniques to Adapt the Issue Queue to Program Behavior

Technique Partitioning Resizing Feedback Control

Buyuktosunoglu
et al. [42]

Physical
partitioning into
segments

Partitioning of the
IQ is achieved
with buffered
wires

Physical resizing:
enabling or
disabling
consecutive IQ
segments

Readiness Feedback:
Readiness measured as
the number of “active”
segments (having the
majority of their entries
ready-to-issue)

IPC feedback for limiting
performance
degradation

Ponomarev,
Kucuk, and
Ghose [182]

Physical into
segments

Physical resizing:
enabling or
disabling IQ
segments

Occupancy Feedback:
Instruction Queue
Occupancy measured as
the fraction of valid
entries

Folegnani and
González [80]

Logical into
segments

Logical resizing
without
partitioning: part
of the empty
space is excluded
from allocation to
new entries

ILP Contribution
Feedback: usefulness of
(logical) segments in
issuing instructions

kaxiras3 MOCL005.cls June 27, 2008 9:33

76 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

The paper discusses a detailed circuit-level implementation of a resizable (adaptive) issue queue
(IQ)—conceptually similar to Albonesi’s complexity-adaptive design. More interestingly, the
paper proposes a high-level mechanism for adaptation [42]. The design of the IQ is a mixed
CAM/SRAM design where each entry has both CAM and SRAM fields. The SRAM fields
hold instruction information (such as opcode, destination register, status, etc.) and the CAM
fields constitute the wakeup logic for the particular entry, holding the input operand tags.
Results coming from functional units match the operand tags in the CAM fields and select the
SRAM part of the entry for further action. When an instruction matches both its operands it
becomes “ready” to issue and awaits to be picked by the scheduler.

The IQ is divided in large “chunks” with transmission gates placed at regular intervals
on its CAM and SRAM bit-lines. The tag match in the CAM fields is enabled by dedicated
taglines. Partitioning of the IQ in chunks is controlled by enabling or disabling the transmission
gates in the bit-lines and the corresponding taglines. Figure 4.13 shows the design.

CAM

Precharge / SenseAmp

SRAM

R
ea

dy

transmission gate

en1

en1

CAM

transmission gate
en1

SRAM

R
ea

dy

transmission gate

en2

en2

CAM

transmission gate
en2

SRAM

R
ea

dy

transmission gate

en3

en3

CAM

transmission gate
en3

SRAM

R
ea

dy

Precharge / SenseAmp

Se
le

ct
io

n
L

og
ic

Bit-line Bit-line
Dummy Bit-line

Wordline

Ready flags
Wakeup logic

Instruction Read

FIGURE 4.13: The design of an adaptive Instruction Queue. Enable signals (enX) enable the CAM
and SRAM parts. Adapted from [42].

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 77

if (present_IPC) < D factor * last_IPC
increase size;

else if (number of active segments < threshold_1)
decrease size;

else if (number of active segments < threshold_2)
retain current size;

else increase size;

FIGURE 4.14: Algorithm to resize an Issue Queue. Adapted from [42].

Not surprisingly, the power of the CAM part is linear to the number of entries enabled.
If a 32-entry IQ is divided in to four 8-entry chunks, disabling three out of four chunks yields
power savings of 75%. The CAM part consumes ten times more energy than the SRAM part,
thus the reduction of the CAM energy provides the bulk of the benefit.

4.6.2 Readiness Feedback Control
Perhaps, more interesting than the design of the partitionable IQ, is the algorithm to control
its size. The idea is to adjust the IQ size based on the “activity” of its entries. Although the
authors do not discuss it in detail, the high-level scheme they propose bases its decisions on the
average number of active IQ chunks within a time window.

An IQ chunk is regarded as active if at least half of its entries have their ready flag set—
i.e., an active chunk has a significant percentage of its entries ready to issue. On every cycle,
the number of active chunks is accumulated in a register. At the end of a timing window this
register is compared to two empirically chosen thresholds and a decision is taken on whether
to disable chunks, lave as is, or enable more.5

This decision-making scheme is wrapped with a safety mechanism, that reverses the last
(downsizing) decision if it had a negative effect on IPC. The threshold that triggers the safety
mechanism is given as a degradation factor D on IPC: if the new IPC is D times the old IPC
(where D is less than 1) then the last sizing decision is reversed. The full decision scheme in
pseudocode is shown in Figure 4.14.

Using this scheme in a simulated 4-issue processor with a 32-entry issue queue, and on
some of the integer SPEC2000 benchmarks, the power savings for the IQ are 35% (on average)
with an IPC degradation of just over 4% [42].

4.6.3 Occupancy Feedback Control
Ponomarev, Kucuk, and Ghose examine the more general problem of reducing power for
the three main structures that collectively comprise the instruction scheduling mechanism:

5The authors imply that the thresholds change according to the number of enabled chunks but no further detail is
given [42].

kaxiras3 MOCL005.cls June 27, 2008 9:33

78 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

the Instruction Queue (IQ), the load/store queue (LSQ), and the reorder buffer (ROB)
[182]. As in Albonesi’s work [7] (and later in Buyuktosunoglu et al. [42]) these structures
are assumed to be physically partitioned into chunks that can be dynamically enabled and
disabled.

The major contribution compared to the previous work is the feedback control technique
they propose for dynamically resizing these structures. Ponomarev et al. argue that feedback
control based on performance metrics such as IPC, or on the number of ready entries, does not
reflect the true needs of a program. All these metrics can be misleading since they are not solely
affected by the instruction queue size but actually depend on many other factors: cache miss
rates, branch misprediction rates, amount of instruction-level parallelism, etc.

Instead, they propose that the occupancy of a structure (the percentage of valid entries) is
the appropriate feedback control metric for resizing. For the three structures that compose the
instruction scheduling mechanisms (IQ, LSQ, and ROB), they show that their occupancies
are positively correlated, meaning that all three should be resized in concert. However, because
the ratios of the occupancies among these structures vary over time, it is imprecise to resize all
three based on the occupancy of a single one (e.g., the IQ). Rather, it is better if each structure
is resized based on measurements of its own occupancy.

The feedback control scheme periodically samples the occupancy and makes decisions
at the end of an update period (which is a multiple of the sampling period). A structure is
downsized by disabling as many partitions as can fit in its empty space (which is determined by
its occupancy measurements). If, however, a structure fills up and the allocation of new entries
is blocked, then it is upsized by powering up more partitions. Upsizing is triggered when
the number of cycles that new entries remain blocked exceeds a certain threshold. Upsizing is
aggressive to limit performance degradation. In simulations for a 4-issue processor, this method
yields power savings for the three structures in excess of 50% with a performance loss of less
than 5%.

4.6.4 Logical Resizing Without Partitioning
Folegnani and González take a different path to adapt IQ power6 to program needs [80].
Instead of physically segmenting the instruction queue and then disabling large chunks at a
time, they do the following: first, they disable individual IQ entries; second, they limit the
instruction queue’s size not physically but logically by limiting the part that can be allocated to
new entries.

6According to their estimates, instruction queue power accounts for 25% of the total power consumption of a typical
microarchitecture.

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 79

Head Pointer Tail Pointer Head Pointer Tail Pointer

Limit Pointer

Full

Empty

Full

Empty

Disabled

FIGURE 4.15: Circular IQ. Adapted from [80].

The instruction queue in their proposal is organized as a circular FIFO buffer. Head
and tail pointers point to the head entry (the oldest instruction) and the tail entry (the newest
instruction). The space between the tail and the head entries is the full part since it contains valid
instructions, either ready to issue or waiting for their operands (Figure 4.15). The space between
the head and the tail entries is the empty part. Similarly to the IQ discussed previously, CAM
fields in each entry match results returning from the functional units. When an instruction
matches both its operands, it becomes ready to issue.

☞ Instruction Queue Collapsing: Upon issue of an instruction to the execution units, the
corresponding instruction queue entry is freed. This creates holes in the full part of the
IQ (see Figure 4.15). In some designs, such holes are filled by moving up all valid entries.
This is called collapsing and it is done because it can simplify the selection (scheduling) of
ready instructions. One example of this technique is the instruction queue of the Alpha
[134]. However, collapsing consumes power because of all the data movement it entails.
Folegnani and González do not use it since holes in the full part are also included in their
power-saving schemes.

The key observation Folegnani and González make about such an instruction queue is
that empty entries need not participate in the tag match at all. Furthermore, ready operands
also do not need to participate in the tag match. It is fairly straightforward to disable an entry’s
CAM tag comparison by gating the tagline precharge transistor with the entry’s ready flag or
valid flag. This immediately reduces the comparison activity, making it proportional to the
number of valid waiting entries in the IQ. According to their statistics for an 128-entry IQ and
for representative SPEC2000 benchmarks, on average, there are only 58 entries in full area of
the IQ and 26 of those are already empty. This means that about 89% of the wake-up energy
(CAM matching) can be saved. Similarly to the estimates of Buyuktosunoglu et al., Folegnani
and González also attribute the bulk (63%) of the IQ power to the associative matching.

kaxiras3 MOCL005.cls June 27, 2008 9:33

80 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

Despite the magnitude of these savings—the low-hanging fruit in this case—Folegnani
and González go one step further. They resize the IQ to fit program needs. The interesting
difference from the earlier proposals is the IQ is resized logically—not physically—by partition-
ing and selectively disabling parts of it. Besides the head and tail pointers, they introduce a new
pointer, called the limit pointer which always moves at a fixed offset from the head pointer.
This pointer limits the logical size of the instruction queue by excluding the entries between
the head pointer and itself from being allocated. Figure 4.15 shows the new “disabled” area
defined by that pointer. What this does is to add a known number (the offset from the head
pointer) of guaranteed empty entries that will not participate in tag matching. The question
now is how to maximize the disabled area without negatively impacting performance.

ILP-contribution feedback control: This is done using a heuristic with empirically chosen
parameters. The IQ is logically divided in 16 partitions. The idea for the heuristic is to measure
the contribution to performance from the youngest partition of the IQ which is the partition
allocated most recently at the tail pointer. The contribution of a partition is measured in terms
of issued instructions from this partition within a time window. If that contribution is below
some empirically chosen threshold, then the effective size of the IQ is reduced by expanding
the disabled area. Periodically the effective IQ size is increased (by contracting the disabled
area). This simple scheme increases the energy savings to about 91% with a modest 1.7% IPC
loss.

4.6.5 Other Power Optimizations for the Instruction Queue
About the same time as with the Buyuktosunoglu et al. and the Folegnani and González papers,
a slew of techniques were proposed to reduce power in instruction queues. Some of them are at
the circuit level but motivated by architectural characteristics, such as the techniques proposed
by Kucuk, Ghose, Ponomarev, and Kogge [145]. They propose three techniques to reduce IQ
dynamic power: (i) efficient comparators in the CAM part, (ii) significance compression in the
SRAM part (which is another example of the technique described in Section 4.3, “Idle-Width
Switching Activity: Core”), and (iii) Bit-line segmentation (which is explained in “Sidebar:
Bit-line Segmentation”). Their first proposal goes beyond disabling the tag match for empty
entries and ready operands. It attempts to minimize tag match energy for all those entries
that do participate in the tag comparison but not match. The technique exploits the prevailing
per-bit behavior of typical programs. Because of the localization of dependencies in a program,
a mismatch is much more likely to occur in the least significant bits of an operand tag. This
means that just checking the lower four out of the eight tag bits can reveal a mismatch of 90%
of the time saving, in this case, half of the power of a full comparison.

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 81

The structures that comprise instruction scheduling, especially the instruction queue,
have been prime targets for power optimizations. And for a good reason: not only instruction
scheduling consumes a significant part of a processor’s total power, but also does not scale
well to larger sizes. Starting from the techniques discussed here, many others followed in the
literature offering further improvements and optimizations.

4.6.6 Related Work on Instruction Windows
The importance of the instruction window for performance, its high complexity, and its crit-
icality (in terms of latency), make it a prime target for optimizations. Here, we give a short
overview of some of the most relevant work. Even though this work is mostly focused on
performance or complexity and does not specifically addresses power consumption, it can have
significant ramifications on power.

Palacharla, Jouppi, and Smith, in the context of their work on complexity-effective archi-
tectures [177], first proposed to lower the complexity of a CAM-based monolithic instruction
queue by replacing it with a number of FIFO queues. Instead of searching the whole IQ for
ready instructions, the search is limited to the heads of the FIFOs. Subsequently, Canal and
González [45, 46] and independently Michaud and Seznec [166] propose dataflow schedul-
ing arrays, augmented with fully associative buffers to accommodate unpredictable-latency
instructions.

Following these initial proposals on reducing the complexity of an ordinary sized in-
struction queue, the converse idea came into focus: instead of reducing complexity, apply
these techniques to actually enlarge the instruction queue. Two groups, Raasch, Binkert, and
Reinhardt and, independently, Lebeck, Koppanalil, Patwardhan, and Rotenberg, proposed to
enlarge IQ size using dependence chains [186, 149]. Dependent chains are groups of dependent
instructions usually headed by an instruction of unpredictable latency. A head instruction can
itself be a dependent instruction in another dependence chain.

Raasch et al. proposed a segmented IQ design where instructions are promoted from
segment to segment until they reach the “issue-buffer” segment. From there (and only there)
they can issue to the functional units. Instructions are placed in the various IQ segments
according to their expected delay in becoming ready. For example, ready instructions and their
immediate dependent instructions are placed in the first (issue-buffer) segment; instructions
that are two or three cycles away from becoming ready are placed in second segment (after the
issue-buffer); and so on. In each cycle instructions are promoted from segment to segment as
they advance toward becoming ready.

The important innovation in their proposal is that the expected delay of instructions is
not measured in absolute time but relatively to the head of the dependence chain. Thus, as the

kaxiras3 MOCL005.cls June 27, 2008 9:33

82 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

head is promoted from segment to segment, it pulls behind it like the wagons of a train its chain
of dependent instructions. A large number of small segments allows for a very large instruction
queue while at the same time for faster clock speeds. However, compared to a monolithic design
of the same size (and assuming equal frequency), the dependence-chain IQ delivers somewhat
less performance. On the other hand, because the part of the IQ involved in issuing instructions
is quite small, power consumption can be substantially less than a monolithic design.

Lebeck et al. also propose a technique based on dependence chains [149]. In their scheme,
the instructions depending on a long-latency operation (e.g., a cache miss) are moved out of
the issue queue into a much larger “waiting instruction buffer” (WIB). A 2K-entry WIB with
a 32-entry IQ yields noteworthy speedups over a conventional 32-entry IQ. Although a power
analysis was not included in their work, it is likely that the power benefits for such a design
would also be noticeable compared to a (large) monolithic IQ at the same performance level.

Similarly, hierarchical scheduling windows (HSW) [34] increase the instruction window
size using a fast (but small) and a slow (but large) scheduling window. Latency-sensitive critical
instructions are moved to the fast scheduling window while latency-tolerant instructions remain
in the larger slower window. The difference from the previous work is that both scheduling
windows issue instructions, each to a separate cluster.

Other proposals are focused on reducing the cost—and by extent, complexity and power—
of checkpointing, which is a serious impediment to large instruction windows [5, 82]. Finally,
there are also proposals that employ segmentation and resizing as well as more targeted opti-
mizations to reduce the design complexity of load/store queues [179]. All of these techniques
are power-efficient in the sense that they attempt to increase performance but with a very prudent
and frugal use of resources.

4.7 IDLE-CAPACITY SWITCHING ACTIVITY: CORE
Besides the instruction window, significant opportunities still abound in a dynamically sched-
uled out-of-order processor for further power optimizations. A related dimension to the in-
struction window size is the issue width—the number of instructions that can go through the
processor in parallel. Although we talk about issue width, we consider such techniques under
the Idle-Capacity optimizations. The reason is that, in contrast to idle-width optimizations dis-
cussed in Sections 4.3 and 4.4, adapting the issue width has nothing to do with the bit-width
of individual operations (arithmetic, logic, or memory operations) but rather with the behavior
of the program at a larger scale. This is consistent with, and in fact very similar to, the other
idle-capacity optimizations presented in Sections 4.5 and 4.8.

Depending on the instruction window size different programs exhibit different maxima
for parallel instruction issue. Adapting the processor to this dimension was proposed by Bahar
and Manne [19]. They propose to dynamically change the width of an 8-issue processor to

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 83

Left Arbiter 0

Right Arbiter 0

Right Arbiter 1

Right Arbiter 2

Right Arbiter 3

Left Arbiter 1

Left Arbiter 2

Left Arbiter 3

S
ec

tio
n

0
(I

ns
t.

0-
31

)

S
ec

tio
n

1(
In

st
. 3

2-
63

)

S
ec

tio
n

2(
In

st
. 6

4-
95

)

S
ec

tio
n

3(
In

st
. 9

6-
12

7)

Right
Register
File

Left
Register
File

Performance
Monitors &
Controls

Right Cluster
Functional Units

4 Integer Units
2 FP Units
2 Memory Ports

Left Cluster
Functional Units

4 Integer Units
2 FP Units
2 Memory Ports

Data Cache

C
om

m
it

U
ni

t

Fetch
Unit

Register
Rename
Unit

Instruction
Cache

Branch
Prediction
Unit

Disabled for 4-issue
Disabled for 6-issue and 4-issue

FIGURE 4.16: Adjusting the width of an 8-issue machine to 6- or 4-issue. Adapted from [19].

6-issue or 4-issue when the application cannot take advantage of the additional width. They
model their target processor after an 8-issue Alpha 21264 [134], comprising two 4-issue clusters
(Figure 4.16). To switch the processor to 6-issue, one-half of one of the clusters is disabled. To
switch to the 4-issue, one whole cluster is disabled.

To disable half or a whole cluster, the appropriate functional units are clock gated. In
addition to disabling functional units, part of the instruction queue hardware is also disabled,
thus realizing additional power benefits. This is different from IQ resizing (described previ-
ously), in that the instruction window size does not change. What is disabled in the IQ are the
scheduling units that pick ready instructions for execution (called arbiters in Alpha parlance).
All in all, this technique can save up to 20% (10%) power from the execution units, 35% (17%)
from the instruction queue, and 12% (6%) in total, in the 4-issue (6-issue) low-power mode.

Again, one of the main contributions of this work is the technique to adjust the issue
width to the needs of the program. Decisions are made at the end of a sampling window
assuming that the behavior of the program in the last window is a good indicator for the next.7

A set of rules decides whether to enable or disable the two low-power modes, the 4-issue and
the 6-issue mode. Enabling a mode sets the width to 4 or 6, but disabling it jumps back to
normal operation, which is the full 8-issue mode. The rules compare the issue IPC (for both

7This assumption is put to test by Bahar and Manne and is shown to hold up quite nicely [19].

kaxiras3 MOCL005.cls June 27, 2008 9:33

84 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

TABLE 4.6: Rules for Switching to Low-power Modes. Adapted from [19].

Trigger Threshold Values

Enable Condition 4-issue (IIPC < 3.0) AND (FPIPC < 1.4) with hysteresis
of two windows

Disable Condition 4-issue (IIPC > 3.2) OR (FPIPC > 1.6)

Enable Condition 6-issue (IIPC < 4.5) AND (FPIPC < 1.4)

Disable Condition 6-issue (IIPC > 5) OR (FPIPC > 1.6)

integer and floating IPC) to a set of empirically derived thresholds. There is also hysteresis
for the decision to go to the lowest power mode (the 4-issue mode) requiring the enabling
conditions to hold for two consecutive sampling windows. The actual rules used are listed
in Table 4.6, where IIPC and FPIPC are the issue IPC for the integer and the floating point
instructions, respectively.

These rules for adjusting the width of the machine result in minimal performance loss (on
the order of 1–2%) for both single applications and multiprogramming workloads while realizing
at times satisfactory per-component power savings (on the order of 10–15%). However, in the
big picture, the power savings for the whole processor are not as dramatic. Bahar and Manne
point out that a single technique alone cannot solve the power consumption problem. Rather,
by taking a holistic approach and applying many techniques in concert, power consumption
can be brought down significantly.

4.8 IDLE-CAPACITY SWITCHING ACTIVITY: CACHES
Similarly to instruction queues, caches can also be sized to save power. Although it is always
better to have more cache, in many cases using much less can save considerable power while
giving up very little in performance.

Considerable work is devoted to the general problem of reducing dynamic power in
caches. Here, we are only concerned with techniques that resize the cache to fit program needs.
Techniques that optimize cache access but do not really change the amount of cache available
to the programs are discussed extensively in Section 4.9. We concentrate on four proposals
that have inspired further work: a cache resizing proposal that trades memory between two
cache levels [7, 21], the selective cache ways proposal [8] which resizes a cache by changing
its associativity, the accounting cache proposal [68] which is a combination of the two previous
proposals, and finally a CAM-tag cache resizing technique [244]. Table 4.7 summarizes the

kaxiras3 MOCL005.cls June 27, 2008 9:33

T
A

B
L

E
4.

7:
Fo

ur
A

pp
ro

ac
he

s
fo

rA
da

pt
in

g
th

e
C

ac
he

to
th

e
N

ee
ds

of
P

ro
gr

am
s

P
ar

ti
ti

on
in

g
G

ra
nu

la
ri

ty
P

ar
ti

ti
on

in
g

T
ec

hn
iq

ue
C

on
fig

ur
at

io
n

M
et

ho
d

V
ar

ia
bl

e
L

1/
L

2
di

vi
si

on
A

lb
on

es
i[

7]
,

B
al

as
ub

ra
m

on
ia

n
et

al
.[

21
].

P
hy

si
ca

lM
em

or
y

Se
gm

en
t(

ca
ch

e
ba

nk
)

A
si

ng
le

ph
ys

ic
al

ca
ch

e
pa

rt
iti

on
ed

in
to

se
gm

en
ts

ho
st

sa
vi

rt
ua

l
tw

o-
le

ve
lc

ac
he

.
M

em
or

y
se

gm
en

ts
ar

e
al

lo
ca

te
d

to
ei

th
er

a
vi

rt
ua

lL
1

or
a

vi
rt

ua
l

L
2

C
on

fig
ur

at
io

n
se

ar
ch

es
ar

e
in

iti
at

ed
on

pr
og

ra
m

ph
as

e
ch

an
ge

s.
A

co
nfi

gu
ra

tio
n

se
ar

ch
go

es
th

ro
ug

h
ea

ch
po

ss
ib

le
co

nfi
gu

ra
tio

n
an

d
m

ea
su

re
s

C
P

I,
T

he
“b

es
t”

co
nfi

gu
ra

tio
n

is
se

le
ct

ed
an

d
pe

rs
is

ts
fo

rt
he

du
ra

tio
n

of
th

e
ph

as
e

Se
le

ct
iv

e
C

ac
he

W
ay

s,
A

lb
on

es
i[

8]
A

ss
oc

ia
tiv

e
W

ay
(m

ay
co

m
pr

is
e

on
e

or
m

or
e

ba
nk

s)

In
di

vi
du

al
as

so
ci

at
iv

e
w

ay
s

ca
n

be
tu

rn
ed

of
f

ad
ap

tin
g

th
e

si
ze

of
th

e
ca

ch
e

to
pr

og
ra

m
ne

ed
s

L
ef

tt
o

so
ft

w
ar

e.
P

ro
fil

in
g

an
d

pe
rf

or
m

an
ce

to
ol

s
in

di
ca

te
th

e
nu

m
be

ro
fw

ay
s

fo
rs

om
e

to
le

ra
te

d
le

ve
lo

fp
er

fo
rm

an
ce

-l
os

s

A
cc

ou
nt

in
g

C
ac

he
,

D
ro

ps
ho

et
al

.,
A

lb
on

es
ie

ta
l.

[6
8,

9]

A
ss

oc
ia

tiv
e

W
ay

(m
ay

co
m

pr
is

e
on

e
or

m
or

e
ba

nk
s)

Si
m

ila
rt

o
V

ar
ia

bl
e

L
1/

L
2

di
vi

si
on

,b
ut

w
ith

th
e

pa
rt

iti
on

in
g

gr
an

ul
ar

ity
of

th
e

Se
le

ct
iv

e
C

ac
he

W
ay

s

P
er

fo
rm

an
ce

an
d

en
er

gy
fo

ra
ll

po
ss

ib
le

co
nfi

gu
ra

tio
ns

ar
e

es
tim

at
ed

pe
ri

od
ic

al
ly

w
ith

M
R

U
in

fo
rm

at
io

n,
O

ne
-s

ho
tc

on
fig

ur
at

io
n:

th
e

“b
es

t”
co

nfi
gu

ra
tio

n
is

se
le

ct
ed

an
d

pe
rs

is
ts

fo
rt

he
ne

xt
pe

ri
od

M
is

s
T

ag
R

es
iz

in
g

fo
r

C
A

M
-T

ag
C

ac
he

s,
Z

ha
ng

an
d

A
sa

no
vi

ć
[2

44
]

In
di

vi
du

al
Se

tr
es

iz
in

g
in

its
as

so
ci

at
iv

ity
B

it-
lin

e
Se

gm
en

ta
tio

n
(“

Si
de

ba
r:

B
it-

lin
e

Se
gm

en
ta

tio
n”

)

P
er

fo
rm

an
ce

-b
as

ed
Fe

ed
ba

ck
C

on
tr

ol
:

di
ff

er
en

ce
in

nu
m

be
ro

fm
is

se
s

fr
om

th
e

fu
ll-

si
ze

d
ca

ch
e

w
ith

in
a

tim
e

w
in

do
w

85

kaxiras3 MOCL005.cls June 27, 2008 9:33

86 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

main characteristics for the three approaches. Equally important to the partitioning technique
is the method for selecting a cache configuration to achieve power or performance goals.

4.8.1 Trading Memory Between Cache Levels
Cache resizing was also proposed in Albonesi’s paper on complexity-adaptive structures along
with instruction queue resizing [7]. Both techniques rely on structures partitioned in segments
using buffered wires. Regarding caches, the whole memory comprising the cache hierarchy is
assumed to be segmented in this manner.

Albonesi’s proposal calls for a variable division between the L1 and the L2. This dy-
namic division is based on assigning memory segments to be either in the L1 or in the L2.
Architecturally, the two caches are resized by increasing or decreasing their associativity—not
by changing the number of sets. Thus, cache indices remain the same throughout size changes.
This is necessary to avoid making resident data inaccessible after a change in indexing. Further-
more, cache exclusion is imposed between the L1 and the L2, guaranteeing that data remain
unique regardless of the movable boundary between the two levels. Cache inclusion, on the
other hand, can result in the same data appearing twice in the same cache. This is possible if
two copies of the same data initially residing in the L1 and the L2, respectively, end up in the
same cache after a resizing operation.

The variable boundary between L1 and L2 is intended for performance reasons. Making
the L1 smaller allows for a faster clock (the latency of the cache in cycles does not change), while
making it larger increases its hit ratio. In this initial work, no attempt is made to dynamically
control the configuration of the caches. Instead, all possible configurations are studied, each
persisting throughout the execution of a program.

Although this complexity-adaptive scheme yields performance benefits (depending on
the program and the configuration) no assessment is provided regarding its impact on power
consumption. However, the change in associativity in the L1 and the L2 (magnified by the
difference in the number of accesses between the two caches) can affect power consumption,
despite the fact that total amount of active memory remains constant.

Following the initial proposal for the variable L1/L2 division, Balasubramonian, Al-
bonesi, Buyuktosunoglu, and Dwarkadas take it one step further by proposing a more specific
and more detailed cache organization to achieve the same goal [21]. More importantly, they
also propose mechanisms to control the configuration of the caches at run-time.

The organization is based on a 2MB physical cache which is partitioned into four distinct
512KB subarrays. Each subarray is further partitioned into four segments with the help of
repeaters in the wordlines. Each of these segments acts as an associative way, either allocated
to the L1 or to the L2. Figure 4.17 shows the organization of the physical cache.

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 87

Way3 Way2 Way1 Way0

R
ow

 d
ec

od
er

precharge

column MUX

sense amps

pre
decoderSub-array 2 Sub-array 0 (512KB) Sub-array 1 Sub-array 3

global worldline local (segmented) wordline

FIGURE 4.17: Physical cache organization. Adapted from [21].

The physical cache hosts a virtual two-level hierarchy. Virtual L1 and L2 caches are
created within the physical cache by assigning ways to each level. Table 4.8 shows the possible
assignments, along with the resulting size, associativity, and access time (in cycles) of the
virtual L1. An important difference from Albonesi’s first proposal which advocated changing
the clock frequency to suit a faster or slower L1 [7], is that the clock frequency remains fixed.
What changes is the access latency, in cycles, for both the L1 and the L2. Latency changes in
half-cycle increments, assuming that data can be captured using both phases of the clock as in
the Alpha 21264.

Similarly to the first proposal [7], the virtual caches are exclusive. On each access, one of
the subarrays is enabled by predecoding a Subarray Select field in the requested address. Within
the enabled subarray, only the L1 section (the shaded ways in Table 4.8) is initially accessed.
In case of a miss, the L2 section is then accessed. If there is a hit in the L2, the requested data
are moved to the L1 by swapping places with the data already read during the L1 miss. If there
is a miss in the L2, data returning form memory is put in the L1 section; any displaced L1 data
are moved into the L2 section.

Feedback control: configuration searches: The justification behind this L1/L2 partitioning is
that it can adjust to different tolerances for hit and miss latencies. For programs, or better yet
program phases, that have a very low tolerance in hit latency, a fast L1 can be employed even if
it does not yield a very high hit rate. On the other hand, if a program (or program phase) can
tolerate somewhat higher hit latency but cannot tolerate a large miss latency, then a larger L1
(albeit somewhat slower) might be the right solution.

The goal is therefore to find a configuration of the virtual caches that yields the right
balance between hit latency and miss rate, per program phase. Balasubramonian et al. propose
a method to achieve this balance but leave open the choice for a software or a hardware
implementation. Their method works as follows. Performance statistics (miss rate, IPC, and

kaxiras3 MOCL005.cls June 27, 2008 9:33

T
A

B
L

E
4.

8:
P

ar
tit

io
ni

ng
of

th
e

P
hy

si
ca

l
C

ac
he

in
to

V
ir

tu
al

L
1

an
d

L
2

C
ac

he
s.

Sh
ad

ed
C

on
fig

ur
at

io
ns

(o
n

th
e

le
ft

si
de

)
ar

e
th

e
L

ow
-p

ow
er

A
lte

rn
at

iv
es

fo
ra

Sp
ec

ifi
c

Si
ze

Su
b-

ar
ra

y
2

Su
b-

ar
ra

y
0

Su
b-

ar
ra

y
1

Su
b-

ar
ra

y
3

L
1

L
1

A
cc

Si
ze

A
ss

oc
T

im
e

W
3

W
2

W
1

W
0

W
3

W
2

W
1

W
0

W
0

W
1

W
2

W
3

W
0

W
1

W
2

W
3

25
6K

1
w

ay
2

L
2

L
2

L
2

L
2

L
2

L
2

L
2

L
1

L
1

L
2

L
2

L
2

L
2

L
2

L
2

L
2

51
2K

2
w

ay
2.

5
L

2
L

2
L

2
L

2
L

2
L

2
L

1
L

1
L

1
L

1
L

2
L

2
L

2
L

2
L

2
L

2
76

8K
3

w
ay

2.
5

L
2

L
2

L
2

L
2

L
2

L
1

L
1

L
1

L
1

L
1

L
1

L
2

L
2

L
2

L
2

L
2

10
24

K
4

w
ay

3
L

2
L

2
L

2
L

2
L

1
L

1
L

2
L

1
L

1
L

1
L

1
L

1
L

2
L

2
L

2
L

2
51

2K
1

w
ay

3
L

2
L

2
L

2
L

1
L

2
L

2
L

2
L

1
L

1
L

2
L

2
L

2
L

1
L

2
L

2
L

2
10

24
K

2
w

ay
3.

5
L

2
L

2
L

1
L

1
L

1
L

2
L

2
L

1
L

1
L

2
L

2
L

1
L

1
L

1
L

2
L

2
15

36
K

3
w

ay
4

L
2

L
1

L
1

L
1

L
1

L
1

L
2

L
1

L
1

L
2

L
1

L
1

L
1

L
1

L
1

L
2

2M
4

w
ay

4.
5

L
1

L
1

L
1

L
1

L
1

L
1

L
1

L
1

L
1

L
1

L
1

L
1

L
1

L
1

L
1

L
1

88

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 89

branch frequency) are gathered in an interval on the order of 100 000 instructions. The statistics
produce two pieces of information: first, the CPI (cycles per instruction) in the current window;
second, an indication on whether a phase change occurred. A phase change is detected if the
statistics in the current window are markedly different from the ones in the previous window.
In such a case, any previously selected configuration is discarded and a configuration search
starts anew. The sensitivity of the phase detection mechanism is adjusted dynamically so as to
not get stuck in a single configuration nor constantly initiate new configuration searches for no
good reason.

The search goes through the possible configurations, using each one for a whole time
window. The search starts with the 256KB 1-way L1 and progresses through the configurations
in Table 4.9, in order. The configuration search also stops if the miss rate drops below some
threshold (set to 1% in the paper). Each configuration that is tried out in a search yields a CPI,
which is stored in a table. When the search completes (either by running out of configurations
or by bringing the miss rate below the threshold) the configuration with the lowest CPI is
picked. This configuration is called “stable” and persists for the duration of the program phase.

Balasubramonian et al. report on the performance and power consumption of their
proposal using a subset of the SPEC95, SPEC2000, and Olden benchmarks [21]. A dynamic
L1/L2 division yields no results on programs that have very small miss rates in the L1. But
for programs exhibiting a significant miss rate with a conventional 64KB 2-way L1, a dynamic
L1/L2 division can improve the CPI by 15% on average (and for some programs up to 50%).
This performance improvement, however, comes at a cost: a significantly higher (over 2x) energy
per instruction (EPI) for some programs. The reason is that the L1, in the best performing
configurations, is highly associative. A low-power modification to the search—selecting the
lowest associativity for a specific size—improves the situation by trading some performance
improvement for a significant reduction in energy. Projecting to 35 nm technologies and a
3-level cache hierarchy, Balasubramonian et al. show a 43% energy reduction compared to a
standard cache.

4.8.2 Selective Cache Ways
One of the key notions in Albonesi’s initial complexity-adaptive proposal is that caches can
be resized by changing their associativity [7]. In parallel with the variable L1/L2 division
proposals [7, 21], Albonesi proposes a much simpler technique, specifically for reducing power
consumption. This technique, called “selective cache ways” abandons the variable L1/L2 division
and concentrates on resizing a single cache by changing its associativity [8].

The idea of selective cache ways is rooted on two observations. First, not all the cache
is needed all the time by all programs. In many situations, a smaller cache does (almost) as
well, consuming far less power. Second, and equally important, resizing the cache can be done

kaxiras3 MOCL005.cls June 27, 2008 9:33

90 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

Compare

MUX

TA
G

TA
G

TA
G

TA
GDATA DATA DATA DATAStep 1

Step 2

Step 3

Tim
e

Deactivated Ways

FIGURE 4.18: Selective Cache Way: use smaller associativity. Shaded parts consume power on an
access. Deactivation mechanism not shown.

in a way that does not compromise the performance of the full-blown configuration. Unlike
intrusive approaches that could result in decreased clock speed or increased cache latency (in
cycles), the proposal for selective cache ways does not require anything that is not already there.

Large caches are partitioned into multiple subarrays for performance. This is a design time
partitioning, distinctly different from the dynamic (repeater-based) partitioning mentioned so
far. The goal of having smaller sub-arrays in the first place is to break the bit-lines and wordlines
into smaller segments to avoid the excessive delays of long wires. The geometry of the sub-arrays
is chosen in such a way as to equalize the delay of their bit-line and wordline segments. Given
this partitioning, the ways in a set-associative cache typically comprise one or more independent
sub-arrays. This, in turn, allows complete control over individual cache ways. Unneeded ways
can be disabled with little impact on the operation of the rest of the cache.

Disabling a cache way means that its data array simply does not react to cache accesses:
its bit-lines are not precharged, its wordlines are not activated, and its sense amplifiers are
prevented from firing. The tags of a disabled way, however, remain active. Figure 4.18 shows
a block diagram of a 4-way cache where two of its ways have been disabled. The output
multiplexor must be configured accordingly to ignore disabled ways.

Disabling a cache way brings up the question of what happens to its data—especially,
its modified (dirty) data. A low-power cache architecture cannot exclude a write-back policy,
therefore, dirty data are bound to exist in this case. One solution would be to flush the disabled
way and write back all its dirty data to memory. This, however, is the expensive solution. The
solution adopted in selective cache ways pushes the responsibility (and the complexity) to the
cache controller. Data in a disabled way can be accessed by briefly reinstating it into active
status. This happens in two situations. First, when a coherence request needs data from a
disabled way; second, when there is a hit in a disabled way. Both cases are detected by the cache

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 91

controller since all tags remain active at all times. In both cases, the relevant data are moved out
of the disabled way—temporarily enabled for this purpose—and moved to an enabled way.8

Feedback control: Software: Albonesi puts the burden of deciding the appropriate cache
configuration on software. First, a threshold for the tolerated performance degradation (called
PDT) is established. Any cache configuration that crosses this threshold is not allowed. Per-
formance evaluation tools can then predict how many cache ways an application really needs so
as not to lose more performance than what can be tolerated.

However, no attempt is made to evaluate this software-driven strategy. Instead, the
evaluation in the paper exhaustively examines all configurations for various cache sizes and
PDTs for a subset of the SPEC and reports the results. For energy savings, the combined
energy of the selective ways L1 and of the L2 must be taken into account. Examining the L1 in
isolation might give the wrong picture, since the increase in L2 energy can outpace the savings
in the L1. Indeed, in many programs, there is an inflection point in the energy curves. As more
and more ways are turned off, after a point, the combined L1/L2 energy consumption begins to
rise. The inflection point is specific to each program. Thus, the effectiveness of the technique
depends on how much of its cache a program can give up for a given level of performance
degradation.

4.8.3 Accounting Cache
Although the idea of selective cache ways has proven to be quite influential, lack of a convenient
mechanism to adapt to program needs at run-time limits its applicability. Profiling can be an
acceptable solution in some cases, for example, in embedded applications. This deficiency of
the initial proposal is addressed in the work of Dropsho et al. [68, 9].

Their proposal, termed the accounting cache, is a cross between selective ways cache and
the proposals for a variable L1/L2 division. It takes its name from the run-time accounting
that drives its configuration. The accounting cache is a set-associative organization which—
similarly to the selective cache ways—can “disable” a number of its ways. The disabled ways,
however, are not inaccessible but simply activated in the case of a miss in the “enabled” ways.
Similarly to the proposals for variable L1/L2 division, the disabled ways form a “fake” L2, or
rather, a secondary, slower, L1. The enabled ways—the “primary group”—respond first, while
the disabled ways—the “secondary group”—respond only after a miss in the primary group.

The access protocol for the accounting cache guarantees an important property for its
replacements: that no matter what the division between the primary and the secondary group,
replacements follow a global (true) LRU order encompassing all of the ways in a set. This is
critical for the run-time accounting proposed in the paper.

8In the case of a coherence action, the data could be simply discarded if not longer needed.

kaxiras3 MOCL005.cls June 27, 2008 9:33

92 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

Way0 Way1 Way2 Way3

mru[0] mru[1] mru[2] mru[3]

Primary Secondary

A B

C

C

A
B
C

Miss in primary partition
Hit in secondary partition
Swap new MRU with primary LRU

miss hitmissmiss

Way0 Way1 Way2 Way3

mru[1] mru[0] mru[3] mru[2]

Way0 Way1 Way2 Way3

mru[0] mru[1] mru[2] mru[3]

Primary Secondary

E

D

miss missmissmiss
BA

C

A
B
C

Miss in primary partition
Miss in secondary partition
New MRU from memory displaces primary LRU

D Primary LRU displaces secondary LRU
E Secondary LRU is evicted

Way0 Way1 Way2 Way3

mru[1] mru[0] mru[3] mru[2]Resulting State:

FIGURE 4.19: Replacements in the Accounting Cache. The set MRU order is given by the indices
(MRU[0] is the MRU while MRU[3] is the LRU). Adapted from [68].

☞ global LRU implementation: Maintaining a global LRU order in this cache is accom-
plished by placing the most recently accessed blocks in the primary group and moving the
displaced blocks in the secondary group (Figure 4.19). For example, a miss in the primary
group but a hit in the secondary group results in swapping the primary LRU block with
the secondary block that hit (Figure 4.19, left side). A miss in both groups results in a new
block brought in from memory directly in the primary group. This displaces the primary
LRU block into the secondary group, where it evicts the secondary—global—LRU block
(Figure 4.19, right side). This is a viable replacement policy for a non-inclusive two-level
hierarchy and is used in the original proposals for a variable L1/L2 division.

Feedback control: one-shot configuration and accounting: The replacement policy in the ac-
counting cache guarantees a true LRU ordering in the sets. Based on this ordering, global statis-
tics for the whole cache concerning the number of hits per LRU position (or equivalently MRU
position) can be easily collected using a set of global counters. Thinking in terms of MRU,
there are N—where N is the total associativity—global counters MRU[0]..MRU[N-1].
MRU[0] is the most recently used and MRU[N-1] is the least recently used. Each time

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 93

a hit takes place on a line in MRU position i the corresponding counter MRU[i] is
incremented.

These statistics are important because hits in various MRU positions correspond to hits
in different cache configurations. Hits in the first MRU position correspond to hits in a direct-
mapped cache; the combined hits in the first and second MRU position correspond to hits in
a two-way set-associative cache; and so on. Thus, hits in any configuration of the primary and
secondary groups can be derived simply by summing up hits in the appropriate MRU positions.
This leads to one-shot configuration by allowing one to assess in one go all possible outcomes
and select the “best” configuration. In contrast, a configuration search would have to try each
and every configuration for an entire interval and then make a decision.

Here’s how one-shot configuration is done in more detail. Statistics are gathered in
intervals of 100 000 instructions. Since the statistics are independent of the cache configuration
in the interval, they can be used to try “what if” scenarios for any cache configuration. Assuming
that the statistics of an interval are a good indication for the behavior of the next, the most
appropriate configuration for the next window can be thus uncovered.

The “what if” scenarios use simple memory access latency and energy cost models. These
models calculate the effective memory latency and the energy of a configuration as a function
of the hits in its primary and secondary groups. The calculations are performed in a software
interrupt handler which also decides on the next configuration.

The policy to decide the next configuration is to go for the lowest energy consumption
given a limit in the tolerated performance loss (called tolerance level). This sounds similar to the
policy used in the selective cache ways, but goes further. It has memory. It keeps an account
of what happens in each interval and builds credit or debit for both performance and energy.
So, for example, if previous configurations had better performance than the corresponding
estimates indicated, the policy becomes more aggressive in trying to reduce energy since it has
performance credit. On the contrary, if a performance deficit from previous configurations was
accumulated, the policy has to make up for it, giving up on energy reduction.

This accounting scheme is a result of the one-shot configuration relying on an estimate
on what happens in the upcoming interval. This estimate relies, in turn, on the assumption
that the measured statistics do not differ noticeably from interval to interval. But in reality
they do differ. Accounting normalizes the differences between the estimated and the actual by
employing credit or debit in the next configuration decision.

The accounting cache yields very good power results with a rather small impact on
performance. As Figure 4.20 shows, for tolerance settings of 1/64, 1/16, and 1/4 (1.5, 6.2,
and 0.25 in the graph), energy savings range from 54% to 58% for the instruction L1, 29% to
45% for the data L1, and 25 to 63% for a unified L2 with parallel tag/data access. Overall, for

kaxiras3 MOCL005.cls June 27, 2008 9:33

94 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

FIGURE 4.20: Accounting cache results. From [68]. Copyright 2002 IEEE.

both cache levels, savings range from 35% to 53% depending on the tolerance settings while
performance loss ranges from less than 1% to less than 4%.

4.8.4 CAM-Tag Cache Resizing
Zhang and Asanović point out that while considerable effort is expended on proposals to resize
high-performance RAM-tag caches, many real low-power processors actually use the more
power-efficient CAM-tag design (see, for example, Section 4.2.4 for a commercial CAM-tag
cache). Resizing, however, is equally—if not more—advantageous for highly-associative CAM-
tag caches. To fill this gap, Zhang and Asanović proposed the first technique for CAM-tag
cache resizing, called Miss-Tag Resizing (MTR) [243].

There are distinct advantages in resizing a highly-associative CAM-tag cache. To begin
with, resizing at a granularity of an associative way is finer-grain in CAM-tag caches than in
RAM-tag caches. The latter have fewer but larger ways (see, for example, the Selective Cache
Ways in Section 4.8.2). Moreover, in CAM-tag caches resizing can be done individually per set,
meaning that an associative way need not be disabled in its entirety across all sets. Rather, in
each set, one can disable any associative way without regard to what is happening in other sets.
To do this, Zhang and Asanović rely on the bit-line segmentation technique (see “Sidebar:
Bit-line Segmentation”). But for bit-lines, there is an important difference between RAM-tag
and CAM-tag organizations.

Bit-lines in RAM-tag caches run across the sets of the cache. In contrast, bit-lines in
CAM-tag caches run across the ways of a set. This is shown in Figure 4.21 for a RAM-tag
cache of N sets and 4 ways and a CAM-tag cache of N ways and 4 sets. This figure shows
that bit-line segmentation in a RAM-tag cache partitions the sets while in a CAM-tag cache
partitions the ways. It is also evident, that in the CAM-tag organization each set can be resized

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 95

(4) associative ways
(N

)
se

ts bit-lines

sense amps

RAM-tags

RAM-tag Cache CAM-tag Cache

(N
)

w
ay

s

bit-lines

CAM-tags

sense amps

(4) sets

FIGURE 4.21: Bit-line organization in RAM-tag and CAM-tag caches. Bit-lines in RAM-tag caches
run across sets. Bit-lines in CAM-tag caches run across ways (not sets).

(in the number of its ways) independently of any other set. This holds regardless on whether a
set corresponds to a single bank (as depicted in Figure 4.21) or shares a bank with other sets.

Using bit-line segmentation, a set can be partitioned into a small number of partitions,
each encompassing a number of ways. For example, partitioning a 32-way set into 8 partitions,
results in 4 ways (cache lines) per partition. In the Zhang and Asanović work [243], resizing
is performed in steps of a single way (a single cache line) at a time. Gated-Vdd—a technique
to reduce leakage—deactivates individual cache lines. However, only when all the cache lines
(ways) in a partition are deactivated can the bit-line segment of that partition be taken off the
global bit-line and all switching activity in the partition cease. In the example of the 32-way,
8-partition cache, only when all four cache lines of a partition are deactivated is the partition
itself deactivated.

The control policy for resizing is a classic performance-based feedback loop. What is
measured is whether resizing (upsizing or downsizing) leads to worse, better, or the same
performance. Depending on the measurement, resizing (up or down) is continued, reversed,
or postponed. The metric for performance is the number of misses in a time window of 128K
references [243]. One way to use this number would be to compare it to the number of
misses measured in the previous time window. But this would entail considerable uncertainty
in gauging the effect of a resizing decision on performance. This is because miss rate can vary,
not solely as a function of cache size, but as a result of program behavior as well.

Zhang and Asanović propose something more reliable—albeit, at an additional cost. They
compare the number of misses of the resized cache to the number of misses that would arise in
the full-size cache. They do this by keeping a second (full) set of tags, called the Miss Tags, whose
sole purpose is to count the number of misses in the full-size cache. Miss Tags are only accessed
during misses. Since they serve only an accounting role they are not performance-critical

kaxiras3 MOCL005.cls June 27, 2008 9:33

96 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

Long bit-line

M
e
m

o
ry

 c
e
lls

c

c

c

c

c

c

c

c

c

c

W
o
rd

lin
e
s

c

c

c

c

c

c

G
lo

b
a
l B

it-
lin

e

Bypass Switch

Bypass Switch

c

c

c

c

c

c

c

c

C
o
n
tr

o
l

c

c

c

c

c

c

c

c

Original Long bit-line
Segmented into
4 segments

Global bit-line with
bypass switches

Activation of a single
segment

Selected by
predecoding

FIGURE 4.22: Bit-line segmentation. Only one bit-line per cell (c) and the corresponding pass transistor
are shown. The original bit-line carrying 8 cells is partitioned in 4 segments each carrying 2 cells. The
4 segments attach to a new global bit-line via bypass switches. The bypass switches control dynamically
which segment drives the global bit-line. Adapted from [83].

and can be easily made power-efficient. This leaves the area overhead as the main cost for the
Miss Tags which Zhang and Asanović estimate to be about 10% for a 32KB cache [243].

The performance difference from resizing the cache is estimated as the difference of the
misses of the resized cache and the full cache. The policy is to downsize the cache as much as
possible without letting this difference exceed an empirically derived limit. Zhang and Asanović
report that MTR yields a significant reduction in the dynamic energy of the order of 28% for
the data cache (34% for the instruction cache) compared to a full-size CAM-tag cache.

☞ bit-line segmentation: Bit-line segmentation applies to long bit-lines in SRAM arrays
[125, 83]. Such bit-lines are connected via pass transistors to a large number of memory
cells. The capacitive load due to the diffusion capacitance of the pass transistors in addition
to the capacitance of the wire itself, significantly adds to the power (e.g., precharge power
and sense power) needed to drive such bit-lines. The solution is to break the bit-line in k
segments, each carrying a fraction of the cells of the original bit-line (see Figure 4.22). In
contrast to wire segmentation, bit-line segments are not stringed together with repeaters.
Instead, a new global bit-line is introduced to carry the result from each of the bit-line
segments.

Each segment of the original bit-line attaches to the global bit-line via a bypass switch
(Figure 4.22). These switches dynamically control which bit-line segment drives the global
bit-line. Part of the address is predecoded to allow only the relevant bit-line segment on the
global bit-line. The power benefit in this case comes from activating only a small segment

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 97

of the original bit-line. On the other hand, a new wire (the global bit-line) and a number
of bypass switches are introduced in the design. The capacitive load on the global bit-line,
however, is so much less than that of the original bit-line (only one bypass switch per
segment as opposed to a pass transistor per cell) that smaller prechargers/drivers and smaller
sense amps can be used. The end result is a net benefit in the power expended to operate
the combined system [125, 83].

4.8.5 Further Reading on Cache Reconfiguration
Ranganathan, Adve, and Jouppi proposed reconfigurable caches that can be divided into mul-
tiple partitions [189]. Their cache partitioning scheme is similar to the selective cache ways in
that it works at the granularity of cache ways. In contrast to the selective cache ways, which
only allows two partitions (an enabled and a disabled partition), this proposal allows multiple
partitions to be created; up to four partitions can be created in a 4-way set associative cache.
Furthermore, cache partitions can be devoted to different functions rather than just being en-
abled or disabled. The example described in the paper uses one partition as an instruction-reuse
cache, i.e., to cache the outcome of frequently appearing instructions. Supporting diverse func-
tionality requires additional address and data busses to accommodate simultaneous access to
all the possible partitions. The proposal is focused on performance rather than power and the
authors acknowledge that some of their design decisions may actually increase power consump-
tion. However, it is closely related to the low-power proposals discussed above, often resorting
to similar solutions for problems such as data accessibility among partitions, replacement, etc.

4.9 PARALLEL SWITCHING-ACTIVITY
IN SET-ASSOCIATIVE CACHES

Besides cache resizing which relates to cache capacity, one can attempt to optimize switching
on the basis of individual cache accesses (for a fixed capacity). Invariably, the effort to reduce
switching activity for an access centers on set-associative or fully associative organizations. There
is not much opportunity in reducing switching activity in a straightforward direct-mapped orga-
nization, but the prospects for optimizing a naively-designed associative cache are ample: in its
power-challenged incarnation the associative cache consumes power linearly to its associativity.

The parallel search in an associative cache is a prime example of parallel switching activity
purposed for performance. While it is known beforehand that all but one of the associative
ways will fail to produce a hit, all ways are still accessed in parallel for speed.

Figure 4.23 depicts a simplified block diagram of a 4-way set associative cache. Tag
and data arrays are shown for four ways. A comparator compares the tags and drives the
multiplexor for the data output. Of course, a real implementation could be markedly different
in how the tags and data arrays are combined or divided in sub-banks (e.g., the way CACTI

kaxiras3 MOCL005.cls June 27, 2008 9:33

98 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

Compare

MUX
TA

G

TA
G

TA
G

TA
GDATA DATA DATA DATAStep 1

Step 2

Step 3

Tim
e

FIGURE 4.23: A power-challenged set-associative cache.

divides up large arrays into sub-arrays). Regardless, the important information conveyed in this
figure are the shaded areas of a set-associative cache where switching occurs during an access.
In a power-agnostic design, all the cache is shaded: all tag ways and data ways are accessed
simultaneously. All the tags of the selected set are matched against the requested address to
determine a hit or a miss. Simultaneously, all the data arrays are accessed to provide the data
by the time a possible hit is determined.

Clearly we can do better. There is plenty of “excess” switching activity during an access
but optimizing it away may cost in performance. The techniques presented here (listed in
Table 4.9) aim to significantly reduce power while preserving as much performance as possible.

4.9.1 Phased Cache
A straightforward technique to reduce the full switching activity of a set-associative cache is
to defer accessing the data ways until a hit is determined and, then, accessing only the correct
data way for the requested data. In other words, as the name suggests, access the cache in
phases: first the tags and then (if needed) the data. This technique, appearing as one of the
earliest techniques for dynamic power reduction in caches, is discussed in Hasegawa et al. [95]
as the implementation of the SH3 cache (Hitachi’s low-power embedded RISC processor).
Subsequently, it appears in the L2 cache of the Alpha 21264 [87].

The benefit of phasing is a significant reduction in power for the data access which is
linear to the miss ratio (no data ways are accessed on misses) and inversely proportional to
associativity:

Pdata new = Pdata old × (1 − miss ratio)/Ways.

The cost in performance is due to the larger latency: the data access no longer can be
hidden partially behind the tag access and tag comparison. The performance cost is significant
if performance is strongly dependent on latency: for example in non-pipelined L1 caches or

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 99

TABLE 4.9: Parallel Switching Activity Optimization in Set-Associative Caches

Technique What it Does Examples

Phased access Finds a tag match first and then
accesses the data way

Hitachi SH3 [95]
Alpha 21264 [87]

Sequential access Sequentially accesses ways starting
from the way most likely to hit
(MRU)

Kessler et al. [133]

Way prediction Predicts and accesses the cache
way that contains the data in
parallel to tag match

MRU prediction, Inhue et al.
[109], Selective Direct

Mapping, Powel et al. [183],
Multi-MRU, Zhang et al.

[242], Zhu et al. [249]

Way Selection Deterministically Selects the cache
way that contains the data prior
to tag match

Location Cache, Min et al.
[168],

Way Halting, Zhang et al.
[241],

Decaying Bloom filters,
Keramidas et al. [131]

in in-order issue processors. However, if the increased cache latency can be tolerated this is a
straightforward and efficient technique to use. Case in point, the Alpha’s L2 cache were the
additional L2 latency can be easily tolerated by the out-of-order core.

4.9.2 Sequentially Accessed Set-Associative Cache
A sequentially accessed set-associative cache was first proposed by Kessler, Jooss, Lebeck, and
Hill [133] as an inexpensive method to implement associativity. In a set-associative organization
the sequential access scheme is depicted in Figure 4.25. Initially, only the most likely cache
way to produce a hit is probed. In Figure 4.25, the first probe is chosen to be the most recently
used (MRU) way. This feature was first proposed for the IBM 370 cache [48]. Additional
information is needed to point to the MRU way in each set. However, if the cache features a
true-LRU replacement algorithm the MRU information can be readily extracted from the LRU
list—incurring of course additional latency. Failing to find the requested data in the MRU way
starts a cyclic sequential search of the remaining ways.

kaxiras3 MOCL005.cls June 27, 2008 9:33

100 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

Compare

MUX
TA

G

TA
G

TA
G

TA
GDATA DATA DATA DATAStep 1

Step 2

Step 3

T
im

e

Compare

MUX

TA
G

TA
G

TA
G

TA
GDATA DATA DATA DATAStep 1

Step 2

Step 3

Tim
e

TA
G

 P
H

A
S

E
D

A
TA

 P
H

A
S

E

FIGURE 4.24: Phased Cache: Tags first, data later.

Depending on the prediction accuracy, this scheme’s performance and power consump-
tion approach those for a small and fast direct-mapped cache. With mispredictions, however,
the sequential search can be much more expensive in power consumption than a phased cache
and almost certainly slower. Moreover, this scheme suffers considerably on misses since it will
consume the maximum energy per access just to find out that it needs to fetch the data from a
lower hierarchy level.

☞ earlier work on pseudo–associativity: The idea of a sequentially accessed set-associative
cache was followed by work on pseudo-associativity which eventually led to way prediction.
Early work focused on improving the miss ratio of direct-mapped caches by endowing
them with the illusion of associativity [43, 122, 3, 4]. This was driven by performance
considerations—and not power which was a secondary concern back then.

Direct-mapped caches are faster than set-associative caches and can be easier to
implement and pipeline [99]. Any enhancement that brings their miss ratio closer to that
of set-associative caches and at the same time does not compromise their latency can
potentially make them top performers. In this direction, work such as the Hash–Rehash
cache (Agrawal et al. [4]), the Column associative cache (Agrawal et al. [3]), and the PSA

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 101

Compare

MUX

TA
G

TA
G

TA
G

TA
GDATA DATA DATA DATAStep 1

Step 2

Step 3
Tim

e

Compare

MUX

TA
G

TA
G

TA
G

TA
GDATA DATA DATA DATAStep 1

Step 2

Step 3

Tim
e

Compare

MUX

TA
G

TA
G

TA
G

TA
GDATA DATA DATA DATAStep 1

Step 2

Step 3

Tim
e

FIGURE 4.25: Sequential access: start from the MRU way and look sequentially.

cache (Calder et al. [43]), convert a direct-mapped cache into a 2-way set-associative cache
by mapping conflicting lines to two separate sub-banks.

The lines are still accessed with the benefit of direct-mapping: a single probe checks the
tag and reads the data from the most likely location. But if the requested data are not found,
an alternative location is also probed. The three proposals differ on how they choose the most
likely location for the first access and what they do to improve subsequent accesses, with the
PSA proposal fully decoupling location prediction (using a separate prediction structure)
from replacement decisions [43]. Although these proposals have substantial differences
with respect to power consumption from the corresponding set-associative organizations,
no work is available to systematically compare the various options.

4.9.3 Way Prediction
In 1999, Inhue, Ishihara, and Murakami [109] recast the Kessler et al. work on sequen-
tially accessed set-associative caches [133] and the Calder et al. PSA scheme [43], having

kaxiras3 MOCL005.cls June 27, 2008 9:33

102 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

MUX

TA
G

TA
G

TA
G

TA
GDATA DATA DATA DATAStep 1

Step 2

Step 3

Tim
e

Compare

MUX

TA
G

TA
G

TA
G

TA
GDATA DATA DATA DATAStep 1

Step 2

Step 3

Tim
e

WAY
Predictor

P
R

E
D

IC
T

IO
N

 P
H

A
S

E
Step 0

M
IS

S
P

R
E

D
IC

T
IO

N
 P

H
A

S
E

Compare

FIGURE 4.26: Way prediction: Choose a way and access tag and data. In case of mismatch, access all
the rest of the ways in a second phase for the access.

low-power as the main goal. The general scheme, called way prediction, is depicted in
Figure 4.26. A separate prediction structure is employed to hold MRU information: for each
cache set a bit map points the MRU way with a set bit. This predictor structure is accessed
prior to the cache using the requested address (or parts thereof) and provides the prediction of
where the requested data are likely to be found.

Initially, only the predicted way (both tag and data arrays) is accessed. Tag comparison
determines a hit or a miss for the predicted way. In the case of a miss the remaining ways are
accessed in parallel, as in a normal set-associative cache, to determine whether the requested
data exist in a non-MRU position. This is a departure from the Kessler et al. scheme, where the
remaining ways are searched sequentially and not in parallel. The MRU predictor is updated

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 103

Compare

MUX

TA
G

TA
G

TA
G

TA
GDATA DATA DATA DATAStep 1

Step 2

Step 3

Tim
e

Compare

MUX

TA
G

TA
G

TA
G

TA
GDATA DATA DATA DATAStep 1

Step 2

Step 3

Tim
e

WAY
Predictor

P
R

E
D

IC
T

IO
N

 &
 T

A
G

 P
H

A
S

E

Step 0

M
IS

S
P

R
E

D
IC

T
IO

N
 P

H
A

S
E

Compare

MUX

TA
G

TA
G

TA
G

TA
GDATA DATA DATA DATAStep 1

Step 2

Step 3

Tim
e

Compare

MUX

TA
G

TA
G

TA
G

TA
GDATA DATA DATA DATAStep 1

Step 2

Step 3

Tim
e

WAY
Predictor

P
R

E
D

IC
T

IO
N

 P
H

A
S

E

Step 0

M
IS

S
P

R
E

D
IC

T
IO

N
 T

A
G

 P
H

A
S

E

Compare

MUX

TA
G

TA
G

TA
G

TA
GDATA DATA DATA DATAStep 1

Step 2

Step 3

Tim
e

M
IS

S
P

R
E

D
IC

T
IO

N
 D

A
TA

 P
H

A
S

E

FIGURE 4.27: Hybrid, way prediction + phased access. On the left, way prediction is combined with
phased access. The phased access takes place only on mispredictions. The remaining tag ways are accessed
in the misprediction tag phase and the correct data way is accessed in the misprediction data phase. On
the right, the way prediction and the misprediction tag phase are combined into one. All tag ways are
accessed in the first phase along with the predicted data way. In the case of a misprediction, the correct
way is accessed in the misprediction phase.

according to where the data are found on hits or with the location of the replaced data on misses.
Inhue et al. provide evidence that MRU is sufficiently good prediction in 4-way associative
caches to outdo a phased cache in EDP for various SPEC2000 benchmarks.

The power reduction of this scheme is proportional to the prediction accuracy and
inversely proportional to the associativity:

Pnew = Accuracy × Pold/Ways + (1 − Accuracy) × Pold.

At worse (Accuracy = 0) this scheme cannot be worse in power consumption than a
standard cache, but it certainly will be slower (i.e., worse EDP than the base case). Unfortunately,
the two factors that determine the power reduction are antagonistic. Higher associativity yields
larger benefit on correct predictions, but at the same time lowers the MRU prediction accuracy
(resulting in fewer correct predictions).

An improvement in this scheme is to combine it with the phased access approach
(Figure 4.27, left diagram). The MRU tag is checked first and in case of a hit the corresponding

kaxiras3 MOCL005.cls June 27, 2008 9:33

104 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

data way is accessed. If the MRU way does not yield a hit, the remaining ways are also checked,
again, in two phases. First, the tags are checked for a hit and then only the correct data way
(if any) is accessed for the data. Alternatively, the second step can be combined with the first
step into one (Figure 4.27, right diagram). In this scheme, all tag ways are accessed in the first
step along with the predicted data way. In the case of a misprediction, the correct data way is
known from the tag comparison in the first step and it is accessed in the second (Figure 4.27,
right diagram).

4.9.4 Advanced Way-Prediction Mechanisms
The simplicity and success of the way prediction scheme gave rise to more sophisticated
prediction mechanisms. Two representative proposals are the selective direct-mapping and the
multi-MRU.

Selective direct-mapping: Powell et al. [183], combine selective direct-mapping (SDM)
[23] and way prediction in an effort to increase the overall way prediction accuracy. Selective
direct-mapping, initially proposed by Batson and Vijaykumar [23], was conceived as an en-
hancement on the PSA cache. The initial proposal featuring SDM, called Reactive-Associative
Cache, uses a set-associative organization for tags and a direct-mapped organization for data.
Cache lines are mapped in their direct-mapped positions and are only displaced to alterna-
tive set-associative positions in the case of conflicts. Cache access resembles a phased access
and takes one or two probes to find the data. The first probe, guided by a predictor, accesses
either the direct-mapped position or a predicted set-associative position. Tag match proceeds
in parallel. The second probe only takes place on a misprediction (the data are not found in
their direct-mapped position or the way-prediction was incorrect). At that point, the correct
position of the data is known from the tag comparison results.

SDM increases the chances of finding the desired data in the first probe. Why is that?
In a typical set-associative cache a line can end up anywhere in a set. This is due to the highly
dynamic nature of the associative replacement algorithms. Way prediction has the difficult task
of predicting the position of each cache line among all the equiprobable associative positions.
The problem, of course, worsens as associativity increases. Selective direct-mapping offers a way
out by separating conflicting from non-conflicting cache lines.9 In essence, SDM pins down
non-conflicting cache lines to known positions (their corresponding direct-mapped positions)
so it is easy to “predict” where they are. In fact, a predictor in SDM only has to supply a prediction
on whether a cache line is conflicting or not. In the case it is conflicting, it is in a set-associative

9This is achieved by using a conflict list that captures conflicts close in time. Cache lines enter the conflict list when
they are first evicted from the cache, from their direct-mapped positions. Further evictions while in the conflict list
give a cache line the “conflicting line” status and form that point onwards it is displaced in a set-associative position
rather than placed in its direct mapped position.

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 105

TA
G

TA
G

TA
G

TA
G

DATA

DATA

DATA

DATA

TA
G

TA
G

TA
G

TA
GDATA DATA DATA DATA

tag index b-offsetdm

TA
G

TA
G

TA
G

TA
G

DATA

DATA

DATA

DATA

tag index b-offsetdm

encoder

prediction: direct-mapped
or displaced?

Instruction-based

Probe0: access predicted direct-mapped,

predictor
predicted way number

or displaced at a predicted way number
Probe1: Probe0 was mispredicted;
correct way number is taken from tag compare

tag compare

Reactive-Associative Cache (Selective Direct-Mapping + way prediction):

Ordinary Set-Associative Cache:

Address:

tag index b-offsetAddress:

TIME

FIGURE 4.28: Reactive-associative cache and selective direct-mapping (with way prediction). The
reactive-associative cache maintains the parallel tag banks of a set-associative organization (top diagram)
but combines the data banks into one direct mapped bank (bottom diagrams).

position; otherwise it is in its direct-mapped position. If the cache line is conflicting, further
predicting where it was displaced (way-prediction) is simply an additional bonus. Any other
technique such as phased or sequential access could also be used instead. Because way prediction
only has to be used on the conflicting, displaced cache lines it is relatively an easier task.

Figure 4.28 shows how SDM works in conjunction with way prediction. The first probe
(Figure 4.28, bottom left) is guided by an instruction-based prediction mechanism (see also Fig-
ure 4.30 which gives an overview of the prediction schemes). The predictor either directs the first
probe to use the dm field of the address for the direct-mapped access or supplies a way prediction
for the set-associative access.10 If, according to the tag comparison, the first probe fails, a second
probe accesses the data in its correct position, which is encoded from the tag comparison results.

10The way-prediction can be supplied by any type of predictor. Powell et al. use a simple history-based predictor
indexed by an early approximation of the address. This approximation is derived as the contents of the source
address register XOR’ed with any immediate offset found in the corresponding instruction.

kaxiras3 MOCL005.cls June 27, 2008 9:33

106 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

assoc

way prediction is the MRU of the set(eg. way 3)

*00

01

Sets

assoc ways

Cache Ways
0 1 2 3

0001
Sets

mru

MRU

assoc

Sets

assoc

Cache Ways
0 1 2 3

1000
Sets

Multi-MRU

001001000001

00 10 11

MMRU uses the log2(N) least-significant tag bits to select

tag bits

N MRU tables

*01 *00*11
presense
vectors:

 an MRU table (here 2 bits for 4 tables):

Way prediction for tag:
*00 is 3 (note the other “non-MRU” *00 tag in way 2)
*01 is 1 (tag *01 is in its DM position)
*10 is 2 (although no tag *10 is in the set)
*11 is 0

bits

FIGURE 4.29: Multi-MRU way-predictor employs N MRU predictors (typically N = assoc) to disam-
biguate on few least-significant tag bits.

Powell et al. report that SDM combined with way prediction yields significant savings by
accessing mostly the direct-mapped or the predicted way. Despite some performance penalty
(less than 3%) due to mispredictions, the reduction in EDP is of the order of 64–69% for the
4-way 16KB instruction L1 and data L1, respectively. For their processor models the overall
reduction in EDP for this technique is 8%, while with perfect prediction is only 2% better
(10%) [183].

Multi-MRU: The multi-MRU (MMRU) Zhang et al. proposal [242] (later also appearing
in Zhu et al. [249]) is also an extension of the most recently used (MRU) way-prediction [43, 48].
MRU simply returns the most recently accessed way of a set as its prediction (Figure 4.29, left
diagram) but MMRU allows multiple MRU predictors to disambiguate among tags (Figure 4.29,
right diagram). All tags in a set having the same low-order bits are tracked by the same MRU
table. For example, in Figure 4.29, two tags ending in 00 are tracked by the leftmost MRU
table. The prediction is the cache-way of the MRU tag among them (e.g., way 3 in Figure 4.29).
In theory, MMRU can disambiguate any number of tag bits, but in practice the technique is
limited by the cost of the MRU tables.

It is interesting to note that according to the published results, MMRU is about equal
in predictive power to selective direct-mapping when log2 (associativity) tag bits (i.e., as many
MRU tables as the associativity of the cache) are used. In terms of predictive power, SDM
aims to place as many lines as it can in their direct-mapped positions and handle the rest
with a way-predictor. MMRU tracks all such lines, both those in their direct-mapped position
and those in set-associative positions, yielding approximately the same prediction accuracy—an
average of 92% first probe hits for 4-way caches [183, 242, 249].

A weakness in all the way prediction techniques mentioned so far is that they do not
do well on misses. MRU, MMRU, and SDM incur the maximum latency and energy just to

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 107

pred:
gshare
pGa

PC

MMRU

Tag,Index

predicted

predicted hit:
way-predicted

Cache

PC

Way

XOR addr. approx.

predicted

predicted conflict:
way-predicted

Cache

non-conflict: S-DM
miss: Phased Cache

Pred.

Victim list

evicted
place in DM
or SA if conflicting

DM/SA
Pred.

Powell et al.
Zhu et al. & Zhang et al.

FIGURE 4.30: Overall prediction schemes in [183] (left side) and [242, 249] (right side).

determine that a miss should go to the next level. To address this deficiency, Zhu et al. suggest
yet another level of prediction specifically for misses [249]. The resulting scheme is shown
in Figure 4.30 (right side). A sophisticated 2-level instruction-based predictor first rules on
whether the upcoming access is a miss or a hit. If it is a miss, the cost of accessing the cache
is avoided, leaving only the cost of accessing the predictor. If it is a hit, a new prediction (e.g.,
MMRU or indeed any other way prediction) is used to access only a single way for the data
instead of all of the cache.

4.9.5 Way Selection
Way prediction techniques have the disadvantage of the second probe on mispredictions. The
second probe costs both in latency and power. In superscalar out-of-order processors, it might
also interfere with instruction scheduling, thus incurring additional latency costs [23]. The
misprediction rate is also a wild card, meaning that one does not really know how well the
prediction mechanism will behave with an untested workload. To address these concerns,
a different class of techniques aim to achieve the same goal (accessing a single way) but take
prediction out of the picture. We refer collectively to such techniques as way selection techniques,
alluding to the fact that the way containing the data is deterministically selected prior to the
access. Some of the way selection techniques are the Location Cache [168], Way Halting [241],
and Decaying Bloom filters [131].

The Location Cache (LC), as its name implies, stores the position of L2 cache lines. The
LC sits next to the L1 and being relatively small there is ample time to access it before going
to the L2. If, on an L1 miss, the LC supplies a way number, only the appropriate L2 way is
accessed. If there is a miss in the LC the L2 is accessed as an ordinary set-associative cache. To

kaxiras3 MOCL005.cls June 27, 2008 9:33

108 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

TA
G

TA
G

TA
G

TA
G

DATA DATA DATA

tag index b-offsetAddress:

de
co

de
r

index

Halt Tags
C

A
M

DATA

C
A

M

C
A

M

C
A

M

wordline

low-order tag bits

WAY0 WAY1 WAY2 WAY3

FIGURE 4.31: Way halting: each way is augmented with a CAM array (Halt tags). A Halt tag comprises
few low-order bits of the tag. The Halt tags gate the wordlines to the rest of the tag and the data arrays.
Adapted from [168].

enhance the chances of hitting in the LC on an L1 miss, sequential prefetching loads the LC
with the position of subsequent cache lines.

Way halting is another technique that deterministically accesses only the correct data way.
Way halting operates at a single cache level, by halting the parallel access to all the irrelevant
ways once a hit and its location are determined in the tag compare. Since tag compare needs
to happen very fast for this technique to be successful the authors resort to a partial tag match.
Only a few low-order bits of the tag are checked in a CAM structure called halting tag array.
The CAM structure combines tag access and tag compare in one step (without even needing to
decode the index). This makes it fast enough for its outcome to gate the tag and data wordlines
driven by the index decoder (Figure 4.31). The access to ways that do not contain the desired
data is thus halted by not driving their respective wordlines. Zhang et al. report that way halting
can reduce energy in a 4-way cache from 45% to 60% with only a slight area overhead (2%) and
without any performance penalty [168].

Finally, Decaying Bloom filters combine a leakage reduction technique (Cache Decay)
with a way prediction structure based on Bloom filters [30]. The main intuition for this proposal
is that in a decaying cache, dead lines need not be searched. Thus, rather than trying to predict
which cache way holds a specific line, the Decaying Bloom filters indicate for each cache
way whether the line could be live in it. All the ways that can possibly contain the live line
are accessed. In contrast to way-prediction which only accesses a single predicted way, this
technique may access more than one way but it cannot be wrong: the line is either in the selected
ways or it is a miss. An additional benefit of using Decay is that Decaying Bloom filters track
only the live lines in the ways—dead lines are automatically purged. This considerably increases
the accuracy of the information in the Bloom filters. In contrast to way prediction that fumbles
on misses as explained above, way selection in general does much better: a miss is detected a lot

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 109

FIGURE 4.32: Bloom filters for Snoops: Include-Jetty and Exclude-Jetty. Reproduced from [171].
Copyright 2001 IEEE.

sooner and the cache access can be avoided altogether. In the Decaying Bloom filters this early
detection of misses works very well (when the Bloom filters indicate that there is no live line in
any of the ways of the cache) giving the technique an advantage over competing way prediction
schemes [131].

4.9.6 Coherence Protocols
Cache coherence protocols on bus-based multiprocessors work by having each cache snoop
on every bus transaction. This guarantees that if any cache has a copy of the data referenced
in the bus transaction, it will also participate in the coherence actions for the data. The very
nature of snooping is premised on everyone listening in on the broadcast bus simultaneously,
which implies that caches snoop the bus even if they have nothing to do with a particular bus
transaction. This brings to mind the parallel access of all the ways of a set-associative cache
knowing full well that all but one will miss. However, the distributed nature of cache coherence
and the fact that parallel snooping is needed for correctness and not simply for performance
make its power optimization an interesting problem.

Moshovos, Memik, Falsafi, and Choudhary proposed the first technique to deal with
this problem [171]. Their solution is based on small local filters called Jettys. These filters sit
between the bus and the L2s and discard most of the unneeded snooping. However, in contrast
to way-prediction, mispredictions are not allowed in snoop filtering. Snoop filtering only works
if it can be established with absolute certainty that the snooped address is not cached locally in the L2.
Preventing a snoop to cached data is a correctness issue. The Moshovos et al. proposal ensures
correctness by using variants of Bloom filters [30] to eliminate snoops that are guaranteed to be
irrelevant to the contents of the local cache.

Three different approaches are proposed. The first approach is the exclude-Jetty. It is a
small tag-cache which is used to indicate what is not cached in the L2. It does this by observing

kaxiras3 MOCL005.cls June 27, 2008 9:33

110 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

misses that go on the bus and remembering when the local cache does not have a copy of the data.
The exclude-Jetty in this case says “I’ve seen this before and I am sure its not locally cached.”

The include-Jetty, on the other hand, is a Bloom filter and captures a superset of what
is cached in the local L2. Bloom filters proposed in 1970 by Bloom [30] are hash tables
that implement a “non-membership” function. Because they can be efficiently implemented in
hardware, they are a convenient tool in many situations that require filtering [171, 202, 180, 64].

Each Bloom filter entry is a single bit: a 1 denotes the presence of one or more objects
hashed on this entry; a 0 denotes the absence of any object that can hash on this entry. A Bloom
filter can tell us with certainty when something is not present, but it cannot tell what exactly is
present because of possible conflicts on its entries. One can arbitrarily lower the probability of
conflicts by using multiple hash functions for each inserted object. In this case, an object hashes
to multiple Bloom entries and all of them have to be 1 for the object to be present—if any of
the entries corresponding to an object are 0, the object is definitely not present.

The include-Jetty can say with certainty that some addresses are not locally cached (if
they fail to hit in the Bloom filter Jetty), while other addresses (that hit) may be cached locally.
For the latter, the snoop proceeds to access the L2 tags to make sure.

Finally, the third approach, the hybrid-Jetty, consults both the include-Jetty and exclude-
Jetty for higher efficiency. Moshovos et al. found that 54% of all the snoops miss in the L2
tags in a 4-processor SMP server for the SPLASH-2 benchmark suite. The best Jetty (hybrid-
Jetty) eliminates about three quarters (76%) of these snoops yielding analogous power savings.
Because the Jettys themselves are tiny compared to the tag arrays of an L2, their operation adds
little overhead.

4.10 CACHEABLE SWITCHING ACTIVITY
An important type of switching activity that can be “avoided” to reduce power is repetitive
computing activity. In reality, it is not eliminated but converted to caching activity. This is
achieved by storing the results of the computation and recognizing when it repeats verbatim
producing the same results as before. Instead of re-executing it, a lookup in a cache supplies
the results. This can save considerable power if the difference in energy between accessing
the cache and re-computing the results is quite large. It is possibly enlightening to consider
the cache hierarchy as a recursive application of this concept, only, instead of computation,
what is cached in this case is cache activity itself (reads and writes) from a lower—hence, more
expensive—level of the hierarchy.

Computation: Repetitive computation when executing a program appears at many levels:
at the functional unit (e.g., a multiplier fed by the same inputs), at the instruction level (e.g.,
the same repeating instruction [208]), at the basic block level (repeating basic blocks such as
loop iterations [56]) and at the trace level (groups of instructions in execution order). Such
computation, when used with the exact same inputs, produces the same result and therefore can

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 111

be cached. Many techniques in hardware and even in software—where the compiler discovers
the repetition [60, 61]—have been proposed to exploit this property.

A related concept to work reuse is value prediction [156]. Value prediction guesses
the outcome of a computation but does not guarantee the correctness of the result. As such,
although great for breaking dependence chains by guessing ahead, it requires verification. Full
re-execution of the value-predicted computation does not save any switching activity, in fact
value prediction adds to the existing switching activity by accessing the prediction structures.
For this reason we do not expand further on value prediction.

Cache hierarchy: The cache hierarchy itself, besides a performance optimization, is also
a power optimization, in the sense that it steers the majority of accesses to small and power-
efficient (lower capacitance) memory structures. To put it another way, the memory hierarchy
is a natural way to minimize switching activity in successively larger and more power-hungry
caches. A typical cache hierarchy composed of small L1s (instructions and data), and successively
larger caches (L2, L3), is intentionally designed so that most accesses are satisfied as close to
the processor as possible. The reason why the highest levels of the hierarchy end up with
comparably the largest chunk of the power budget is exactly because of this behavior: being
more efficient per access, they take on the burden of satisfying the most accesses.11 Here, three
low-power approaches, exploiting this characteristic of the cache hierarchy are presented: the
filter cache, the loop cache, and the trace cache. The last one, the trace cache, combines work reuse
(caching the work of instruction decoders) with caching of the instruction L1.

☞ dynamic power in caches: Dynamic power consumption in caches (but also in other
memory structures, e.g., SRAMs, registers, CAMs) depends primarily on two factors: the
size of the memory structure (C) and its access activity (A). Size matters, since accessing
a physically larger memory requires more power even when the number of accessed bits
per access remains constant. This is simply a consequence of the larger decoders and the
longer (higher-capacitance) bit/word-lines of larger memories. At the same time, speed
is also affected by memory size as a consequence of wire delay being proportional to the
square of the wire length. Smaller memory is both faster and more power-efficient. Thus,
it is not surprising that caches optimized for speed are also fairly well sized for power.
Size optimization, affecting the total capacitance C, in caches is usually done statically via
sub-banking, bit-line segmentation (see “Sidebar: Bit-line Segmentation”), etc. CACTI,
a popular tool that analytically calculates latency, power, and area for cache organizations,
automatically performs such optimizations giving priority to speed optimizations [204].

11On the other hand going to main memory incurs a significant power penalty at the chip interface because of the
chip’s I/O drivers and external buses. Fortunately, because of caching, few accesses manage to reach main memory.

kaxiras3 MOCL005.cls June 27, 2008 9:33

112 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

Operand 1 Operand 2

Division
Unit

Memo
Table

operation
completed

line
hit/miss line

Result

MUX

FIGURE 4.33: Operation-level Memoization: The Memo-table in this particular example captures
inputs and results from a division unit. When inputs previously seen are detected the result is read from
the Memo-table and the computation the division unit ceases.

4.10.1 Work Reuse
Work reuse appears at various granularities. Here, we start at the operation level (finer granu-
larity) and proceed towards instruction, basic block, and trace level (coarser granularities).

Operation level: Citron, Feitelson, and Rudolph proposed memoization (or memoing) for
multicycle floating point operations [56]. Memoization is the act of remembering the result of
an operation in relation to its inputs. A memoization cache or Memo-table, as is called by Citron
et al. [56], stores the input operands and the result of floating point operations. Upon seeing the
same operands the result is retrieved from the Memo-table and is multiplexed onto the output
(Figure 4.33). The Memo-table access and the floating point operation start simultaneously.
However, accessing the Memo-table is much faster (single-cycle) than performing the actual
multi-cycle operation. Since the result is available much earlier this translates into performance
benefits but also (by gating the floating point unit before it completes the operation) to power
benefits. The power benefits are commensurable to the energy differential between accessing
the cache and performing the operation to completion.

Unfortunately, the work of Citron et al. does not contain an evaluation on the power
impact of their technique. However, they do give memoization statistics for multimedia ap-
plications (Perfect benchmark suite, SPEC FP95, and imaging/DSP applications) which, in
conjunction with simple power models for the floating point unit and the memo-tables, can
be used to derive power estimates. For their workloads, 59% of integer multiplies, 43% of FP

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 113

multiplies, and 50% of FP divisions are memoizable and can be “performed” in a single cycle
with small (32-entry, 4-way set-associative) Memo-tables [56].

Instruction level: Seminal work on dynamic instruction reuse was done by Sodani & Sohi
[208]. The observation in their work is that many dynamically-executed instructions (or groups
of instructions) operate on the same inputs. Sodani and Sohi were led to the discovery of this
property by examining how execution proceeds in dynamically scheduled superscalar processors.
In particular, they noticed that execution in a mispredicted path converges with execution in
the correct path resulting in some of the instructions beyond the point of convergence being
executed twice, verbatim, in the case of a misprediction. Furthermore, the iterative nature of
programs in conjunction with the way code is written modularly to operate on different inputs
results in significant repetition of the same inputs for the same instructions.

Similarly to the operation memoization, the results of such instructions can be saved and
simply reused when needed rather than re-executing the computation. Sodani and Sohi claim
that in some cases over 50% of the instructions can be reused in this way. Although their work
is also focused on performance, the implications of instruction reuse on power consumption
can be quite important with such a large reuse rate.

Sodani and Sohi propose three schemes to implement instruction reuse. The first two are
simply caches of inputs and results called Reuse Buffers (RB). One bases its reuse test on input
values. Upon seeing the same input values for an instruction the result is used. The second
simplifies the reuse test and reduces the required storage space per RB entry by relying not
on input values but on input register names. Reuse of an instruction depends on whether it
operates on the same registers as before. RB entries in this case are invalidated when registers
are written. In both schemes, the reuse of a load is predicated upon the corresponding memory
location not having been written. RB entries corresponding to loads are thus invalidated when
their address is written. Finally, the third scheme takes into account not only register names but
also dependence chains to track the reuse status of such instruction chains. It carries, however,
considerable complexity, hence increased power consumption.

Basic block level: Huang and Lilja take reuse one step further and discuss basic block reuse
[107]. Their observations concern whole basic blocks for which they found that their inputs
and outputs can be quite regular and predictable. Their studies show that for the SPEC95
benchmarks, a vast majority of basic blocks (90%) have few input and output registers (up to
four and five, respectively) and only read and write few memory locations (up to four and two,
respectively).

Similarly to the RB buffer, a block history buffer (BHB) stores inputs and outputs of
basic blocks and provides reuse at the basic block level. The increased number of inputs that
must match for the result to be determinable means that basic block reuse is not as prevalent as
instruction reuse. However, when reuse succeeds, not only avoids the execution of the individual

kaxiras3 MOCL005.cls June 27, 2008 9:33

114 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

instructions in the basic block, but also breaks the dependence chains in it, returning results in
a single cycle. In addition to the energy saved by not executing instructions in functional units,
considerable energy can be also saved because all the bookkeeping activities in the processor
(instruction pointer update, instruction fetch, decode, rename, issue, etc.) during the execution
of a basic block are eliminated. Of course, it is much more expensive to access and match entries
in the BHB since each entry consists of arrays of values and valid bits [107].

Trace level: similar to the basic block reuse is the trace-level reuse proposed by González,
Tubella, and Molina [86]. Traces are groups of consecutive instructions reflecting not their
position in the static code layout but their order in dynamic execution. A trace may span more
than one basic block by allowing executed branches (taken or non-taken) in the middle of the
trace. Similarly to basic blocks, a trace too can start with the same inputs, read the same values
from memory and produce the same results and side-effects (e.g., memory writes). Trace-level
reuse has analogous problems and benefits with basic block reuse, only amplified because the
traces can be longer.

4.10.2 Filter Cache
In 1997, Kin, Gupta, and Mangione-Smith proposed one of the first purely architectural
techniques to reduce power in cache hierarchies. Called the Filter Cache [142], the idea takes
the memory hierarchy characteristic of satisfying accesses in smaller structures to the extreme.
The filter cache is a tiny cache (128–256 Bytes) that filters the processor’s reference stream in
a very power-efficient manner, trading performance for power to yield a better EDP product.
The filter cache is inserted between the processor and the L1 which now has a longer latency
being farther away from the processor. The original high-performance/higher-consumption
configuration with the L1 immediately next to the processor can be restored by simply bypassing
the filter cache.

The filter cache satisfies at full speed a significant percentage of the processor’s references
(about 60% reported in [142]) very economically; but the remaining references that slip to the
L1 are slower. The reduced performance due to these slower L1 accesses unavoidably increases
program run time. Obviously, the energy benefit of the filter cache must not be outweighed by
the extra energy it takes for the longer-running programs, if the overall Energy × Delay of the
processor is to be improved. A successful filter cache must strike a delicate balance between its
performance (i.e., its hit rate) and its power. A very small filter cache, such as a line buffer—a
degenerate case—although quite power efficient, slows down the majority of the accesses that
miss in it. This is likely to hurt EDP. On the other hand, immoderately increasing the filter
cache’s size, or employing full-associativity to increase its hit rate, will seriously diminish its
power benefits. A large size increases C, while full associativity increases A since multiple tags
must be compared simultaneously.

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 115

Designing a successful filter cache is a matter of thorough exploration of the design space
to find the points with acceptable performance loss given the power benefits. Kin et al. use their
own power models for the cache and parameters for an older 180 nm 3.3 V technology [142].
For MediaBench workloads they observe that for very small filter cache sizes, the increase in
hit rate of a fully-associative organization over a direct-mapped organization is not enough to
offset its increased power consumption. Thus, for their setup, a fully-associative filter cache
is not a good idea. Best results are reported with 128-Byte to 256-Byte direct-mapped filter
caches. Taking this work further, one systematically could size the entire memory hierarchy to
minimize EDP for specific workloads.

4.10.3 Loop Cache
The counterpart of the filter cache, but for instructions, is the loop cache or loop buffer. The loop
cache is designed to hold small loops commonly found in media and DSP workloads [10, 150,
24]. In contrast to the filter cache which is a full-fledged cache, albeit tiny, the loop cache —
or, more accurately, buffer— is typically just a piece of SRAM that is software or compiler
controlled (a canonical example is found in Lucent’s DSP16000 core [10]).

A small loop is loaded in the loop buffer under program control and execution resumes
fetching instructions from the loop buffer rather than from the usual fetch path—which might
include an instruction L1—until the loop finishes. The loop buffer being a tiny piece of
RAM is very efficient in supplying instructions, avoiding the accesses to the much more
power consuming instruction L1. Because the loop buffer caches a small block of consecutive
instructions, no tags and no tag-comparisons are needed for addressing its contents. Instead,
only relative addressing from the start of the loop is enough to generate an index to correctly
access all the loop instructions in the buffer. Lack of tags and tag comparisons makes the loop
buffer far more efficient than a typical cache, even one of the same size.

There are also proposals for fully-automatic loop caches which detect small loops at
run-time and install them in the loop cache dynamically [150, 110, 25, 232]. However, such
dynamic proposals, although they enhance the generality of the loop cache at the expense of
additional hardware, are not critical for the DSP and embedded world where loop buffers have
been successfully deployed. This is because in a controlled software environment, the most
efficient solution is usually preferable for cost reasons.

In contrast, a fully automatic loop buffer appears in Intel’s Core 2 architecture [110].
Intel embeds the loop buffer in the Instruction Queue. A hardware loop detection mechanism,
called Loop Stream Detector (LSD), detects small loops already inside the 18-deep instruction
queue. Once a loop is detected, instructions for subsequent loop iterations are streamed from
the IQ without any external fetching, until a misprediction on the loop branch is detected.
This not only speeds up instruction fetch but at the same time saves considerable energy by not

kaxiras3 MOCL005.cls June 27, 2008 9:33

116 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

accessing the instruction (or trace cache) and by not decoding the same loop instructions over
and over again.

4.10.4 Trace Cache
The concept of storing a trace—a group of consecutive instructions as they appear in dynamic
execution—and reusing it, was first published by Rotenberg, Smith, and Bennett [193] as
a means to increase instruction fetch bandwidth. In this respect it is closely related to the
loop cache. However, the trace cache goes further. The idea is to embed branch prediction
in instruction fetching and fetch large stretches of instructions despite abrupt changes in the
control flow. Although the idea works well for what it was intended for, it found a much more
important place as a mechanism to reduce energy consumption for most of the front end of
the Pentium-4 processor. This is due to the CISC nature of the IA-32 (x86) instruction set
executed by the Pentium-4 [110].

The particularities of a complex instruction set with variable-length instructions such
as the IA-32 make it extremely difficult to execute it in a dynamically scheduled superscalar
core. Intel’s solution is to translate the IA-32 instructions into RISC-like instructions called
uops. The uops follow the RISC philosophy of fixed length instructions (112 bit long) and
of a load-store execution model. IA-32 instructions which can access memory are typically
translated into sequences of load-modify-store uops.

The work required in such a front end is tremendous and this is reflected in the large
percentage (28%) of the of the total power devoted to the front end. Even before the translation
from IA-32 to uop instructions takes place, considerable work is required just to fetch IA-
32 variable-length (1–15 bytes) instructions, detect multiple prefix bytes, align, etc. Decoding
multiple IA-32 instructions per cycle and emitting uops to the rename stage is one of the most
power consuming operations in the Pentium-4 processor.

To address this problem Solomon, Mendelson, Orenstien, Almog, and Ronen describe a
trace cache that can eliminate the repeated work of fetching, decoding, and translating the same
instructions over and over again [210]. Called the Micro-Operation Cache (µC), the concept
was implemented as the trace cache of the Pentium-4. The reason why it works so well in this
environment is that traces are created after the IA-32 instructions are decoded and translated
in uops. Traces are uop sequences and are directly issued as such.

Figure 4.34 shows the concept of the Micro-Operation Cache (adapted from [210]).
The µC fill path starts after the instruction decode. A fill buffer is filled with uops until the
first branch is encountered. In this respect, the µC cache is more of a basic block history buffer
(see BHB, [107]) than a trace cache, but this is not an inherent limitation in the design—it
was so chosen just to make it as efficient as possible. Another interesting characteristic of the
µC design is that although a hit can be determined in the µC during the first pipeline stage,

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 117

FIGURE 4.34: Micro-Operation Cache (µC) in the P6 architecture. Traces are built as uops are issued
after the decode stage. Uop traces are delivered to the issue stage at the same time as the normal front-end
path would deliver them. From [210]. Copyright 2001 IEEE.

the uops are not delivered to the issue stage until after 4 more cycles (stages). This ensures that
there is no bubble in the pipeline switching back and forth from streaming uops out of the µC
to fetching IA-32 instructions from the instruction cache and decoding them.

The benefits for often-repeating traces, of course, are significant. Solomon et al. report
that 75% of all instruction decoding (hence, uop translation) is eliminated using a moderately
sized micro-operation cache (e.g., 64 sets × 6 associativity × 6 uops/line). This translates to a
10% reduction of the processor’s total power for the P6 architecture [210].

The Pentium-4 trace cache is a prime example of a power-saving technique eliminating
repetitive and cacheable computation (decoding). But at the same time it is also a cache hierarchy
optimization similarly to the loop cache.

4.11 SPECULATIVE ACTIVITY
Speculative switching activity is a high-level type of switching activity relating to speculative exe-
cution. Wide superscalar processors need a constant supply of instructions not only to keep mul-
tiple functional units busy when this is feasible, but also to make forward progress in the face of
costly cache misses. Although there is significant instruction level parallelism in many programs,
we have come to a point where it is a struggle to maintain an IPC of 1 at the highest frequencies.

Branch prediction is a necessity in this situation. It provides for more independent instruc-
tions to keep the functional units busy until the next cache miss. However, even sophisticated
branch prediction may not be enough to avoid complete stalls [126]. Prediction, of course,
leads to speculation: instructions are executed speculatively until the correct execution path is
verified. Besides the actual power consumption overhead of supporting branch prediction and
speculative execution (e.g., prediction structures, support for checkpointing, increased run-time
state, etc.) there is also the issue of incorrect execution. Incorrect speculative execution that is
discarded when the branch is resolved is—for the most part—wasted switching activity. This

kaxiras3 MOCL005.cls June 27, 2008 9:33

118 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

switching activity cannot be pinpointed to something in particular but it consists of everything
that is going on in the processor to execute incorrect instructions.12 It is therefore orthogonal to
all other types of activity discussed in this chapter. It is only characterized as switching activity
executing down the wrong path.

A solution for this type of activity was alluded in Section 4.10. Sodani and Sohi observed
that a good deal of instruction reuse is due to speculative execution down the wrong path.
This is because many times the wrong path and the correct path of execution converge,
sometimes quickly, resulting in the same instructions being executed twice: at first following
the misspeculation and then again after the branch is resolved. An instruction reuse buffer can
capture some of this repetition and reduce the negative impact of incorrect execution, but such
a technique has not been researched from a power consumption perspective. Failing to salvage
some of the incorrect execution, another high-level approach is needed to curb the power impact
of incorrect execution.

Pipeline gating: This approach, proposed by Manne, Klauser, and Grunwald, is called
pipeline gating [161]. The idea is to gate and stall the whole pipeline when the processor
treads down very uncertain (execution) paths. Since pipeline gating refrains from executing
when confidence in branch prediction is low, it can hardly hurt performance. There are two
cases when it does: when execution would eventually turn out to be correct and was stalled,
or when incorrect execution had a positive effect on the overall performance (e.g., because of
prefetching). On the other hand, it can effectively avoid a considerable amount of incorrect
execution and save the corresponding power. Saving power without affecting performance is
the ideal goal for an effective architectural technique.

The success of pipeline gating depends on how confidence in branch prediction is assessed.
Two metrics matter for a confidence estimator. First, how many of the mispredicted branches
can be detected as low-confidence—this is the coverage of the estimator. Second, out of those
detected low-confidence branch-predictions how many turn out to be wrong. Since what is of
interest here is to detect wrong predictions, this is the “accuracy” of the estimator.13 Coverage
and accuracy are usually antagonistic in a design. Increasing one diminishes the other. It turns
out that it is easier to increase the coverage than the accuracy of an estimator. The estimators
proposed by Manne et al. range in coverage from 72% to 88% (for gshare and McFarling
combined gshare+bimodal branch predictors) but can hardly reach 37% accuracy in the best case.
This shows that even low-confidence predictions are usually—two out of three times—correct.

12This includes the fetching, decoding, renaming, issuing, and executing of instructions, but of course not the final
committing.

13For convenience, the terms “coverage” and “accuracy” are used here in the place of the more rigorous terms
Specificity and Predictive Value of a Negative Test [161].

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 119

Such a low accuracy for the estimator is disheartening for pipeline gating. Most of the time it
would stall correct execution. However, this holds for a single low-confidence branch.

If more than one low-confidence branch enters the pipeline then the chances of going
down the wrong path increase substantially. In fact, for N low-confidence branches and an
average estimator accuracy of P (for each), the probability of going down the wrong path (i.e.,
having at least one misprediction) becomes: 1 − (1 − P)N. Conveniently enough, evidence
shows that low-confidence predictions do tend to cluster together [88]. Pipeline gating is thus
engaged with more than one low-confidence branch in the pipeline—the actual number is called
gating threshold. This makes the coverage of the estimator (detecting many low-confidence
branches) more important than its accuracy because it is the number of low-confidence branches
in the pipeline that matters—not their accuracy. Manne et al. discuss several possible confidence
estimators for the gshare and the McFarling predictors, including

� perfect (oracle) confidence estimation,
� static (profiled) estimation allowing the customization of coverage versus accuracy,
� Miss Distance Counter (MCD) estimator that independently keeps track of prediction

correctness,
� for the McFarling predictor an estimator—called “both strong”—based on the agreement

of the saturating counters of the gshare and bimodal components, and
� finally, for the gshare predictor a simple estimator based on the distance of a branch

from the last low-confidence branch.

Estimator details are not of much importance here, but rather the fact that different
estimators can be designed trading coverage and accuracy. Choosing the distance for gshare
and both-strong for McFarling and with a gating threshold of 2, a significant part of incorrect
execution is eliminated without any perceptible impact on performance.

To conclude this approach, one last question that needs to be addressed is the specific
pipeline stage to gate. The earlier the pipeline is gated, the more incorrect work is saved but also
the larger the penalty of stalling correct execution. This is not simply a function of the number of
pipeline stages before gating. The important factor here is the number of incorrect instructions
as we go deeper into the pipeline. Gating at the issue stage hardly saves any extraneous work
since very few incorrect instructions make it that deep in the pipeline. In contrast, the initial
stages of fetching, decoding, etc. can be full of incorrect-path instructions. With a gating
threshold of two or more, the chances of stalling correct execution are miniscule, so it pays to
gate as soon as possible (i.e., at the fetch stage).

Selective throttling: Subsequent work by Aragón, J. González and A. González followed
a different path. Instead of having a single mechanism to stall execution as in Manne et al.,

kaxiras3 MOCL005.cls June 27, 2008 9:33

120 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

Aragón et al. examine a range of throttling mechanisms: fetch throttling, decode throttling,
and selection-logic throttling [16]. As throttling is performed deeper in the pipeline, its impact
on execution is diminished. Thus, fetch throttling—at the start of the pipeline—is the most
aggressive in disrupting execution, starving the whole pipeline from instructions, while decode
or selection-logic throttling—deeper in the pipeline—are progressively less aggressive. This is
exploited in relation to branch confidence: the lower the confidence of a branch prediction the
more aggressively the pipeline is throttled. The overall technique is called selective throttling.

Pipeline gating, being an all-or-nothing mechanism, is much more sensitive to the
quality of the confidence estimator. This is due to the severe impact on performance when the
confidence estimation is wrong. Selective throttling, on the other hand, is better able to balance
confidence estimation with performance impact and power savings, yielding a better EDP for
representative SPEC 2000 and SPEC 95 benchmarks [16].

4.12 VALUE-DEPENDENT SWITCHING ACTIVITY:
BUS ENCODINGS

We conclude our classification of excess switching activity with an activity type appearing at a
low level, at the circuit or wire level. It is well known that switching activity in combinatorial and
sequential circuits varies with the inputs. For example, an adder exhibits different switching
activity depending on the numbers it adds. This raises the possibility of finding a different
encoding for the inputs that would lower the switching activity in typical operation. Although
it is standard practice in industry to test various encodings of data locally available at ciruit level
(e.g., using negated inputs) to see which one minimizes switching, here, we are concerned with
higher-level data encodings rooted on architectural properties. As such, most of the published
work in the area concerns data encodings for buses.

There are strong incentives to use data encoding on buses. First, buses consume a
significant amount of the total processor power so it pays to optimize their power consumption
as much as possible. Second, there are only two major factors that drive the power consumption
of a bus: the average number of signal transitions on its wires, and the capacitance of its wires.
Wire capacitance is mainly a circuit/device level issue and there are solutions to address it at
that level; it does not depend on the data carried on the bus (except for cross talk). But the
number of signal transitions on the bus does depend on the data carried on the bus and this can
be dealt effectively via data encoding.

For off-chip busses, the benefits of encoding are even greater since their capacitive load
is orders of magnitude larger than that of internal buses [53]; thus, significant power can be
saved during off-chip transmission by encoding alone. In addition, reducing switching activity
can be thought of, not only as a way to decrease power consumption, but also as a way to
increase the apparent bandwidth of a bus or the I/O pins. In fact, some of the work we discuss

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 121

below has bandwidth, rather than power, as its main objective for optimization. Our approach
for presenting this work is to cluster the proposed techniques into two groups: (i) specialized
techniques to reduce switching in address busses—the low hanging fruit in this case—and
(ii) more general techniques applicable to both data and address buses.

4.12.1 Address Buses
Early work on bus encoding focused on address busses aiming to exploit their regular sequential
and stride behavior. One of the first encoding proposals, although not specifically for reducing
power consumption, is Dynamic Base Register Caching by Farrens and Park [75]. They show
that high-order address lines exhibit significant temporal and spatial locality and in most cases
transmit only redundant information. In their Dynamic Base Register Caching scheme, each
address is transmitted in two components: a high-order component (called base) and a low-
order component (called offset). The goal is to transmit mainly the low-order components that
change frequently, and only rarely the high-order components.

Low-order components are transmitted directly from processor to memory at all cases,
while high-order components are stored in a set of base registers located in both the processor
and in the memory. When the processor issues a new address, a search is performed in the set
of the base registers on the processor side. The goal is to find a register whose context matches
the high-order portion of the issued address. The set of registers is organized as a cache. On
a hit, the index to the cache entry is sent to memory, instead of the high-order portion itself.
When memory receives such an index, it extracts the high-order component of the address
from its own set of base registers. To formulate a complete address, the indexed base register
and ensuing offset are concatenated.

If the high-order component of an address is not found in one of the processor’s base
registers, a fault occurs. One of the base registers at the processor side is immediately replaced
with the new high-order component. The memory is informed of this fault by the transmission
of a reserved index. The update process ends when the processor sends the corresponding
base register to memory. The authors examined both fully associative (LRU replacement) and
direct-mapped caches for the based register set.

The work of Farrens and Park is about I/O bandwidth rather than power consumption—
in 1991 performance was far more important than power. Not surprisingly, not much attention
is paid to the fact that what matters in bus switching is whether bus lines change value from
one cycle to the next. Thus, even if the high-order component was transmitted all the time, it
would not affect power consumption much since it would remain the same for most consecutive
addresses. Nevertheless, Farrens and Park exposed an important property of address busses.

Bona fide low-power approaches for address busses were proposed by Owens et al. [176]
and Benini et al. [27]. Both schemes are based on the sequentiality of the addresses as they

kaxiras3 MOCL005.cls June 27, 2008 9:33

122 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

appear on address buses. In the first, Grey-code encoding is used to minimize transitions for
sequential values [176]. In the second, a simple but effective scheme, called T0 encoding, is
used. The basic idea in T0 is to freeze the bus if the address to be sent is consecutive to the
previous address. In such case, a control signal is asserted and the receiver (processor or memory)
generates the address locally by incrementing the last address it received.

Working Zone Encoding (WZE) by Musoll, Lang and Cortadella [173] is a retake on
the Farrens and Park work but now targeted for low power. The key observation is that the
address bus does not behave completely sequentially because accesses to different “zones” are
usually interleaved. To solve this problem, they introduce a scheme which keeps track of a
few working zones favored by the application. Whenever possible, addresses are expressed as a
working zone offset along with an index to the working zone. The offset being small enough
can be encoded with one-hot encoding which flips only two bits whenever there is a change
in the value transmitted (one-hot encoding requires as many wires as there are values to be
encoded, so it is only feasible for small values).

4.12.2 Address and Data Buses
The category of techniques that apply both to data and address buses includes one-hot encoding,
bus inversion encoding by Stan and Burleson [212] and its variants (e.g., the combined bus-
invert/T0 [28]), INC-XOR encoding [188], and others. The basic bus-inversion coding scheme
transfers a data value either in its original form or in its compliment form depending on whose
Hamming distance to the previous bus transmission is smaller. According to this scheme,
the Hamming distance between the new bus value to be transmitted and the current value is
computed. If this is greater than half the number of total bits, then the data value is transmitted
in inverted form. An additional “invert” signal is also sent to indicate how the data is to be
interpreted at the other end.

Encoding data values is not as straightforward as addresses since data streams are much
less regular than address streams. Early work in this area relied on the statistical properties of
data streams. The key idea is to use profiling to compute codes such that pairs of values with
higher probability of occurrence lead to fewer transitions. Algorithms to analyze profiled data
and produce appropriate encoding and decoding functions were investigated by Ramprasad et
al. [188] and subsequently by Benini et al. [26]. An adaptive technique which does not require
a priori (profiled) knowledge of the statistical properties of the data stream was also proposed in
[26]. This technique adapts encoding/decoding to the statistical properties of the data stream
on the fly but costs significantly in hardware. We will not expand on these techniques, but the
interested reader can find many more details in [26, 188].

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 123

Instead of trying to encode data streams via functions, an alternative approach is to
utilize dictionary-based solutions. The first approach was proposed by Citron and Rudolph
[55]. They describe a technique to encode data on the bus using a table-based approach,
called the Bus Expander. The Bus Expander is a cache-like memory structure which is located
between a device (processor or memory) and the system bus. According to this scheme, a data
item to be transferred over the bus is divided into two parts. The lower part is sent over the
bus without modification, while the upper part is inserted in a Look-Up Table (LUT) and
its location in the LUT is transmitted instead. In a direct-mapped LUT the location of an
item is simply its LUT index. However, in a set-associative, n-way LUT, the location of an
item consists of the set number and the way number where it resides. The location is thus
derived by dividing the upper part of the data into two fields: the tag and the key. The key
is the index to the LUT specifying a set. The items of the set are searched for a matching
tag. If a match occurs, the output is the way number where the tag is found. The key, the
way number, and the low order bits are assembled and sent over the bus. The Bus Expander
on the other side of the bus is responsible for analyzing the transmitted data and recreate the
original value. When a value is not found in a LUT, all the Bus Expanders attached to the bus
are updated (so future references to this value will not miss). The update leverages a snoopy
bus and two control signals—actually, two overloaded data lines—to keep all LUTs consistent.
As with the Farrens and Park work [75], this work also focused on increasing effective bus
capacity in uniprocessor and multiprocessor systems and not particularly on reducing power
consumption.

Instead, this was done by Yang, Gupta, and Zhang who re-evaluated the aforementioned
scheme but from a low-power perspective by taking into account the temporal behavior of data
values [233]. In their proposed scheme, called Frequent Value Encoding (FVE), the authors
show that some values transmitted over data buses tend to recur frequently. A small number of
values can account for as much as 32% of the transmissions on the bus [233]. To take advantage
of this phenomenon, two identical dictionaries (called codebooks) are placed on both ends of the
memory channel. The dictionaries can be static or dynamic. Static dictionaries are filled with
the most frequent values gathered offline using profiling, while dynamic dictionaries, organized
as a linear list to assist LRU replacement, are filled online. To keep the sender side and the
receiver side dictionaries consistent, identical LRU replacement is used on both sides. Once a
frequent value is inserted in all the dictionaries, it is then transmitted over the bus using one-hot
encoding, i.e., a single bus line is asserted to indicate transmission of the corresponding frequent
value. One-hot encoding limits the number of frequent values that can be accommodated in the
dictionaries to the number of bus wires. An additional control signal is required to disambiguate
between one-hot transmissions and non-encoded value transmissions that happen to appear

kaxiras3 MOCL005.cls June 27, 2008 9:33

124 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

identical on the bus. FVE proved to be quite effective in reducing the data bus switching activity
even with very small tables (128 entries).

4.12.3 Further Reading on Data Encoding
A combination of the FVE and the Bus Expander was further evaluated by Basu et al [22].
In this scheme, called Power Protocol, the authors carefully design the update policy of the
dictionaries—called Value Caches in [22]—leading to greater reduction in switching activ-
ity. Finally, two other techniques are worth mentioning. The first is FVMSBLSB [215] by
Shuresh et al., which is another variant of the Frequent Value approach. The difference is that
FVMSBLSB stores the MSB portions and the LSB portions of values in separate tables. While
encoding MSB/LSB portions alone, the remaining portion of the data are sent un-encoded.
Recently, Shuresh et al. [214] proposed a scheme called TUBE which encodes data value
segments of varying widths.

4.13 DYNAMIC WORK STEERING
Dynamic work steering refers to the class of techniques in which work is dynamically steered
to different components which are alternative implementations for the same function. These
components offer a range of power/performance characteristics; for example, one component
can be fast and power hungry, while another is slow but power-efficient. One can dynamically
choose on which component to perform a function in order to achieve run-time performance
or power goals.

Viewed in terms of switching activity (A) and capacitance (C), work steering increases
the total capacitance by accommodating multiple implementations of the same function; but,
at the same time switching activity is highly focused (dynamically) on one of the alternative
implementations. The end result is a highly dynamic modulation of the effective switched
capacitance.

Work steering can be applied to different levels of granularity: from circuits, to complex
microarchitecture units such as the issue logic, or to whole processor cores in a multi-core
architecture. Work steering may help to reduce both dynamic and static power. It is orthogonal
to the types of excess activity discussed in the previous sections. Orthogonal in the sense that
one can derive alternative implementations of the same component, differently optimized for
performance and power with respect to a specific type of excess activity and select among them
dynamically. In this section, two work steering techniques mentioned previously are reviewed,
and a technique at the processor-core level that applies to multi-core architectures is presented.

Circuit level: At the circuit level, Precomputation can be considered a rudimentary form
of work steering [11]. In this technique, work is steered depending on a simple condition to
two optimized precomputation circuits, one for the specific condition and one for its negation.

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 125

CORE Issue Width Execution
EV4 2 In-order
EV5 4 In-order
EV6 6 Out-of-Order
EV8- 8 Out-of-Order

CORE

Area (mm2) Peak Power
(Watts)

Typical Power
(Watts)

EV4 2.87 4.97 3.73
EV5 5.04 9.83 6.88
EV6 24.5 17.80 10.68
EV8- 236 92.88 46.44

FIGURE 4.35: Estimated values for power and area for the cores used by Kumar et al. [147]. From
[147]. Copyright 2003 IEEE.

Section 4.2 contains more details and techniques for handling Idle-unit activity involved in this
case.

Microarchitecture level: At a higher level, the microarchitecture level, Rochecouste, Pokam,
and Seznec proposed a work steering approach for idle-width activity [192]. Their proposal is
a 4-issue, width-partitioned microarchitecture (WPM) processor comprised of two clusters: one
normal, 64-bit wide, 2-issue cluster and another, narrow-width, 16-bit, 2-issue cluster. Instruc-
tions are steered to the appropriate cluster according to the predicted width of their operands
and result. Because this is a statically partitioned microarchitecture, it is complexity-effective,
consumes less power, and requires less area than other approaches for idle-width activity. The
drawback is that it is only balanced for specific workloads that have an even mix of narrow
and wide operands. If the operand width characteristics of the workload differ significantly the
performance of the width-partitioned microarchitecture could be compromised.

Analogous approaches at this level could be devised for many of the techniques (and
the types of excess activity) discussed in this chapter by offering optimized and “unoptimized”
versions of the same structures side by side and dynamically choosing among them according
to program and run-time needs.

Processor core level: At this level, Kumar, Farkas, Jouppi, Ranganathan, and Tullsen pro-
posed a multi-core architecture using a variety of cores implementing the same Instruction-Set
Architecture (ISA) [147]. As basis for their study they use the Alpha ISA and its implemen-
tations, EV4, EV5, EV6 [134], and a single-threaded version of the EV8 (denoted EV8-), for
which there are plenty of published results for both power and performance.

Figure 4.35 shows the estimated values for the area, peak, and typical power consumption
of the four cores examined. To derive these estimates the authors use published results from

kaxiras3 MOCL005.cls June 27, 2008 9:33

126 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

a variety of sources including, peak to typical power ratios for same-generation Intel proces-
sors, and extrapolations from available thermal data. They also assume that the variance in
typical power consumption increases in more complex cores due to the wider issue width and
increased clock gating. To model power in an architectural simulator executing SPEC2000
benchmarks, Kumar et al. use the activity-based Wattch power models but calibrated accord-
ingly for each core. This is done with the help of scaling and offset factors so as to match
the results of the simulator with the estimated peak and typical power consumptions of the
cores.

The multi-core architecture in this study is used in a specific way: only one application is
run at any one time, i.e., only one core is active. The appropriate core to run the application is
chosen to optimize a given objective function (a combination of energy and performance goals).
All other cores are powered down expending neither dynamic nor leakage power. Because
there is a cost to switch an application from one core to another, the granularity of switching
is kept at the OS scheduling quantum (task switching). This is convenient for two reasons.
First, the operating system can orchestrate the core switching. Second, saving and restoring
the processor state happens by default at the scheduling interval so it does not represent an
additional overhead for core switching.14 Alternatively, choosing on which core to run an
application could be performed (even statically) at the granularity of an entire application, but
this would preclude adaptation to the needs of individual program phases of the application.

Kumar et al. show that both power and performance vary considerably depending on
program phase. On the same core—as expected—performance varies from phase to phase. But
more importantly, the relative performance difference among phases depends on which core
executes the application. For instance, running on EV4, the performance difference among
phases might not be that great; in contrast, it can vary widely on EV8-. This makes the
relative performance among cores vary according to application phase: in some phases EV8-
performance is much higher than in other cores; in other phases the performance difference is
hardly noticeable.

Things are more interesting when, in addition to performance, energy is taken into
account. Tracking Energy × Delay across different phases on the same core shows that the
relative difference for this metric across cores also varies with phase. In addition, the ordering of
the cores based on this metric is frequently upset! This means that sometimes EV4 can have a better
EDP than EV8- and vice versa! This of course is a strong incentive for core switching on a
phase granularity. Note, however, that no interval-based approach, even with oracle knowledge,
can guarantee the global optimization of EDP or ED2P. See “Sidebar: Pitfalls in optimizing
EDP.”

14L1 caches are local to each core, so only the contents of the shared L2 cache are preserved across a core switch.

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 127

Kumar et al. examine the optimization of two different objective functions, one minimiz-
ing Energy and the other EDP, assuming either oracle heuristics for core switching or realistic
dynamic switching heuristics. Under the oracle heuristics the operating system simply chooses
the core for each time quantum that optimizes the objective function. Switching overhead is
not taken into account.

Lack of oracle knowledge dictates that realistic heuristics must discover for themselves
which core optimizes the objective function. Every hundred time quanta, cores are tested for five
consecutive quanta to assess their effectiveness in optimizing the objective function. Switching
overhead is accurately modeled in the simulations. Thus, the effectiveness of a core on the first
of the five test quanta is ignored to discount the effects of cold caches, cold TLBs, and cold
branch predictors.

The four realistic heuristics studied by Kumar et al. differ on which cores are selected for
testing:

� neighbor: a neighbor in the performance continuum to the core that is running is selected
at random;

� neighbor-global: similar to the above but the selected core is the one that best optimizes
the objective function in the application’s execution thus far;

� random: any core is selected at random;
� all: all cores are tested.

In all cases, the authors report substantial gains in energy or EDP. For the oracle
heuristics, optimizing for energy yields up to 60% energy reduction with a 5% performance
loss [147]. EDP is reduced by up to 63%. Translating these results into ED2P shows that core
switching can even outperform chip-wide DVFS—which can, at best, only break even on the
ED2P metric.

Results are also exceptionally good for the realistic heuristics with all switching overhead
accounted. EDP for three of the four heuristics (neighbor, neighbor-global, and random) is within
90% of the oracle heuristics. The “all” heuristic tends to fall behind because of its greater testing
overhead.

Overall, core switching is an important work steering technique that can be used not only
for reducing power consumption, but also for reducing power density (by migrating activity
from hot and busy cores to idle and cold cores). In this last incarnation, the technique is known
as activity migration [97].

☞ pitfalls in optimizing EDP: Kumar et al. noticed a peculiar behavior in their interval-
based approach to optimize EDP. Even when choosing the optimal EDP per interval, with

kaxiras3 MOCL005.cls June 27, 2008 9:33

128 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

TABLE 4.10: The Interval-based Core-switching Approach Selects P1 in the First Interval
and P2 in the Second with Oracle Knowledge. The Resulting EDP (18) is Worse Than Either
P1 or P2 Running Both Intervals (EDP of 16.2 and 16.4, Respectively). Adapted from [198].

P1 P2

Interval Energy Time EDP Energy Time EDP
Best

EDP Core
1 1 4 4 2 2.1 4.2 P1

2 1 4.1 4.1 2 2 4 P2

Overall 2 8.1 16.2 4 4.1 16.4 (1 + 2) × (4 + 2)
= 18

oracle knowledge, the overall EDP for the whole application may turn out to be far from
optimal. Sazeides, Kumar, Tullsen, and Constantinou investigated the matter further and
realized that it is not possible to guarantee EDP—or for that matter ED2P—optimization with
any interval-based approach where local, per-interval, decisions are taken [198]. The root of
the problem is that choosing the smallest energy–delay product (or energy–delay2 product)
regardless of the magnitude of its factors may result in globally sub-optimal decisions. To
illustrate the problem the core switching example in Table 4.10 shows how the interval-
based approach, while choosing the best core (best EDP) per-phase, fails to optimize the
global EDP:

More formally, optimizing EDP for an application is equivalent to solving:
MIN (E × t), where E is the energy spent during the application execution time t.

Dividing application execution into n intervals, the problem becomes

MIN

((
n∑

i=1

Ei

)
×

(
n∑

i=1

ti

))
,

where Ei and ti are the energy and duration, respectively, of interval i .
If there are several choices in interval i for the pair Ei and ti (for example, several core

switching choices), then choosing option j in interval i is denoted by E ji
i and t j i

i .
In this case, optimizing EDP individually per interval is equivalent to finding the j

for each i such as each product term of the sum is minimal:

n∑
i=1

MIN
(

E ji
i × t j i

i

)
.

kaxiras3 MOCL005.cls June 27, 2008 9:33

OPTIMIZINGCAPACITANCEANDSWITCHINGACTIVITYTOREDUCEDYNAMICPOWER 129

The sum is minimized, but this is not equivalent to finding the optimal global EDP.
This, in contrast, is done by selecting the j for each i with the intent of minimizing the
following product of sums:

MIN

((
n∑

i=1

E ji
i

)
×

(
n∑

i=1

t j i
i

))
.

It is possible, therefore, for the two formulae above to have significantly different
solutions. The same can be shown for ED2P [198]. In contrast, energy can be safely
optimized with interval-based approaches using just local decisions [198].

kaxiras3 MOCL005.cls June 27, 2008 9:33

130

kaxiras3 MOCL005.cls June 27, 2008 9:33

131

C H A P T E R 5

Managing Static (Leakage) Power

Static power consumption has grown to a significant portion of total power consumption in
recent years. In CMOS technology, static power consumption is due to the imperfect nature
of transistors which “leak” current—thereby constantly consuming power—even when they are
not switching. The advent of this form of static power, called leakage power, was forecasted
early on [32, 136], giving architects the opportunity to propose techniques to address it. Such
techniques are the focus of this chapter.

Considerable work to reduce leakage power consumption is taking place at the process
level [31]. In fact, process solutions such as the high-k dielectric materials in Intel’s 45 nm
process technology, are already employed. Addressing the problem at the architectural level is,
however, indispensable because architectural techniques can be used orthogonally to process
technology solutions. The importance of architectural techniques is magnified by the exponential
dependence of leakage power to various operating parameters such as supply voltage (Vdd),
temperature (T), and threshold voltage (VT). Exponential dependence implies that a leakage-
reduction solution that works well at some specific operating conditions may not be enough—
the problem is bound to reappear with the same intensity as before but at higher temperatures
or lower voltages.

Undeniably, the most fruitful ground for developing leakage-reduction techniques at the
architectural level has been the cache hierarchy. The large number of transistors in the on-chip
memory largely justifies the effort (or obsession) even though these transistors are not the
most “leaky”—that distinction goes to the high-speed logic transistors [41]. In addition, the
regularity of design and the access properties of the memory system have made it an excellent
target for developing high-level policies to fight leakage. Most of the architectural techniques
presented in this chapter, therefore, target caches or memory structures.

Chapter structure: The presentation of techniques in this chapter is structured according
to the type of low-level leakage-reduction mechanism employed (Table 5.1). Architectural
techniques inherit similar characteristics according to the physical quantity that is manipu-
lated by their low-level, leakage-reduction mechanism. Here, we concentrate on three ma-
jor low-level mechanisms (shown in Table 5.1). The first two, the stacking effect and the

kaxiras3 MOCL005.cls June 27, 2008 9:33

132 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

TABLE 5.1: Structure of the Leakage Reduction Tehniques in this Chapter.

Low Level High-Level

Mechanism Techniques Characteristics Section

Stacking effect
and gated Vdd:
sleep transistor
cuts off power

Dynamically resized cache
(DRI) [239], cache decay
[127], adaptive mode
control (AMC) [250],
functional unit decay [105]

Non-state-preserving
(state-destroying)

Significant leakage
reduction

Power-up latency: 10’s
of cycles

Section 5.2

Drowsy effect:
scales supply
voltage to
reduce leakage

Drowsy caches [77, 137],
drowsy instruction caches
[138, 139], hybrid
approaches (decay +
drowsy) [164],
temperature-adaptive
approaches [129],
compiler approaches &
hybrids [246]

State-preserving
Medium leakage

reduction
Power-up latency: <10

cycles

Section 5.3

Threshold voltage
(VT)
manipulation:

Dynamic
Combined Vdd

(e.g., DVFS) and VT

(e.g., Adaptive Body
Biasing—ABB) scaling
[163, 231, 70]

Significant leakage
reduction

Section 5.4

Static
MTCMOS Functional

Units [69], Asymmetric
Memory Cells [17, 18]

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 133

drowsy mode, manipulate voltage across transistor terminals (source and drain). This affects
the magnitude of leakage reduction, the latency in switching leakage modes, and the ability
to retain state in the low-leakage mode. The third class of low-level mechanisms manipulates
the transistor threshold voltage (VT) which can dramatically decrease leakage but at the cost of
reduced device speed.

It is important to note here that the techniques presented in this chapter address a specific
type of leakage, called subthreshold leakage. Another type of leakage, called gate oxide leakage, is
not addressed architecturally but rather at the process level. To gain a better understanding of
the structure of this chapter as well as the difference in the two types of leakage, the following
section (Section 5.1) delves into the underlying mechanics of leakage.

5.1 A QUICK PRIMER ON LEAKAGE POWER
Static power is so called because it is consumed by every transistor even when no active switching
is taking place. In older technologies (e.g., NMOS, TTL, ECL, etc.) it is an inherent problem,
because a path from Vdd to ground is open even when transistors are not switching. With the
advent of CMOS, static power became less of a concern because the Complementary gate design
prevents open paths from Vdd to ground.

Unfortunately, static power resurfaced in CMOS in the form of leakage power. In the latest
process generations leakage power increases exponentially, principally because of reductions in
the threshold voltage. Leakage power increased to levels never seen before in CMOS—levels
comparable to the dynamic (switching) power consumption—when technology scaling entered
the deep-submicron territory in feature size (<180 nm). Currently, 20–40% of the total power
consumption is attributed to leakage power.

CMOS static power arises due to leakage currents. The total leakage current (Ileak) times
the supply voltage gives the static power consumption, Pleak:

Pleak = V × Ileak.

Leakage currents are a manifestation of the true analog nature of transistors, as opposed
to our idealized view of them as perfect digital switches. The state of a transistor (on or off)
is controlled by the voltage on its gate terminal. If this voltage is above the threshold voltage
(VT) the channel beneath the gate conducts, allowing current in the on state (Ion) to flow from
the source (Vdd) to the drain (GND, ground). In the opposite case (gate voltage below VT), we
like to think that the transistor is off (perfect insulator). But in reality transistors leak: leakage
currents flow even in their off state. This is evident in the I–V curve where current flows even
below the threshold voltage where the device is supposed to be “off.”

The current that flows from source to drain when the transistor is off is called sub-threshold
leakage. But that is not all. There are five more types of leakage: reverse-biased-junction

kaxiras3 MOCL005.cls June 27, 2008 9:33

134 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

FIGURE 5.1: Example of an “I–V ” curve for a semiconductor diode (introduced in Chapter 1).
Although we informally treat semiconductors as switches, their non-ideal analog behavior leads to
leakage currents and other effects.

leakage, gate-induced-drain leakage, gate-oxide leakage, gate-current leakage, and punch-
through leakage. The sub-threshold leakage and gate-oxide leakage dominate the total leakage
current in devices. Both increase exponentially with each new technology generation with the
gate-oxide leakage significantly outpacing the sub-threshold leakage.

In sub-micron technologies, subthreshold and gate leakage is the cost we have to pay for
the increased speed afforded by scaling. Supply voltage scaling attempts to curb an increase
in dynamic power. Unfortunately, this strategy also leads to an enormous increase in the
subthreshold and gate leakage problem. This explains why static power has been gaining on
dynamic power as a percentage of the total power consumption with every process generation.

5.1.1 Subthreshold Leakage
Subthreshold leakage increases with technology scaling due to Vdd scaling. The supply voltage
(Vdd) is scaled along with other physical quantities to reduce dynamic power consumption.
Scaling solely the supply voltage, however, increases the delay (switching speed) of the transistor.
This is because the delay is proportional to the inverse of the current that flows in the on state—
the Ion current (as in the I–V curve of Figure 5.1):

Delay ∝ 1
Ion

∝ Vdd

(Vdd − VT)a
.

This current, Ion, is a function of the supply voltage and the difference between the supply
voltage and the threshold voltage (VT). The factor α is a technology-dependent factor taking
values greater than 1 (between 1.2 and 1.6 for recent technologies) [195]. Since Vdd is lowered
in order to maintain the speed increase from scaling, the only course of action is to also lower
the threshold voltage. Herein lies the problem: subthreshold leakage increases exponentially with
lower threshold voltage.

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 135

To understand the basic mechanisms for leakage reduction we have to take a closer look
at the formulas describing leakage current. We base our discussion on the Berkeley Predictive
Model (BSIM3V3.2) formula for subthreshold leakage [143] (which is also the starting point
for the simplified Butts and Sohi models [41] discussed in Chapter 2). The formula describing
the subthreshold leakage current, IDsub, is:

IDsub = Is0

(
1 − e

−Vds
vt

)
e

Vgs−VT−Voff
n · vt .

Here, Vds is the voltage bias across the drain and the source and Vgs is the voltage bias
across the gate and source terminal. Voff is an empirically determined BSIM model parameter
and vt (vt = kT/q) is a physical parameter called thermal voltage1 which is proportional to the
temperature, T. The term n encapsulates various device constants, while the term Is0 depends
on the transistor geometry (in particular, the aspect ratio of the transistor, W/L).

Immediately, this equation shows the dependence of leakage to W/L, and its exponential
dependence to Vds, Vgs, VT, and T.

� W/L, transistor geometry: Leakage grows with the aspect ratio of a transistor and with
its size. Butts and Sohi use simplified models that encapsulate transistor geometry in
the kdesign parameter. They point out that very small transistors such as those found in
SRAMs can leak much less than sized-for-performance logic gate transistors. Tran-
sistor sizing is primarily a circuit-level concern and it will not preoccupy us at the
architecture level.

� Vds, voltage differential between the drain and the source: This is probably the most
important parameter concerning the architectural techniques developed for leakage.
Two important leakage-control techniques that are based on reducing Vds are the
transistor stacking technique2 and the drowsy technique—a.k.a. dynamic voltage scaling
(DVS) for leakage [77]. Both these techniques rely on the (1 − e(−Vds/Vt)) factor of
the subthreshold leakage equation. This factor is approximately 1 with a large Vds

(i.e., Vds = Vdd and Vdd � vt) but falls off rapidly as Vds is reduced. Architectural
techniques based on transistor stacking—in particular, a stacking technique called
gated Vdd [184]—and on the drowsy technique form the bulk of the work described in
this chapter. The former are presented in Section 5.2 and the latter in Section 5.3.

1For the thermal voltage equation, k is Boltzmann’s constant and q is the magnitude of the electron’s charge. At
room temperature (T = 300 K), the thermal voltage is about 26 mV.

2The stacking effect itself is also partially due to a change in the VT. This chance is dynamic and is caused by a
slight reverse bias induced by the top (off) transistor on the bottom (off) transistor.

kaxiras3 MOCL005.cls June 27, 2008 9:33

136 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

� Vgs, voltage differential between the gate and source: Regarding subthreshold leakage
for devices in their normal “off” state, this factor can be set to zero, so it is not
a concern. Butts and Sohi use this assumption to arrive at their simplified leakage
model [41]. However, Vgs plays a significant role in the gate-oxide leakage discussed in
Section 5.1.2.

� VT, threshold voltage: The threshold voltage—the voltage level that switches on the
transistor—significantly affects the magnitude of the leakage current in the off state.
The exponential dependence of subthreshold leakage on (VT)−1 is evident in the last
factor of the BSIM3 formula: the smaller the VT, the higher is the leakage. Raising the
threshold voltage reduces the subthreshold leakage but compromises switching speed.

Many circuit-level techniques, e.g., MTCMOS, reverse body bias (RBB) and larger-
than-Vdd forward body bias [13, 174, 14, 222], have been developed to provide a choice
of threshold voltages. These techniques provide multiple threshold voltages at the
process level (for example, MTCMOS offers high-VT and low-VT devices) or vary the
threshold voltage dynamically by applying bias voltages on the semiconductor body
(e.g., RBB and larger-than-Vdd FBB). Architectural techniques based on manipulating
the threshold voltage are presented in Section 5.4.

� T, temperature: Last but not the least, subthreshold leakage exponentially depends on
temperature, T, via the thermal voltage term vt. This is actually a dangerous dependence
since it can set off a phenomenon called thermal runaway. If leakage power—or for that
matter any other source of power consumption—causes an increase in temperature,
the thermal voltage vt also increases linearly to temperature. This leads, in turn, to
an exponential increase in leakage, which further increases temperature. This vicious
circle of temperature and leakage increase can be so severe as to seriously damage the
semiconductor. The solution is to keep the temperature below some critical threshold
so that thermal runaway cannot happen. Cooling techniques, combined with accurate
thermal monitoring, are used for this purpose.3

Architecturally, the dependence of leakage to temperature is quite interesting. This
is because at low temperatures it might not be so important to engage architectural
techniques that could hurt performance with little payoff. As temperature rises and
leakage power becomes the dominant component of power consumption (and hence
heat generation) architectural techniques that can curb leakage become much more
appealing. One such example is presented in Section 5.3.4.

3Unfortunately, the subject of thermal management, despite its importance, is too extensive to receive other
than superficial coverage in the space of this book. Here, it is only mentioned briefly with respect to leakage
(Section 5.3.4).

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 137

5.1.2 Gate Leakage
Gate leakage (also known as gate-oxide leakage) is a major concern because of its tremendous
rate of increase. It grew 100-fold from the 130 nm technology (2001) to the 90 nm technology
(2003) [31]. Major semiconductor companies are switching to “high-k” dielectrics in their
process technologies to alleviate this problem [31].

Gate leakage occurs due to direct tunneling of electrons through the gate insulator—
commonly silicon dioxide, SiO2—that separates the gate terminal from the transistor channel.
The thickness, Tox, of the gate SiO2 insulator must also be scaled along with other dimensions
of the transistor to allow the gate’s electric field to effectively control the conductance of the
channel. The problem is that when the gate insulator becomes very thin, quantum mechanics
allow electrons to tunnel across. When the insulating layer is thick, the probability of tunneling
across it is virtually non-existent. As the insulating layer becomes thinner, tunneling becomes
stronger. Gate-oxide thickness has scaled from 100 nm (1000 Å) to just 1.2 nm (12 Å) in 90 nm
and 65 nm technologies. This corresponds to a thickness of just 4–5 atoms [50, 31]! The result
is an uncontrollable, exponential increase in gate leakage.

Gate leakage is somewhat dependent on temperature but strongly dependent on the
insulator thickness and the gate-to-source (Vgs) or gate-to-drain (Vgd) biases seen by the
device. Without the Vgs or Vgd biases, the necessary electric field to cause the electrons to
tunnel across the gate is absent. Since the supply voltage (Vdd) determines the magnitude
of Vgs and Vgd, scaling Vdd reduces gate leakage. There is also a weaker dependence of gate
leakage on Vds—the voltage across the drain and source—that ties gate leakage to the state of a
circuit [190].

The most promising remedy for gate leakage, and the one that is currently in use in the
latest generation 45 nm technologies, is to insulate the gate using high-k dielectric materials
instead of the more common SiO2 oxide material.4 A thicker insulating layer of a high-k
material can be as good as a thin layer of a low-k material. The increased thickness significantly
reduces the tunneling effect but at the same time does not compromise the ability of the gate
to control the channel. In other words, performance is not compromised.

Architecturally, gate leakage has not been given the same attention as subthreshold
leakage. For the most part, it is considered as an additional leakage component and the hope is
that process-level solutions will address the problem. The HotLeakage simulator, mentioned in
Chapter 2, takes gate leakage into account, thus giving a more accurate picture for the benefits
of various techniques that target subthreshold leakage.

4A high dielectric constant, k, means that these materials concentrate the electric field better. When used as
insulators between the plates of a capacitor, a high dielectric constant yields higher capacitance for the same
insulator thickness or, alternatively, the same capacitance but with a thicker insulator layer.

kaxiras3 MOCL005.cls June 27, 2008 9:33

138 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

5.2 ARCHITECTURAL TECHNIQUES USING
THE STACKING EFFECT

Transistor stacking refers to the technique of stacking off transistors source to drain [240].
Stacked off transistors, especially if any of them are high-VT devices, significantly restrict the
leakage current flowing to ground. This is because the voltage differential between the drain
and source of the stacked transistors is less than Vdd. In addition, there is a change in the VT

of the bottom transistor that also helps in reducing the leakage current. A popular stacking
technique is the gated-Vdd (or gated-Vss) technique developed by Powell et al. for memory cells
[184].

The stacking effect, and in particular its gated Vdd incarnation, has been successfully
employed in many architectural techniques, such as the DRI I-cache [184] and cache decay
[127] among others. The initial target for these techniques has been the cache hierarchy. The
basic strategy is to turn off unused parts of the cache to reduce leakage. These techniques are
collectively known as non-state-preserving (or state-destroying). This is because the underlying
mechanism destroys all state by cutting off the power supply to the target circuit. Here, we
briefly present the gated Vdd mechanism and proceed with the architectural techniques that
use it.

Gated-Vdd: Powell, Yang, Falsafi, Roy, and Vijaykumar proposed the circuit-level mech-
anism to reduce leakage, called gated Vdd [184]. The technique is well suited for use with
six-transistor SRAM cells but can also be used in other arbitrary logic circuits.

Gated-Vdd is a transistor stacking technique. Figure 5.2 shows a traditional six-transistor
SRAM cell and its gated-Vdd counterpart. The difference is the sleep transistor that gates the
ground. In normal operation, the sleep transistor is on. Turning this transistor off disconnects
the SRAM cell from the power supply. While leakage currents in the “off” transistors of the cell
are virtually eliminated, the “on” transistors lose the ability to draw current from the power rail
since the path to ground is cut off. This means that the feedback loop of the memory cell cannot

bitlinebitlinebitlinebitline
V

dd V
dd

gated-V
dd

control

virtual Gnd

Gnd
Gnd

wordline wordline

FIGURE 5.2: Gated Vdd six-transistor SRAM cell. Reproduced from [239]. Copyright 2001 IEEE.

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 139

maintain the charge in its internal nodes. The cell quickly loses its stored value going into a
limbo state. Restoring the power supply (turning on the sleep transistor) allows the internal
nodes of the cell to recharge, but they take on a random logic state.

5.2.1 Dynamically Resized (DRI) Cache
In tandem with the gated-Vdd mechanism, Powell et al. [184] and Yang et al. [239] proposed
an architectural technique to reduce leakage in instruction caches. This technique, referred to
as the Dynamically Resized (DRI) instruction cache, is the first of its kind—an architectural
technique to save leakage power.

The idea is to resize the instruction cache to fit just the working set of the code that is
currently running, turn off the rest of the cache (using gated-Vdd sleep transistors), and save
the corresponding leakage power. The instruction cache is the obvious initial target for such
techniques because of the working set properties of code. Typically, the working set for code
exhibits high temporal locality. Consider, for example, loop behavior where for long stretches
of time only a fixed, well-defined, part of the I-cache is accessed.

The design for a direct-mapped DRI cache is shown in Figure 5.3. The design can be
easily extended to a set-associative organization. The cache is resized in its number of sets by
changing the number of index bits with the help of a “size mask.” The mask disables any number
of high-order index bits from left to right. The number of active sets in the cache is halved each
time an index bit is disabled. To accommodate a varying index size, the tags are extended to
also store the maximum number of index bits that could be disabled. Thus, the tags increase in
size by the corresponding amount.

FIGURE 5.3: DRI cache. Reproduced from [239]. Copyright 2001 IEEE.

kaxiras3 MOCL005.cls June 27, 2008 9:33

140 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

The downside of resizing the cache in the number of its sets is that already resident cache
lines become inaccessible. The oversized tags prevent erroneous matches and make flushing
the remaining part of the cache unnecessary. The miss rate, however, is still affected with every
resizing since everything is lost in the turned-off part.

The DRI approach to resizing is in stark contrast to the resizing approaches for dynamic
power covered in Chapter 4, Section 4.8. Techniques such as Selective Cache Ways [8], the
Accounting Cache [68, 9], or Miss Tag Resizing [243], resize the data cache to reduce dynamic
power by disabling associative ways, i.e., changing the cache associativity. In fact, the Miss Tag
Resizing technique [243] also uses the gated-Vdd mechanism to completely turn off cache lines
and save leakage power along with the dynamic power. One of the benefits of these resizing
approaches is that no change in the indexing of the cache is needed, meaning that data already
resident remain accessible. Although these techniques could very well be adapted for static
power, Powell et al. took the approach of resizing the cache in the number of its sets. Their
reasoning is that resizing in associativity is not really necessary for instruction caches because it
would preclude direct-mapped caches and would affect both capacity and conflict misses.

Losing the ability to access resident lines might not be as disastrous for instruction
caches as for data caches. This is because changes in the working set of code tend to be more
abrupt than the corresponding changes for data—execution simply moves to another part of the
code, scrapping the previous working set. In addition, the read-only nature of code eliminates
consistency and coherency problems stemming from turning off or “misplacing” cache lines in
the cache with the new indexing.5

Resizing policy: The policy proposed to resize the DRI I-cache is based on monitoring
the miss rate. Misses are counted within a fixed time interval (on the order of a few thousands
of cycles). At the end of the interval a resizing decision is made. The decision compares the
measured number of misses to a user-defined preset “miss bound.” If the cache does not perform
up to expectations (measured misses > miss bound) the number of sets is increased; otherwise
the cache is further downsized. A user-defined “size bound” prevents downsizing of the index
beyond some point. This is a safety mechanism to prevent overzealous downsizing.

The size bound prevents pathological oscillations between two sizes. This can happen
when the miss rate exceeds the bound for the smaller size but is well under the bound with the
next larger size. Finally, a parameter, called divisibility of the cache controls how many index
bits to enable or disable at a time—i.e., it is the divisor (2, 4, 8, . . .) or multiplicand for resizing
the cache.

Although this policy dynamically resizes the cache under the miss bound constraint,
critical parameters such as the size bound, the miss bound itself, and the divisibility factor

5A notable exception for read-only code is Intel’s IA-32 ISA which allows self-modifying code.

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 141

are user defined and set individually per program. Thus, the policy stops short of being fully
adaptive.

Yang et al. examine a 64KB DRI I-cache with SPEC95 [239]. With hand-selected
parameters per benchmark, the DRI cache can save up to 64% of the leakage power incurring
a performance penalty of 4% [239].

5.2.2 Cache Decay
Following the DRI cache, the idea of using the gated-Vdd technique to turn off cache lines was
applied to data caches but at a much finer grain. The technique, called cache decay, turns a
cache line off if a pre-set number of cycles have elapsed since its last access [127].6 However,
turning off a cache line that is in active use incurs extra dynamic power re-fetching the line
from lower cache levels. Therefore, a central goal of cache decay is to accurately predict when a
cache line is no longer useful, or—as it is more commonly known—when a cache line is dead.

Cache decay is based on the fundamental generational behavior of cache lines. This
behavior was first discovered by Wood, Hill, and Kessler in their effort to support faster trace-
driven cache simulation [225]. At the time when the Wood et al. paper appeared, it was
prohibitive to use a long memory trace in a cache simulator—the limiting factor, of course,
being the capabilities of the machines of the time. One solution to this limitation is to skip
long stretches of the trace and simulate only some patches of the trace—or trace samples as they
are known. But what would the state of the (simulated) cache be after skipping a long stretch
of the trace? What cache lines would it contain?

The reason why the state of the cache is important is because the miss rate of unknown
references depends on it. Unknown references are the references that have not been encountered
before in the trace. It is unclear if they are actual cold misses for the cache or simply seen for
the first time because of part of the trace is skipped. Contrary to intuition—and much to their
surprise at the time—Wood et al. found that the miss rate of unknown references is much higher
(e.g., 0.4 rather than 0.02) than the steady-state miss rate of the cache. How can this be? The
answer lies in the generational behavior of the cache lines.

Generational behavior: The very high miss rate for the unknown references can be ex-
plained by a Renewal-theoretic model, which attributes to the cache lines a particular genera-
tional behavior. In simple terms, cache lines exist in “generations.” A generation begins when a
cache line is brought into the cache after a miss (see Figure 5.4). Immediately after the miss, a
flurry of access activity ensues. While the cache line is being accessed, it is in its live time. At
some point, the accesses cease and the cache line sits idle waiting to be evicted to make room for
a new line. The time spent in this state is called the dead time. The fundamental characteristic of
the generational behavior of cache lines, the reason why most of the cache is “empty” of useful

6Adaptive and compiler-assisted cache decay variants were also proposed in [127].

kaxiras3 MOCL005.cls June 27, 2008 9:33

142 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

HHH H H

H : HitM : Miss

Live time

Access Interval

M

Last
Access

Dead time TIME

Generation
NEW

Generation
NEW

M

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

si
xt

ra
ck

ap
si

d
ea

d
_t

im
e/

(d
ea

d
_t

im
e+

liv
e_

ti
m

e)

FIGURE 5.4: Generational behavior of cache lines (top). Dead time as a percentage of total time in the
cache. Reproduced from [127]. Copyright 2001 IEEE.

data, and the reason why unknown references in trace sampling have a very high miss rate, is
that (on average) the dead time of cache lines by far exceeds their live time.7 Adapted from [127]
the graph in Figure 5.4 shows that total dead time (for all cache lines) accounts for about 80%
of the total time, on average, for the SPEC2000 benchmarks. This fundamental characteristic
is exactly what cache decay tries to exploit.

Cache decay tries to guess whether a cache line is live at any particular point in time. It
does this by measuring elapsed time since the last access to the cache line. Since the cache line
is accessed only during its live time—which is typically short—it follows that the inter-access
time between two consecutive accesses should be particularly short. It is easy then to guess
when a cache line is not in its live time: if sufficient time has passed without an intervening
access then most likely the cache line has entered its dead time and awaits eviction.

This approach is supported by data showing that the distribution of the inter-access
time intervals, measured in cycles, is—for all practical purposes—bimodal. Figure 5.5 shows
the distributions for three of the SPEC2000 benchmarks, gcc, compress, and vortex. The
vast majority of the inter-access times are clustered around very small values (few hundreds
of cycles or less), while a single cumulative bar at the far right represents the very large
inter-access intervals. The middle parts of the graphs are practically empty. Similar inter-access
time distributions are typical for many programs.

7So, for a number of unknown references, starting at a random point in the trace, it is unlikely to catch most of
them in their live time. It follows that the majority will be cold misses!

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 143

vortex

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

time(x100cycles)

%
ac

ce
ss

es

compress

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90
time(x100cycles)

%
ac

ce
ss

es

gcc

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

time(x100cycles)

%
ac

ce
ss

es

FIGURE 5.5: Inter-access interval distributions for gcc, compress and vortex from the SPEC2000 suite.
Reproduced from [127]. Copyright 2001 IEEE.

The main task of cache decay is to gauge the idle time of a cache line in relation to its
inter-access times. When the idle time of a cache line exceeds a limit called the decay interval
(which is set to be beyond the cluster of the small inter-access times), the cache line is predicted
to be in its dead time and is shut off using a gated-Vdd sleep transistor.8

Implementation: While there are a few possible implementations for cache decay (includ-
ing some analog varieties), one of the better known methods uses a scheme of hierarchical
counters [127]. The idea is to use counters in the cache lines to measure their idle time. A
counter works like a stopwatch: it starts ticking after an access; if the cache line is accessed,
it is reset; if, however, it ticks uninterrupted until it reaches the decay interval then the cache
line is pronounced “dead.” It is evident from Figure 5.5 that the idle time, the decay interval,
needed to safely determine entry into the dead time is of the order of several thousand cycles. A
counter maximum in the thousands would incur too much overhead, however, to include with
each and every cache line.

The solution is to use much smaller, coarser-grain counters in the cache lines (Figure 5.6).
These small counters advance every few hundreds (or even thousands) of cycles rather than every
single. The beat is given by a single global cycle counter which counts these larger intervals.
So, for example, if the global counter counts 1024 cycles and the local cache line counters are
2 bits, then they count decay intervals up to 4 × 1024 cycles. This scheme minimizes overhead,
since the global counter can be easily piggybacked on cycle counters commonly found inside
processor cores and the local cache line counters can be implemented asynchronously—possibly
with an efficient coding such as Gray coding—to minimize switching overhead [127].

8It is interesting to note that cache decay works similarly to the way most other electronic devices are put into a
sleep mode: by detecting that the device is idle for a period larger than its average interactivity time. Some typical
examples are the hard disks and the laptop displays which are shut down by the operating system after preset
periods of inactivity.

kaxiras3 MOCL005.cls June 27, 2008 9:33

144 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

V

TICK
PULSE

LOCAL 2-BIT COUNTERS VALID BIT

GLOBAL COUNTER

CACHE-LINE (DATA + TAG)

CACHE-LINE (DATA + TAG)

CACHE-LINE (DATA + TAG)

V

V

BV

M
V V g

B

CACHE-LINE (DATA + TAG)

Counter
2-bit
FSM M

B B

Power-Off

CACHE-LINE (DATA + TAG)

00

S1 S0
WRD

WRD

T/0 PowerOff01

State Diagram for 2-bit (S1,S0), saturating, Gray-code counter with two inputs (WRD, T)

1 1 1

RESET

T

LOCAL 2-BIT COUNTERS

WRD

WRD

WRD
ROW

DECODERS

ALWAYS POWERED SWITCHED POWER

GLOBAL COUNTER

TT

WRD

T

VALID BIT

CASCADED
TICK
PULSE

V

V

V

FIGURE 5.6: High-level view of the hierarchical counters. Reproduced from [127]. Copyright 2001
IEEE.

What makes this scheme viable, though, is that its effectiveness remains the same as if
we had full cycle counters in every cache line.9 In other words, it does not matter whether we
count in cycles or in thousands of cycles when we are measuring large decay intervals.

The use of a global cycle counter also offers another advantage. It allows the flexibility to
adjust the decay interval at a central, global, point. The local cache line counters measure idle
time but they do not explicitly compare to the decay interval. Instead, when they reach their
last state they consider the cache line to be dead and “activate” (turn off) the sleep transistor.
Thus, the only way to adjust the decay interval is to control the period of the global beat (which
ticks the local counters) given by the global counter.

Switching off power to a cache line has implications for the way the cache works. The
first access to a powered-off cache line results in a miss (since data and tag are lost without
power). The miss resets the cache line counter and restores power. Since the cache frame is
written after the miss, the time to fetch the data from the lower part of the cache hierarchy is
typically sufficient for the memory cells to stabilize after power is restored and accept the write.

☞ decaying dirty data: In a non-state-preserving technique, one has to address the problem
of dirty data in a writeback cache. Decaying a dirty cache line necessitates a writeback. If the
global counter signal is distributed in parallel to all the local counters, there is a chance that
multiple lines will need to be written back at the same time if they all decay at the same global
beat. This would choke the cache, in terms of access bandwidth requirements. To avoid this

9Even 2-bit local counters—very coarse time resolution—approximates the effect of full resolution.

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 145

0.0

0.2

0.4

0.6

0.8

1.0

orig 512K 64K 8K 1K

decay interval(cycles)

n
o

rm
al

iz
ed

le
ak

ag
e

en
er

g
y

ratio=100 ratio=20 ratio=10 ratio=5

1.84KB standard

8KB standard

16KB standard
32KB standard

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 8 16 24 32
active size(KB)

m
is

s
ra

te

32KB decay cache standard caches

FIGURE 5.7: Left: Active size versus miss rate for decay caches. Right: Normalized leakage energy as
a function of the decay interval for various L2Access:leak ratios. Reproduced from [127]. Copyright 2001
IEEE.

situation the global signal is distributed serially from one cache line to another, giving each
line the chance to complete its writeback before proceeding to the next. Forcing an early
writeback of dirty data is not necessarily bad for performance. In fact, prior to cache decay,
Lee, Tyson, and Farrens proposed an “eager” writeback technique that yielded performance
benefits by not bothering the cache with writebacks when it is servicing performance-critical
misses [151].

Results: Cache decay has been extensively tested using the SPEC2000 in many cache
configurations (e.g., instruction, data, L1, L2, direct mapped, set associative, and for many
cache sizes). Overall, decay is very successful in switching off a significant part of the cache, on
the order of 70% for Level-1 caches, impacting a minimal performance penalty of a few percent
(less than 4%) [127].

Figure 5.7 shows a comparison of a single 32KB decay cache with standard caches of
various sizes (4K, 8K, 16K and 32KB). What changes in the decay cache is the decay interval
going from infinite (far right) to 1024 cycles (1Kc) at the far left. As the decay interval changes,
the “active size” of the decay cache—the average part that remains powered on—and its miss rate
are plotted. The decay curve is consistently below the curve for the standard caches. This graph
shows that a decaying cache is always better than a standard cache: for the same size, the decay
cache has a lower miss rate or, alternatively, for the same miss rate it has a smaller active footprint.
This is a result of selectively keeping active the most important items in the decay cache.

However, decay can also result in energy and performance penalties. This is reflected
in the graph on the right of Figure 5.7 which shows the overall benefit of decay in the form
of normalized leakage. Normalized leakage is the ratio of the new leakage divided by the old
leakage. The old leakage is the leakage before decay; the new leakage is the leakage with
decay but augmented with the additional dynamic power consumed by the extra switching to
implement decay and the extra power due to decay “mistakes.” Because of the destructive nature
of the gated-Vdd mechanism, mistakenly switching off a cache line results in an additional L2

kaxiras3 MOCL005.cls June 27, 2008 9:33

146 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

access. These are called decay-induced misses and cost not only in energy (reducing the energy
benefit of decay) but also in performance.

The more aggressive the choice of decay interval, the most mistakes are experienced.
The larger the energy cost of a mistake (L2 access), the less the overall benefit from decay. To
reflect this dependence, the right graph of Figure 5.7, plots several curves, each corresponding
to a different relative cost for an L2 access. The ratio that specifies the relative cost is the
L2access:leakage ratio, defined in [127]. As decay moves toward smaller decay intervals (and
with more costly L2 accesses), it starts to lose its benefit and may even go into negative territory
in the extremes. However, with a decay interval of 8000 cycles or more (for the simulated
systems in [127]), decay-induced misses are so few that the relative cost of an L2 access
becomes irrelevant. It is around these decay intervals where decay provides its maximal benefit.

Further results can be found in Hanson’s work with Hrishikesh, Agarwal, Keckler, and
Burger [93]. Hanson’s work is one of the most detailed and extensive studies on cache decay and
provides comparisons with two other leakage-saving techniques for caches. A detailed technical
report by Hanson et al. greatly expands on the initial results reported for decay [94].

☞ directions to improve cache decay: Cache decay is based on the generational behavior of
cache lines, and as such sits on a robust foundation. This allows it to work well in a wide
range of conditions. There is room for improvement, though, over the initial proposal, on
a number of aspects:

� Decay-induced misses. Cache decay has become synonymous with non-state-
preserving techniques because of its use of the gated-Vdd mechanism to turn off
cache lines. By mistakenly turning off cache lines in their live time, caches incur
decay-induced misses that hurt both the energy savings as well as performance. In
retrospect, decay can be thought of as the technique to detect dead lines in the
cache. What to do with this information is a whole different matter: dead lines can
be turned off (gated-Vdd), put into a drowsy mode, replaced, compressed, dupli-
cated for reliability, etc. In a more recent work, the decay policy of detecting dead
lines is used in conjunction with the drowsy mechanism that puts these lines into a
low-leakage state.

� Measuring time in cycles. The decay interval is measured in cycles, which is a quantity
that depends on architectural features. This makes it difficult to reason about decay
intervals, especially across different programs, or in the same program but across
different platforms. A better choice would be a more independent “time” metric
such as the number of intervening accesses between two consecutive accesses to the
same cache line. This is entirely a property of the application and does not depend

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 147

on architectural parameters. The use of alternative counter-based time metrics is
explored by Kharbutli and Solihin for managing replacements [135] but can be
easily extended to manage leakage.

� Need of the unfiltered reference stream to reliably detect generational behavior. Decay
works well only when the distribution of inter-access times is bimodal as is in the
L1. Things get muddier in the L2 where the generational behavior of cache lines is
obscured because of L1 filtering. In fact, what is observed in the L2 is the behavior
of L1 conflicts or the generational behavior of lines which are accessed on a much
different time scale than the L1 lines. Despite the initial assessment that decay
works well in the L2, albeit with very large decay intervals, Abella et al. exposed
the problems and proposed a new approach for L2 decay [1].

5.2.3 Adaptive Cache Decay and Adaptive Mode Control
Although cache decay is capable of shutting off a significant part of the cache with a small
performance impact, an aggressively small decay interval can cause a jump in the number
of decay-induced misses, destroying its advantage over cache resizing. On the other hand, a
conservatively large decay interval misses the opportunity to turn off cache lines already in their
dead time. Cache decay also carries a fixed overhead over an oracle prediction for dead lines.
This is because cache decay has to wait for the length of the decay interval from the last access
to a (dead) cache line to shut it off. This “missed opportunity” to save leakage increases with
larger decay intervals. In contrast, an oracle prediction knows immediately when a line enters
its dead time and wastes no time to start saving leakage.

It is clear that tuning the decay interval is critical in making decay work well for different
applications, or even for different phases of an application. Zhou et al. found, by trial and error,
that decay intervals vary significantly for SPEC2000 benchmarks. For instance, to keep the
performance penalty below 4%, decay intervals in a 64KB four-way set-associative cache, range
from 14 000 cycles for jpeg to 98 000 cycles for li [250].

The selection of a decay interval for an application is thus a non-trivial task that must
balance dynamic power increase and performance loss to gains in leakage savings. Furthermore,
a single decay interval for an application derived from a profiling run is possibly not optimal for
every input data set or even for different phases of the application. To avoid passing this burden
to the user (programmers, compilers, operating systems), adaptive hardware mechanisms have
been proposed to adjust the decay interval dynamically. While there are a number of proposals in
the literature, here we describe three initial proposals: (1) local per-line decay interval adaptation
[127], (2) global adaptation of the decay interval based on application performance feedback
[250], and (3) a generalization of the global adaptation approach using control theory [219].

kaxiras3 MOCL005.cls June 27, 2008 9:33

148 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

Per-cache-line adaptive decay: The idea behind this technique is to dynamically adjust
the decay interval individually per cache frame. The criterion for adjusting it is based on the
accuracy versus the aggressiveness of the dead line prediction. If the decay interval is too small
(too aggressive), then a cache line might be predicted dead while it is still in its live time which
leads to decay-induced misses. In this case, the decay interval is increased. In contrast, decay
intervals that are too large—although very accurate in predicting dead lines—waste considerable
time before saving leakage thus incurring a significant fixed overhead. In this case the decay
interval is decreased.

There are two issues in implementing this technique: first an efficient way of increasing
and decreasing the decay interval, individually per cache line, must be available. This is solved
by halving or doubling the decay interval as this is the easiest thing to do (see “Sidebar: per-
cache-line adaptive implementation details” for details). Second, a scheme for deciding whether
the decay interval is too large or too small must be devised. This is accomplished by detecting
when decay makes mistakes, that is, when it causes decay-induced misses. If a cache line is
turned off and, as a result, a decay-induced miss ensues, the decay interval is too short and is
increased. Going the opposite direction is opportunistic: in the absence of any decay-induced
misses (dead lines are replaced by different lines), the decay interval is reduced in hope that
this will decrease the fixed cost without incurring new decay-induced misses (see “Sidebar:
Per-cache-line Adaptive Implementation Details” for further details).

☞ per-cache-line adaptive implementation details: There are two ways to change the decay
interval independently for each cache line. The first is to change the number of active
counting bits in the local counter of a cache line. The second, and the one adopted in [127],
provide not one but several global signals, each “beating” at a different rate (e.g., double
the previous one). This is as easy to do as to assign transitions of consecutive high-order
bits of the global counter to different global signals. To change the decay interval locally
in a cache line, the local counter simply chooses which global signal to feed from.

To change the decay interval, decay-induced misses must be readily detectable. This
is straightforward if the tags remain powered up at all times. Hits to decayed lines are
then evident. But it is also possible to empirically detect mistakes without having the tags
powered-up [127]. The method proposed is to detect mistakes by gauging how soon after
decaying a cache line its frame is accessed. This works for direct-mapped caches but still
requires at least a few powered-up tag bits to disambiguate between different cache frames
in set-associative caches.

The actual scheme proposed is shown in Figure 5.8. The local counter is double-
booked to count time even after a line is decayed. The deciding factor is the time when the
next access arrives. An access very soon after decaying a line, is taken to be a decay-induced
miss (even if it is unclear if it is truly an access to the same cache line). The decay interval

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 149

FIGURE 5.8: Adaptive per-cache-line decay. The decay interval is counted by the 2-bit local
counter and the line is decayed when the counter reaches state 10 (note the Gray coding for
switching efficiency). After the line is decayed the counter starts counting again but this time to
gauge the arrival time of the next access. In this particular example, if the next access comes when the
counter is in its first state (00) the (unknown) access is taken to be a decayed-induced miss and the
decay interval is doubled; the decay interval does not change in the middle two states of the counter,
while if the next access comes when the counter has saturated at state 10, the access is taken to be a
replacement and the decay interval is halved. Reproduced from [127]. Copyright 2001 IEEE.

is doubled in this case. In contrast, an access that comes much later (after the local counter
advances a few more steps) is taken to be an access to a different cache line—a replacement.
In [127] if the miss occurs with the local counter stuck at its highest value, the decay interval
is to be too large and is halved to reduce the fixed overhead; otherwise, it is left unchanged.

Global decay interval adaptive techniques: The concept of cache decay was independently
invented by Zhou, Toburen, Rotenberg, and Conte, who proposed an adaptive policy to
dynamically adjust the global (for the entire cache) decay interval [250]. Their adaptive scheme
is called Adaptive Mode Control (AMC). Its adaptation is based on a performance feedback
loop: the decay interval is adjusted so that the number of decay-induced misses—i.e., the
performance loss—is bounded. In contrast to the per-cache-line adaptive decay which can
only be controlled indirectly, this technique allows excellent control over the trade-off between
performance and leakage-reduction.

The underlying mechanism to turn off dead cache lines is similar to cache decay (see
Figure 5.9).10 A two-tier hierarchy of counters, consisting of local counters per cache line (called
Line Idle Counters, or LICs) and a global counter (called LIC update interval counter) measure the
decay interval. In contrast to cache decay, the global counter (the LIC update interval counter)
remains fixed. The global LIC update interval is set to a value of 2048 cycles that is not too long
to hamper decay, neither not too short to force frequent switching upon the local LICs. As
each LIC advances, it is compared to a threshold. If the LIC exceeds the threshold the line is
decayed.11 The comparisons take place in each cache line using a local comparator called Mode

10AMC also uses a gated-Vdd mechanism to turn off cache lines which makes it a non-state-preserving technique
but—like cache decay—this is a choice, not an inherent property of the technique.

11Recall that in cache decay the local counters do not compare against anything but simply decay the cache line
when they reach their “last” (saturation) state.

kaxiras3 MOCL005.cls June 27, 2008 9:33

150 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

FIGURE 5.9: Adaptive Mode Control (adapted from [250]). The decay interval changes by changing
the global control register (GCR) which holds the threshold for the local counters (LICs). The global
counter (LIC Update Interval) does not change. Adaptation is controlled performance feedback loop
(adaptive mechanism). Reproduced from [250]. Copyright 2001 IEEE.

Control Logic (MCL)—shown next to the cache lines in Figure 5.9. The threshold, which is
the same for all cache lines, is kept in a global control register, the GCR.12

Adaptation of the decay interval is simply a matter of setting the GCR to the appropriate
threshold for the LICs. For this, a feedback loop monitoring decay induced misses is employed.
The feedback loop works by adjusting the decay interval to keep the decay-induced miss rate
around a desired target which is given as a percentage of the application’s true miss rate.

Decay-induced misses are distinguished from normal misses by keeping the tags powered
on at all times and detecting accesses to decayed lines (i.e., accesses that would be hits if the line
was still powered on). The decay-induced miss rate is measured within a time window, and at
the end of the window the decay interval is adjusted. If the decay-induced miss rate is less than
the target, the decay interval is decreased; otherwise, it is increased. Hitting the exact target
is difficult to do. Most often, the feedback loop simply oscillates around the target, constantly
adjusting the decay interval. To avoid this needless exercise, the decay interval is not allowed
to change if the miss rate falls within a band enveloping the target miss rate.

Figure 5.10 shows the behavior of the feedback loop. Two bold lines in the graph
represent, respectively, the “ideal” or true miss rate, which is the miss rate without decay, and
the “target error” which is the additional miss rate of the decay-induced misses. The target error
is defined as the fraction of the ideal miss rate via the performance factor (PF) which is externally

12Note that although the hardware can accommodate individual decay intervals per cache line, adaptation is based
on a single global decay interval.

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 151

FIGURE 5.10: Feedback control for AMC. The performance factor PF defines a target error (decay-
induced miss rate) as a percentage of the “ideal” miss rate (miss rate without decay). The actual miss
rate is allowed to move inside a band around the target miss rate (ideal misses + target error) without
changing the decay interval. But when the actual miss rate ventures outside this band the decay interval
is changed (increased if the actual rate overshoots the upper band limit or decreased in the opposite case)
to bring it back into the limits. Reproduced from [250]. Copyright 2001 IEEE.

supplied. The decay interval does not change as long as the miss rate of the cache remains
within a specific range (band) around the target error. If the miss rate ventures outside the band
limits, the decay interval is changed to bring the miss rate back inside.

Zhou et al. report that AMC yields similar benefits to adaptive cache decay but with a
much more robust control over performance. Whereas adaptive per-cache-line decay settles in
a power-performance point that is controlled only indirectly, AMC sets a specific ceiling in
performance loss and adjusts decay under that constraint.

Control theoretic techniques: Velusamy, Sankaranarayanan, Parikh, Abdelzaher, and
Skadron formalized the Adaptive Mode Control technique using control theory [219]. The
contribution of their work is to develop a formal method for feedback-control for cache decay.
The method is also based on identifying and controlling decay-induced misses by monitoring
the tags.

Like ACM, the tags are kept powered-on at all times. Velusamy et al. show that both
their formal method and AMC adapt very well to changing application behavior as opposed
to statically selecting a fixed decay interval. The latter leads to unwelcome behavior during
different application phases. The formal controller, called Integral Miss Control (IMC), is
almost as good in practice as AMC but easier to design and tune. This gives a strong incentive
to use control-theoretic approaches when designing closed-loop responses.

Comparison: To summarize, Table 5.2 shows the main differences between the adaptive
decay methods. Although the per-cache-line adaptive decay is finer-grain and thus more

kaxiras3 MOCL005.cls June 27, 2008 9:33

152 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

TABLE 5.2: Comparison of Per-cache-line Adaptive Decay and AMC

Per-cache-line AMC & Control

Adaptive Theoretic Methods

Adaptation
granularity

Individual decay interval per cache frame Single decay interval for the
whole cache

Adaptation
method

Based on balancing two opposing trends:
1. Minimizing decay induced misses by

increasing the decay interval in the
cache frames where they are detected.

2. Minimizing the fixed overhead by
decreasing the decay interval in frames
where there is an absence of
decay-induced misses.

Performance feedback loop:
Adjust decay interval to bring

decay-induced misses
within a region around a
specific target

Control Fuzzy: Balancing the above two
opposing trends is done by judging
how soon or how late the next miss to
a decayed cache frame occurs.

Specific: the performance
feedback loop can be
accurately controlled by
setting exact targets and
limits

Tags No need for powered-up tags to detect
decay-induced misses which can be
done with a time-proximity heuristic.
However, for full accuracy tags need
to be powered-up.

Exception: A few tag bits are needed to
disambiguate among accesses to cache
frames in set-associative caches.

Need for powered-up tags to
detect decay-induced
misses.

Overhead Multiple global interval signals must be
available for the local counters to
choose from. Additional control logic
is required per cache line to judge
decay-induced misses and adjust the
local decay interval accordingly by
choosing a global signal.

Decay threshold comparators
must be available per cache
line. Performance
feedback loop needs its
own block of logic.

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 153

appealing as an adaptive technique, in reality it is harder to control than AMC. Besides, there
is nothing in the AMC (or its control-theory extension) to preclude finer, per-cache-line,
adaptivity although something like this has not been evaluated as yet. Conversely, control in
the per-cache-line adaptive scheme could be improved by establishing a feedback loop similar
to that of AMC.

5.2.4 Decay in the L2
The generational behavior of cache lines, upon which cache decay is based, is readily apparent
in the L1. Unfortunately, this is not so in the L2, where it is obscured by the L1 filtering of the
accesses. In reality, the L2 observes the behavior of the L1 misses.

The typical generational behavior for a cache line is to experience a flurry of accesses—
with short inter-access times—when it is first brought into the cache, followed by a long dead
time until it is replaced. The situation in the L2 is different. In the absence of a conflict (in the
L1), only a single access to a cache line, at a time, is visible in the L2: the one that transfers the
cache line to the L1. No more accesses are visible in the L2 until the cache line is replaced in
the L1. The next L2 access corresponds to a new L1 generation. In the case of a conflict, the
L2 observes accesses at random points in a cache line’s generation as a result of two different
generations elbowing each other out of the L1 while still in their live times.

The end result is that the decay intervals in the L2 must be very large for the technique to
work reliably without significant performance degradation. The initial studies concluded that
cache decay works well in the L2 using such large-decay intervals (of the order of 1M cycles).
However, this could be attributed more to the easy fit of the benchmarks in large L2s (leaving
ample empty space which can be turned off) rather than to the accuracy of the technique in
determining dead lines. With a scaled-down L2, decay is stressed to provide a good turn-off
ratio for a reasonable performance loss.

A better adaptive decay for L2: Abella, González, Vera, and O’Boyle exposed the problems
in the L2 and proposed a new technique to turn off unused L2 lines [1]. The goal is to find
an appropriate method to dynamically adjust the decay interval for the L2. Abella et al. make
a key observation: the inter-access time—the time between two accesses to the same cache
line—in the L2 seems to depend on the number of accesses to the cache line. Thus, the decay
interval for each cache line needs to change as the cache line is accessed. The actual behavior of
the inter-access times, as a function of the number of accesses to a cache line, depends on the
application and needs to be captured at run-time. The implementation details can be found in
[1].

Although this technique carries significant book-keeping overhead, its benefits more than
make up for it. The decay interval as a function of the number of accesses to a cache line is
much more effective than the very large static decay intervals typically needed in the L2 to avoid

kaxiras3 MOCL005.cls June 27, 2008 9:33

154 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

TABLE 5.3: Non-inclusion Policies. Adapted from [154].

Policy Sub-block is Decayed Sub-block is Reactivated

Conservative When L1 block becomes DIRTY On writeback

Speculative-II When block is transferred to L1 When block is accessed in the L2
(even for writeback)

Speculative-IV When block is transferred to L1 When L1 block is evicted

severe performance loss. Because this decay adaptation takes into account how the inter-access
times vary with the number of accesses, it also outperforms both the adaptive per-cache-line
decay and the AMC technique.

A matter of inclusion: Li, Kadayif, Tsai, Vijaykrishnan, Kandemir, Irwin, and Sivasubra-
maniam examine L2 decay from a different perspective [154]. They make the observation that
cache lines do not have to be powered-on in the L2 while they are live in the L1. In essence,
they make the cache hierarchy non-inclusive for live lines. Their proposed policies work at the
granularity of L1 lines. In case the L2 lines are larger, they are divided into sub-blocks equal to
L1 lines; but to simplify the discussion here, we assume that the L1 and the L2 line sizes are
the same. Gated-Vdd, as usual, turns off individual L2 lines.

Li et al. propose several policies and also compare the use of decay (non-state-preserving)
and drowsy (state-preserving) techniques. The latter are discussed in Section 5.3. The proposed
policies differ on when an L2 line is decayed and when it is reactivated. Table 5.3 lists the
three non-state-preserving policies using the terminology of the Li et al. paper [154], while
Figure 5.11 shows graphically their behavior.

The conservative policy only decays L2 lines that are no longer needed because they
are modified in the L1 (Figure 5.11). On a writeback, the L1 line is put back into the L2.
The other two policies (Speculative-II and Speculative-IV) decay an L2 line as soon as it is
transferred to the L1. In Speculative-II, an evicted L1 line does not go back to the L2 unless
it is dirty. If it is dirty, the L2 line is reactivated to receive the writeback. Otherwise, the L2
line is powered-up on demand upon the next access which exposes the full penalty of an L2
decay-induced miss (Figure 5.11). In contrast, in Speculative-IV the L2 line is reactivated
when the L1 line is evicted (even when it is clean). When the L2 is accessed again, it is likely
that the line is ready and waiting to be transferred back to the L1, hiding the reactivation
cost.

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 155

live

L1 generation

dead time
eviction1st write

Conservative
L2 timeline

L1 generation

Speculative-IV

Speculative-II (non-dirty line)

L1 timeline

Periods L2 line
is turned-off {

(dirty)

L2 decay-induced miss

FIGURE 5.11: Time diagrams for the non-inclusion policies. Adapted from [154].

Not surprisingly, simulations show that the conservative policy does not save as much
leakage as the others but, on the other hand, does not hurt performance either. Speculative-II
saves the most energy by being very aggressive, but degrades performance significantly hurting
the resulting EDP. Although Speculative-IV saves less leakage due to early reactivation, it also
avoids going to the main memory as extensively as Speculative-II does. Thus, it consumes less
dynamic energy, performs better and yields a better EDP than Speculative-II. It is also possible
to combine cache decay in the L1 with an L2 policy (especially if it is state preserving) for
significantly better results than just having cache decay at both levels [154].

5.2.5 Four-Transistor Memory Cell Decay
Decay in static RAM mimics the fleeting nature of dynamic RAM: data that are not touched or
refreshed, are lost. The idea of using four-transistor quasi-static cells for decay stems from this
parallel. Hu et al. make the observation that much of on-chip storage is devoted to transient,
often very short-lived, data. Despite this, virtually all chip designs use array structures based on
six-transistor SRAM cells that store data indefinitely (Figure 5.12, left side). A charge stored

FIGURE 5.12: 6T versus 4T memory cell. Adapted from [106].

kaxiras3 MOCL005.cls June 27, 2008 9:33

156 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

in a 6T cell will be maintained as long as that cell is connected to the source and drain voltages
(Vdd and ground).

But leakage-control techniques, such as those discussed in Section 5.3, carry an overhead
(per entry) that cannot be easily amortized in smaller structures or structures with very small
entries. Instead, Hu et al. entertain the idea of using quasi-static, self-decaying, four-transistor
(4T) memory cells, especially for branch predictors and branch target buffers (BTBs) [106].

The reasoning behind this approach is that quasi-static 4T cells (Figure 5.12, right side)—
which have no connection to Vdd—provide decay functionality inherently: if not accessed, their
charge gradually leaks away at a rate that is a function of the cell’s specific design and operating
temperature. Conversely, they are recharged upon access. 4T cells are, therefore, uniquely well-
suited for decaying structures, such as branch predictors and BTBs, where the overhead of a
6T-cell decay technique would be prohibitive.

BTB and predictor structures—This behavior is conducive for decay, since the data held is
both transient and predictive. It is transient in the sense that data which has not been used for
a sufficiently long time has decayed. It is predictive in the sense that allowing a value to leak
away even if it will be used again does not harm correctness. Using a decayed value may mereley
cause a misprediction that can be handled by existing hardware. This is a key difference from
caches, where using decayed data leads to incorrect execution of the program.

The key design points for implementing decay in branch predictors and BTB’s are the
decay interval—which can be affected by circuit design—and the granularity of access—how
many entries are accessed simultaneously because of the layout of the branch predictor or BTB
structure. Their combination determines the active ratio and thus, the leakage savings and the
resultant performance [106].

4T decay is met with some skepticism because it is an analog design with many factors
that could affect it. Many issues, including metastability issues, dependence on temperature,
etc., need to be addressed to deploy such a technique in practice. It does hold the promise,
however, for very low leakage since only the memory cells that are actively used can dissipate
leakage power.

5.2.6 Gated Vdd Approaches for Functional Units
The first leakage-control policies, using gated Vdd (e.g., DRI, cache decay, AMC), target
caches. In this context, the main energy trade-off is between the saved leakage energy and the
extra dynamic power consumed by misses on the turned-off cache lines. The extra energy cost
of switching the sleep transistor on and off was not of immediate concern. This, however, was
of little consequence, since the timescales for inactivity (and therefore the potential leakage
savings) are such that they could easily absorb the sleep transistor switching cost without
difficulty. In other words, the cost of switching the sleep transistor and recharging the internal

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 157

nodes of the memory cells when restoring power is small in comparison to the hundreds
of thousands of cycles of leakage energy saved for each cache line. A small change in the
decay interval—maybe a few tens or a few hundreds of cycles—can more than make up for
this cost.

Things are different, however, when it comes to power-gating functional units. There,
the time scales are entirely different. Inactivity must be exploited in a matter of 10’s of cycles
(not 100’s of thousands). In addition, there is no substantial direct energy cost, such as the decay-
induced miss in the caches, when making a mistake and switching off a needed functional unit.13

Instead, what matters the most in functional units is the dynamic energy cost in powering them
up or down.

Hu, Buyuktosunoglu, Srinivasan, Zyuban, Jacobson, Bose [105] provide an excellent
analysis of the costs involved when power-gating functional units. They assume that a functional
unit is power-gated either with a header (connected to Vdd) or a footer transistor (connected to
ground). In their analysis, they include both the cost of switching the gating transistor and the
cost of recharging a functional unit in relation to the length of time it was discharging. Instead
of calculating the end result for a specific example, making a number of assumptions for the
parameters involved, they give analytic formulas that yield the break-even point, in cycles, for
power-gating a functional unit. To simplify the formulas, a leakage factor L is introduced, which
specifies the ratio of the average leakage power to the average switching power dissipated per
cycle by a functional unit.

Having an accurate framework for assessing power-gating at a fine grain, Hu et al. examine
two policies for power gating functional units. The first is a time-based policy, inspired by cache
decay, while the second is an event-guided policy and in particular a branch-prediction guided
policy.

Functional unit decay: The first approach works similarly to cache decay. If an idle period is
detected in a functional unit then it is switched-off. The are three timing factors that determine
the behavior of this approach: the break-even point in cycles after which there are net gains in
energy; the time it takes for the functional unit to wake up from the moment it is needed; and
the decay interval, i.e., the time it takes to decide to put the functional unit in sleep mode. The
first two are technology and functional-unit specific, while the third, the decay interval, is an
architectural knob that one can turn to tune the policy.

� The first timing factor, the break-even point, varies depending on the technology and
functional unit. In particular, it varies depending on the leakage factor L, the ratio of
leakage energy to dynamic energy.

13But there can be indirect energy costs due to power-gating mistakes which reduce performance.

kaxiras3 MOCL005.cls June 27, 2008 9:33

158 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

� The second factor, the time it takes to wake up a powered-down functional unit,
depends on the capacitance that needs to be recharged when power is restored. The
wake up factor determines the performance impact of the technique. The more often a
functional unit is not ready when it is needed, the worse the performance impact. Thus,
to minimize the negative performance impact, one has to power-down a functional unit
the least number of times possible. This is the most pessimistic scenario that assumes
that there is no advance warning that a functional unit might be needed. If an advance
warning were available, the wake up time could be hidden resulting in little or no
performance penalty.

� Finally, the decay interval determines the idle periods that are “selected” for powering
down the functional unit. A very small decay interval powers down a functional unit
even in very short idle periods; but this can be more damaging than beneficial depending
on the other two timing factors. In contrast, a large decay interval filters out the short
idle periods and powers down the functional unit only in larger idle periods.

Different types of functional units differ on the first two factors but also in the behavior
of their idle periods. In general, the larger the capacitance of a functional unit, the larger the
break-even point and the wake up time. Floating point functional units tend to have a wide
range of idle periods (in SPEC-FP 2000). Although their short idle periods are more numerous
than their longer ones, most idle cycles are due to the longer periods by virtue of their size. In
this case, a long decay interval skips the short idle periods, and selects only the large ones. This
minimizes the number of times the functional units are unavailable because they are powered
down while still benefiting by having the functional unit powered down for a significant part of
the time. Overall, this technique can power-down the floating point units for 28% of the time
with only minimal performance penalty (less than 2%) for the SPEC FP 2000.

Things are much harder with the integer functional units. These are used much more
often—for instance, loads that need address arithmetic are issued every four or five instructions.
This means that the bulk of the idle periods are short. Longer idle periods are rare and basically
appear after L2 misses where the processor may be starved of integer operations. The end result
is that the integer functional units can only be powered-down for a few percent of their time
(6–8%) without significantly harming the performance. Too small a decay interval increases the
power-down time but hurts performance, whereas a longer decay interval fails to capture the
numerous small idle periods, but, on the other hand, does not allow too many chances to catch
the functional units in their sleep.

Event guided power-gating: To improve power-gating, especially for the integer functional
units, Hu et al. propose using various events as clues to upcoming idleness of the functional
units. For example, upsetting events such as L2 misses, instruction cache misses, or branch

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 159

mispredictions all point to idleness of the functional units until the processor pipelines recover
and return to full operation.

Hu et al. concentrate on branch mispredictions. Upon detecting a mispredict, the func-
tional units are put immediately into sleep mode without waiting for the normal decay interval.
This simple rule extends the powered-down time of the functional units without incurring any
additional performance penalty. The use of clues increases the percentage of cycles in sleep
mode for a given performance loss, or, conversely, for the same percentage of cycles in sleep
mode the use of clues eases the performance impact. Similarly to branch mispredictions, other
events can also provide useful hints for the idleness of the functional units but have not been
studied further.

5.3 ARCHITECTURAL TECHNIQUES USING
THE DROWSY EFFECT

One disadvantage of the gated Vdd mechanism is that it destroys state. The first approaches to
control leakage based on this mechanism (DRI cache, cache decay, AMC, etc.) are known as
non-state-preserving. In the case of cache decay and related approaches, the reasoning is that
most of the lost state is useless anyway. And that would be fine if it were not for the problem
of mistakes—decay-induced misses—which actually harm performance. The drowsy effect was
proposed to address this problem, introducing a new class of state-preserving leakage-reduction
techniques.

5.3.1 Drowsy Data Caches
In response to the gated-Vdd problem of losing state, Flautner, Kim, Martin, Blaauw, and
Mudge proposed another approach to curb leakage in memory cells [77]. The drowsy mode
is a low supply voltage mode for the memory cells, i.e., Dynamic Voltage Scaling (DVS) for
leakage.

Similar to the DVS approaches discussed in Chapter 2, this type of DVS also has to do
with idleness; but not with frequency scaling. Memory cells which are idle, i.e., are not actively
accessed, can be voltage-scaled into a drowsy mode. In this mode, transistors leak much less
than with a full Vdd as explained in Section 5.1.1. Figure 5.13 shows the design of a drowsy
cache from [77]. A “drowsy” bit controls the two levels of supply voltage (Vdd or VddLow) to the
memory cells of a cache line. Memory cells are in drowsy mode when fed from VddLow.

The leakage reduction of the drowsy mode is not as profound as that of the gated-Vdd

approach which completely cuts off the path to Vdd (or, equivalently, to ground). However,
allowing for some nonzero supply voltage preserves the state of the memory cell. This happens
as long as the supply voltage is strong enough to replenish the charge in the cell’s internal nodes.
However, a memory cell in drowsy mode cannot be accessed with the full-Vdd circuitry of the

kaxiras3 MOCL005.cls June 27, 2008 9:33

160 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

FIGURE 5.13: Drowsy cache. Reproduced from [77]. Copyright 2002 IEEE.

cache. It first has to be voltage-scaled back to full Vdd. Because this is not instantaneous, there
is a penalty, albeit small, in accessing drowsy cells.

High-level policies for drowsy caches: Because state is preserved in drowsy mode, there is no
danger in experiencing long miss latencies when accessing drowsy cache lines. The penalty to
voltage-scale a drowsy cache line back to full Vdd is relatively small—a few (single-digit) cycles.
Whereas it would matter significantly which cache lines are put into low-leakage mode in a non-
state-reserving technique, with the drowsy mode it does not matter; mistakes cost very little.
This makes sophisticated techniques that determine the idleness of cache lines unnecessary,
especially if one factors in their dynamic power cost. Flautner et al. thus propose a very simple
policy—fittingly called Simple—for the drowsy mode: the whole cache is periodically put into
drowsy mode—all of the cache lines regardless of usefulness or idleness. The small percentage
of active cache lines are going to exit the drowsy mode, on demand, incurring a small latency
penalty. Since this latency is experienced on hits, programs which are sensitive to hit latency
are going to be hurt the most. A variable hit latency can also complicate instruction scheduling
in an out-of-order core, further degrading the performance [180].

The simple policy is quite effective: it can put into drowsy mode 80–90% of a 32KB
L1 data cache while incurring a slight performance penalty of 1%. These numbers are for a
four-instruction wide out-of-order core and assume a very aggressive one-cycle penalty for
accessing drowsy cache lines. The Simple policy does not perform as well with instruction
caches which need to be handled differently.

Improvements on the drowsy policy: Petit, Sahuquillo, Such, and Kaeli [181] improved
on the Simple policy of Flautner et al. by applying few smart heuristics. Their approach is to
maintain the low complexity of the initial idea by adding very little hardware.

The goal is to improve on the Simple policy which blindly puts all cache lines in drowsy
mode. In the Simple policy no effort is spent to distinguish between active (important) and idle
(useless) cache lines. On the other hand, precisely determining the individual status of each

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 161

and every cache line, la cache decay, veers off the desired course of simplicity. Instead, Petit et
al. propose simpler heuristics to filter the lines that are put in the drowsy mode.

Considering the cache lines in an associative set, it is obvious that if there is a live cache
line among them it must be the most recently used (MRU) line. Thus, the first policy is to
exclude the MRU line from going into drowsy mode. In fact, the policy allows only the MRU
line to remain awake in the set. The policy is called MRU ON, or simply MRO. Upon a hit
on a drowsy line, the line is woken up and becomes the MRU line. The previous MRU line is
put in the drowsy mode. According to Petit et al., 92% of the cache hits are hits on the MRU
line so a change in the MRU status, which incurs dynamic switching, is rare.

The second policy simply keeps awake the two most recently used lines per set inasmuch
as both are good candidates for being active (alive) rather than idle (dead). The policy is called
Two-MRO (TMRO). This choice is justified because most of the remaining 8% of the hits that
do not hit the MRU line are accesses to the second most recently used line. Since more lines per
set are kept awake energy savings are less than MRO but accesses to drowsy lines are minimized.

Both these policies try to minimize the performance penalty from accessing drowsy lines.
This penalty, however, is only important if the transition from drowsy to active takes a few
cycles. Petit et al. examine these two policies with a transition latency of three cycles which is
reasonable (if not overly aggressive) for a number of designs.14

Petit et al. conduct experiments which show these two simple policies, MRO and TMRO,
offer power savings of about 72% and 48%, with a hit ratio on active lines of 92% and 98%,
respectively. However, neither can adapt to the dynamic access behavior of various applications.
For this reason, the authors propose an adaptive variation that dynamically selects, per set, one
of the two policies depending on the number of accessed lines in the set within a time window.
This adaptive policy called Reused-MRO (RMRO), settles midway between the MRO and
TMRO and outperforms the Simple policy of Flautner et al. both in leakage savings (65%
versus 62%) and in the hit ratio on active lines (∼99%).

5.3.2 Drowsy Instruction Caches
One situation where the Flautner et al. Simple policy—periodically putting the whole cache
in drowsy mode—does not work very well is the instruction cache [138]. This is because
instructions exhibit strong temporal and spacial locality and any delay in fetch shows up
immediately on performance. Putting active instructions in drowsy mode is a sure way to lower

14The wake-up latency depends on how big is the cache line (number of cells, length of power lines) but more
importantly how large is the voltage controller. To drop the latency to the overly aggressive 1 or 2 cycles in the
initial proposal [77], a quite large controller (128 to 256 Lmin wide) must be used, significantly increasing the
overhead per cache line [137].

kaxiras3 MOCL005.cls June 27, 2008 9:33

162 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

FIGURE 5.14: Banked cache organization. Only actively accessed banks expend dynamic power and
are in full Vdd; the rest of the banks are put in drowsy mode. Reproduced from [137]. Copyright 2004
IEEE.

performance. One solution is to apply a decay policy, but using the drowsy mode instead of
gated-Vdd. This way, active instructions would remain at full Vdd and incur no additional latency.

In a more recent paper, Kim, Flautner, Blaauw, and Mudge return to the Simple policy
for the instruction caches with a renewed study on the locality characteristics of instructions
[139]. Their results show that the Simple policy can also work on instruction caches albeit at
a much different window than for a data cache. In the same paper, they also propose a novel
version of the drowsy circuit requiring a single Vdd power supply [139]. Here, we discuss two
other approaches specifically tailored to take advantage of the code behavior.

Leakage control at the bank level and next-bank prediction: Kim et al. examine a different
approach which is a variation of the Simple policy but tailored to instruction caches. First, the
granularity of the drowsy mode is changed from the cache-line level to the cache-bank level.
Kim et at. point out that banking is fairly common in many cache implementations. It is often
used for reducing dynamic power consumption by pre-decoding addresses and enabling only
the relevant bank for an access (see Section 4.9 and the work of Ghose and Gamble [83]).
Similarly, only the bank that is actively accessed is kept in full Vdd, while all other banks are
put in drowsy mode (Figure 5.14). This works well because of high spatial locality in code:
instructions are fetched in program order, conditional jumps tend to jump close by, and loops
repeat the same code multiple times. An active bank tends to remain active for a long time.

The problems appear when functions which are resident in other banks are called or when
active code spans more than one bank, or in general when there are frequent bank transitions.
The solution in this case is to predict bank transitions with a technique called Next Sub-Bank
Prediction (NSBP). Since bank transitions are due to branches—or the execution spilling over
to the next bank—they can be predicted as well. Interestingly, Kim et al. discover that bank

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 163

transitions are mostly due to function calls/returns and long distance jumps, which are, of
course, highly predictable. It is a straightforward matter of using a CAM buffer or the cache
tags themselves to keep the correspondence of such points in the code to bank transitions. Upon
encountering a point that indicates a transition to another bank, the target bank is reactivated.

Prediction accuracy for a CAM buffer next sub-bank predictor ranges from 51% for
32 entries to 78% for 256 entries. The resulting performance penalty is small (less than 2%
for the 32-entry buffer and less than 1% for the 256-entry). Things get better if the next bank
prediction is associated with the tags. It is less costly and better performing than a 128-entry
CAM buffer. It is also possible to do static next sub-bank prediction at compile-time or link-
time completely eliminating the overhead of dynamic prediction [12]. The end result is that
the NSBP drowsy policies in the instruction cache work equally well but with slightly less
performance impact than state-destroying, gated-Vdd decay with a fixed decay interval.

Program hotspots and code sequentiality: Similarly to the ideas of Kim et al. at the bank level,
Hu, Nadgir, Vijaykrishnan, Irwin, and Kandemir exploit code behavior but at a finer granularity
[104]. Their approach is based on identifying the instructions comprising the working set of
executing code. Such instructions are kept active, out of reach of leakage-control policies, until
execution moves to a different working set.

The working set in this case corresponds to a program phase. Typically, program execution
occurs in phases. A program phase is identified by instructions which exhibit high-temporal
locality in the duration of the phase. In general, not all such instructions are spacially close
but can be scattered across the address space. If a program phase persists long enough, it is
considered to be a hotspot [104].

Whereas the approach of Kim et al. is at the bank level, assuming that a loop body
maps on a cache bank and occasionally makes calls to subroutines mapped on other banks, the
approach of Hu et al. is at a much finer grain: cache lines containing the hotspot instructions
are individually marked as such regardless of where they are in the cache. These lines are then
excluded from leakage control.

Marking the hotspot instructions relies on an application’s branch behavior. In particular,
it is accomplished using information from the Branch Target Buffer (BTB). The BTB identifies
the basic blocks that comprise a hotspot by keeping statistics on how often the basic blocks
are executed. For each BTB entry two basic blocks are traced: the basic block that starts at the
target address and the basic block at the fall through address (when the branch is not taken).
Statistics are kept in frequency counters associated with each BTB entry and are collected
during a time window. When a frequency counter exceeds some empirically chosen threshold,
the corresponding basic block is considered hot. All ensuing fetches up until the next BTB
access are tagged as hotspot cache lines.

The leakage-reduction policy is the Flautner et al. Simple policy. At the end of a time
window, all the cache lines are put into drowsy mode except the lines that are tagged as hotspot

kaxiras3 MOCL005.cls June 27, 2008 9:33

164 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

lines. The protection of these lines from the leakage-control policy is immediately revoked and
has to be re-established in the current window anew. In addition, BTB frequency counters are
halved (by a 1-bit shift) with the end of each window to allow the “hotspot” working set to
gradually change. A new time window can start sooner than its preset time interval if a loop
is detected. In this case, there is no need to wait till the end of a full time interval to detect
additional hotspot instructions.

Similar to the next-bank prediction of Kim et al., which tries to hide the re-activation
latency, Hu et al. also propose—at a much finer granularity—just-in-time activation of individual
cache lines. Since their proposal works at the cache line level, a simple sequential activation
mechanism, that activates the succeeding cache line (succeeding index) from the one that
is accessed, takes care of the straight-line code. However, way prediction is needed in set-
associative caches to avoid waking up a whole set [104].

The most sophisticated scheme proposed by Hu et al. employing hot-spot detection, just
in time cache-line activation, and bank activation to detect spatial changes in the working set,
outperforms the coarse-grain technique of Kim et al. at the bank level, as well as a compiler
approach discussed in Section 5.3.6. This is not surprising since at the cache line level there
is potential for much better energy savings while maintaining the full performance advantage.
The proposed scheme results in a 63% reduction in EDP over the unoptimized base case, 48%
reduction over the bank-level technique, and 38% over the compiler-level technique.

5.3.3 State Preserving versus No-state Preserving
The proposal for the drowsy cache was put forth to address the main weakness of the gated-
Vdd mechanism used in decay policies. In contrast to gated-Vdd, the drowsy mode preserves
the state of the cache lines and results in a much smaller penalty when accessing deactivated,
drowsy, lines. However, it is not without disadvantages: it does not save as much leakage as
completely cutting off the power supply to the cache lines, and reduces reliability by making
the memory cells more susceptible to soft errors. These two characteristics make for interesting
comparisons between the two approaches and even more interesting hybrid schemes employing
both approaches.

Decay versus drowsy: Parikh, Zhang, Sankaranarayanan, Skadron, and Stan examined
energy savings for L1 data caches for the drowsy and cache decay mechanisms [178]. Their
work shows that non-state-preserving techniques can outperform state preserving ones under
certain conditions. More specifically, for fast L2 caches (5–8 cycle latency), cache decay in the
L1 is better in terms of both performance and energy savings than a drowsy L1.

For the drowsy cache, Parikh et al. abandon the Simple policy of periodically putting
all cache lines in drowsy mode, in favor of the more sophisticated decay policy based on
the generational behavior of cache lines. The drowsy cache is therefore a decaying cache but

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 165

instead of using gated-Vdd to turn-off cache lines, these are put in drowsy mode when they are
“decayed.”15 The result is that would-be decay-induced misses turn into simple wake-ups from
the drowsy mode. Consequently, the decay interval for the drowsy mode does not need to be
as conservative as in the gated-Vdd mode.

The comparison, thus, turns into finding a break-even point: how much should the (non-
state-preserving) decay penalty cost in order for decay (which saves more leakage but incurs
decay-induced misses) to outperform the drowsy mode. A slower L2 makes the decay penalty
more costly, wiping out the advantage of saving more. But the break even point also changes
with temperature: the benefit of L1 decay is much higher at higher temperatures where it can
outperform a drowsy L1 even when backed by a relatively slow L2.

Decay + drowsy hybrids on different cache levels: In contrast, to their conclusions regarding
the L1, Li, Kadayif, Tsai, Vijaykrishnan, Kandemir, Irwin, and Sivasubramaniam examine
in detail state-preserving versus non-state-preserving strategies in the L2 and conclude that
non-state-preserving decay policies in the L2 do not perform well compared to drowsy policies
[154]. Simply put, the penalty for an L2 decay-induced miss—which has to go to memory—is
just too high. Obviously, one has to be very conservative in the L2 not to incur decay-induced
misses. This means using long decay intervals. This, in turn, implies that an overly conservative
decay will probably not outpace the drowsy mode in leakage savings enough to turn the balance
in its favor. Nevertheless, Li et al. conclude that combining cache decay in the L1 with drowsy
policies in the L2 yields the best results overall if one considers the whole cache hierarchy [154].

☞ hybrid policies for the L1 and L2: Mirroring the Speculative-II and Speculative-IV
decay policies discussed in Section 5.2.4, the Speculative-I and Speculative-III policies also
deactivate L2 lines when they are transferred to the L1 but—this time—using the state-
preserving drowsy mode instead of the gated-Vdd [154]. These two drowsy L2 policies are
shown in Figure 5.15 (see also Figure 5.11 for a comparison with the gated-Vdd version).
From the discussion so far, it is not surprising that Speculative-I turns out to be the best-
performing policy in the L2: it saves considerable leakage while hurting performance very
little.

On top of these two L2 policies, Li et al. examine more policies for the combined
two-level cache hierarchy. Overall, the best policy in terms of EDP for the whole hierarchy

15As a matter of terminology, “decay cache” denotes the non-state-preserving version of decay while “drowsy cache”
means the state-preserving (drowsy mode) form. The change in drowsy caches from the Simple policy to the
generational policy is also followed in subsequent work, attempting to level the field between the two approaches
by utilizing the same policy and emphasizing only the state-preserving (gated-Vdd) versus non-state-preserving
(DVS) aspect.

kaxiras3 MOCL005.cls June 27, 2008 9:33

166 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

live

L1 generation

dead time
eviction

L2 timeline

L1 generation

Speculative-III

Speculative-I (non-dirty line)

L1 timeline

Periods L2 line
is in drowsy {

Drowsy wake-up penaltymode

FIGURE 5.15: Time diagrams for the non-inclusion, state-preserving, drowsy policies. Speculative-I
puts the L2 line in drowsy mode as soon as it is transferred to the L1. The L2 line remains in drowsy
mode until the next L2 access (provided that there was no writeback of a dirty L1 line). The difference in
Speculative-III is that the L2 line is awaken as soon as the L1 line is evicted (even if it is clean). Adapted
from [154].

is a state-destroying decay in the L1 coupled with either state-preserving decay in the L2 or
with the Speculative-I. State-destroying decay at both cache levels, although saving the most
leakage, does not fare as well in EDP.

Decay+drowsy hybrid in the same cache: Zhang et al. were the first to use a hybrid state-
destroying and state-preserving scheme for the instruction cache [246]. The control of the
leakage mode is left to the compiler which chooses the state-preserving mode for cache lines
containing instructions that are expected to appear again in the future and the state-destroying
mode for instructions that are not coming back.

In the data cache, Meng, Sherwood, and Kastner take the hybrid idea one step further
and combine decay and drowsy techniques, not on different cache levels but, in the same cache.
Their goal is to examine the limits of leakage reduction assuming oracle knowledge—full
knowledge of the access stream. They demonstrate optimal results for state-destroying (gated-
Vdd) decay and the drowsy mode in the instruction and the data L1. Interestingly, their study
shows that a hybrid scheme combining the decay and drowsy approaches yields the best results
in a single cache [164].

The hybrid scheme is quite simple: it starts by putting a cache line in drowsy mode after a
very short period of inactivity and proceeds to turn off the line completely if this period of inactiv-
ity persists beyond a larger “decay interval.” This is as close to the optimal as a practical approach
can get since it attacks the problems of decay and drowsy mode in a complementary fashion.

The drowsy mode problem of not saving enough leakage is solved by eventually completely
switching off the cache line. Whereas, the two main decay problems are solved as follows. First,
the problem of decay-induced misses is solved by waiting for a long time to make sure that a

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 167

cache line is dead. Second, the problem of lost opportunity to save leakage waiting for the decay
interval to pass (in high-leakage mode) is solved by using the drowsy mode while waiting. The
hybrid approach works well assuming a constant temperature. Its trade-offs, however, change
as temperature affects leakage.

5.3.4 Temperature
Although the dependence of leakage to temperature is not accounted for in the work of Meng
et al., clearly the trade-off between drowsy and decay modes in a hybrid scheme cannot be
static. The higher the temperature the more valuable the decay becomes, because it saves more.
In contrast, at low temperatures, what matters most is to minimize dynamic energy penalty and
performance loss; this argues in favor of the drowsy mode.

This temperature-driven trade-off is explored in a temperature-adaptive scheme [129].
The leakage control mechanism is a hybrid drowsy + decay scheme. The decision on how long
to wait to enter the decay mode (i.e., how long is the decay interval) depends on the relative
strength of the leakage power to dynamic power.16 The dynamic power component is affected
by the number of decay-induced misses which is a function of the decay interval.

At high temperatures, where leakage is relatively strong, the decay mode can be aggres-
sively engaged since, even with an increase in dynamic power overhead, it maximizes the overall
power savings. But when leakage currents are weak, the dynamic power overhead can dominate,
regardless of the amount of saved leakage.

Temperature-driven adaptation consists of using a timing mechanism to stretch the decay
interval at lower temperatures. This diminishes the leakage reduction from the decay mode but
also minimizes its dynamic power overhead, leading to an overall reduction in power over a
wide range of temperatures. The drowsy interval is not changed and is fixed at all temperatures.

While there are several ways to control the decay interval at various temperatures (for
example, using a thermal sensor to set the global counter of a hierarchical counter mecha-
nism), adaptation is based on the decay of quasi-static 4T memory cell. The decay interval
is measured as the time it takes leakage to discharge a 4T cell. In other words, the strength
of the leakage itself determines the decay interval. The key in this idea is that the discharge
characteristic of a 4T memory cell, at various temperatures is ideally suited to be used as the
decay interval. The resulting scheme consistently outperforms the decay mode or the drowsy
mode alone and approaches the performance of a hybrid scheme with oracle decay interval
selection [129].

16This technique assumes that temperature alone is the factor that changes the relative strength of leakage at runtime
but dynamic scaling of the threshold voltage and the supply voltage could also have major effects.

kaxiras3 MOCL005.cls June 27, 2008 9:33

168 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

4T

W/L

W/L

1V

W/L

Low Leak
Supply Regulator

0.3V

Cache

Line
Power Line

Gating
Transistor

Low Leak
Inverter

Decaying
Cell

External
Signal (every 512c)

2-State
FSM

(6T)

FIGURE 5.16: Decaying 4T timer for a hybrid decay + drowsy policy. Reproduced from [129].
Copyright 2005 IEEE.

☞ decaying 4T timers: A 4T DRAM cell can be used as a cheap temperature-sensitive
timer [128]. The time it takes to discharge because of leakage is a measure of temperature.
The timer in the temperature-adaptive hybrid technique is based on the same idea: the
decay interval of each cache line is regulated by the decay of a 4T cell.

A simplified timing mechanism that sets a cache line in drowsy or decay mode is
depicted in Figure 5.16. Implemented adjacent to each cache line, this mechanism adapts
the decay interval to the temperature of the line’s immediate surrounding area. The drowsy
interval is fixed and is counted by a single-bit local counter. Accessing a line charges the
4T cell—i.e., resets the timer. As long as the 4T holds a “1” the cache line is connected to
ground. If, however, the 4T is left unaccessed for a long period, it decays and gates the cache
line via a low leak sleep transistor. As soon as the line is accessed again, the 4T reinstates
the connection to ground. Additional hardware is needed to synchronize the decay of the
4T with the clock and cache operations.

5.3.5 Reliability
Finally, the different leakage-reduction techniques can have a very different reliability behavior
compared to a standard cache. Degalahal, Vijaykrishnan, Kandemir, and Irwin examine cache
decay and drowsy caches from a reliability perspective [63] and conclude that decay enhances
reliability, whereas the drowsy mode makes caches more susceptible to soft errors.

Technology scaling fundamentally affects the reliability of devices, increasing the rate
of soft (transient) errors. Such errors are primarily caused by external radiation such as alpha
particle or high-energy neutron strikes but it is the physical characteristics of the devices that
determine whether transient errors occur during these strikes.

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 169

Soft errors occur when a particle strike at a circuit node generates enough charge to
cause a bit flip at that node. This happens when the collected charge from the strike exceeds
a quantity known as Qcritical, which is proportional to the node capacitance and the supply
voltage. The Soft Error Rate (SER) is exponentially dependent on Qcritical and proportional to
the cross-section area of the node (CS) and the environmental radiation flux (Nflux):

SER = Nflux/ × CS × e
(−Qcritical

Qs

)
.

The exponential dependence to Qcritical translates to an exponential dependence on the
supply voltage. This means that DVS techniques such as the drowsy technique have a dramatic
effect on reliability—increasing by at least an order of magnitude the SER. In contrast, cache
decay improves reliability but invalidating a significant portion of the data, thus, reducing their
exposure to soft errors. In addition, the early writeback induced by decay, helps protect dirty
data by writing them back to the memory system.

Degalahal et al. further exploit decay’s early writeback property in an adaptive error-
protection scheme. The idea is to protect differently clean and dirty data, assuming that
an error on clean data can be corrected by re-fetching the data from a lower level of the
hierarchy. This leads to 11% savings in the dynamic energy expended on error protection in
the L1.

A related technique to enhance reliability was proposed by Zhang, Gurumurthi, Kan-
demir, and Sivasubramaniam [245]. The technique, called In-Cache Replication (ICR), is based
on cache decay and replicates live cache lines in the dead space of the cache. Space vacated by
dead lines is reclaimed and used to hold replicas of live lines. Replication can be performed
vertically, across sets, by making a copy at a fixed distance from the original’s set, or within the
same set by reclaiming empty associative ways. Zhang et al. examine a number of variations
of this idea and show that reliability can be significantly enhanced without compromising the
performance [245].

5.3.6 Compiler Approaches for Decay and Drowsy Mode
All approaches to control leakage in caches, thus far, are based on hardware monitoring (e.g.,
decay) or even simple hardware techniques (e.g., the Simple policy for the drowsy mode).
Compilers, however, can play an important role with the help of leakage control instructions.

Compiler involvement, assisted by profiling, has been initially proposed along with the
hardware implementation of cache decay [127]. The compiler approach assumes the availability
of instructions that access cache lines and turn them off immediately after. The idea is to find
what instructions are last-use instructions for cache lines and replace them with leakage-control
instructions. Unfortunately, it is difficult for the compiler to do a thorough analysis of the data
without the help of run-time information. Profiling is necessary for this approach to work but

kaxiras3 MOCL005.cls June 27, 2008 9:33

170 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

Loop1

Loop2

Loop0

Loop1 exits: put in drowsy mode

Loop2 exits: put in drowsy mode

Loop0 exits: turn off

FIGURE 5.17: Compiler-controlled leakage management. Adapted from [246].

this is also its Achilles’ heel. Different input sets, different data layouts, alter the usefulness of
the profiling information. Profiling runs are also not desirable in many cases.

The situation, however, is more interesting when it comes to instruction caches. Compil-
ers have a better ability of understanding and handling code. Through compile-time analysis,
code can be enhanced with the ability to manage its leakage footprint in the instruction cache.
For example, a loop can shut itself off (i.e., its footprint in the instruction cache) once it exits.

Zhang, Hu, Degalahal, Kandemir, Vijaykrishnan, and Irwin first proposed compiler
leakage management for code [246]. They assume that loop instructions, as a group, can be
selectively put into a low leakage mode (either state-destroying or state-preserving). Regardless
of what happens to state this is referred to as “turning off” the instructions or cache lines. Finding
and turning off just the cache lines belonging to a specific loop is bound to cost energy whether
it is implemented in hardware or software. A simpler solution is proposed instead: all cache
lines of the cache are turned off, blindly, upon exiting a loop.

The compiler can follow two strategies to turn off loops. The first is a conservative strategy
in which instructions are turned off only if it is clear that they will not be accessed again. The
second is an optimistic strategy in which instructions are turned off even if they are accessed in
the future, as long as this is far enough in the future to produce a net gain.

In the example in Figure 5.17, the compiler cannot turn off loop1 or loop2 instructions
under the conservative policy since it knows that they will be used again as part of loop0’s
execution. When loop0 exits, however, all code can be turned off. Under the optimistic strategy,
both loop1 and loop2 can be turned off since their execution is interleaved. This strategy assumes
that each one lasts long enough to warrant turning off the other.

The conservative strategy is combined with a state-destroying mechanism (e.g., gated-
Vdd) since it only takes action when it knows with certainty that instructions (loops) are dead.
Similarly, the optimistic strategy is combined with a state-preserving mechanism (e.g., drowsy

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 171

mode) since it expects that eventually instructions are going to be reused. While the other two
combinations of strategies and mechanisms are also possible (i.e., conservative with drowsy and
optimistic with gated-Vdd), they are not as effective.

Figure 5.17 shows the behavior of a combined hybrid strategy where the optimistic and
conservative strategies are used together. The hybrid strategy performs the best among all the
other complier strategies. It also outperforms both the (state-destroying) decay and the drowsy
techniques (with a fixed 4Kc decay interval) in terms of EDP in eight out of ten programs
[246].

5.4 ARCHITECTURAL TECHNIQUES BASED ON VT
The root of the exponential increase in subthreshold leakage can be traced to the lowering of
the threshold voltage, VT, as a result of technology scaling. Lowering the VT is a matter of
performance: device speed depends on the difference between the supply voltage, Vdd, and the
threshold voltage VT (see Section 5.1.1). This leads to a classic trade-off between speed and
power that can be exploited to reduce the overall leakage consumption.

There are two broad approaches that exploit this trade-off, depending on whether VT

can be manipulated dynamically or is set at the design or manufacturing stage. In both cases, a
low VT yields increased speed at the expense of higher power consumption, whereas a high VT

reduces power consumption but also speed.
For the dynamic VT technologies the most interesting tradeoff happens in relation to

dynamic voltage scaling. Both Vdd and VT scaling affect the device speed. Vdd scaling reduces
dynamic power, whereas (upwards) VT scaling reduces leakage power. The question then
becomes, what to scale and how much for a given frequency of operation. This depends on the
relative strength of the dynamic versus leakage power. Multiple studies have shown that one
has to simultaneously scale both quantities to achieve the best possible results.

For the static, multiple-VT technologies, such as MTCMOS, two popular design
methodologies are generally followed.

� The first relies on transistor stacking: a block of low-VT (high-leakage, high-speed)
transistors are stacked with a high-VT (low-leakage, low-speed) transistor. The high-
VT transistor is inserted between the high-speed logic block and one of the power rails
(commonly the ground rail). When it is turned off, it disconnects the logic block from
power, virtually eliminating leakage.

� The second populates non-critical paths of a circuit with high-VT, low-leakage, tran-
sistors if there is enough slack to accommodate the increased latency [69]. Finally, in
memory designs, asymmetric cells using high-VT and low-VT devices can save leakage
depending on the stored bits [17].

kaxiras3 MOCL005.cls June 27, 2008 9:33

172 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

5.4.1 Dynamic Approaches
Dynamically varying the threshold voltage of a device is accomplished by biasing the substrate
body of a transistor. Two approaches have been proposed for biasing. In the first approach,
called Reverse Body Bias (RBB), the substrate body of a fast, high-leakage, low-VT device is
biased to increase its VT [132]. This results in dramatic reduction in leakage but slows down
switching. The second technique, called Forward Body Bias (FBB), starts from the opposite
direction. It takes a high-VT, low-leakage, slow device and by applying the opposite bias reduces
its VT to make it fast but high leakage [13]. Adaptive approaches based on these two techniques
have also been proposed, such as the Adaptive Body Bias (ABB) technique which uses reverse
biasing.

☞ a comparison of RBB to other leakage-reduction mechanisms: At the circuit level,
Chatterjee et al. [49] compare RBB to several techniques for subthreshold leakage
reduction including transistor stacking [184], and dynamic voltage scaling (drowsy mode or
DVS) [77]. They show that the stacking effect is the most effective means to reduce leakage
power, but because it lowers the active current in the normal operation mode, it is also slow.
They also show that lowering the supply voltage (DVS) is inferior in terms of both leakage
savings and speed (low voltage also underrates Ion significantly). Thus, they conclude that
RBB is the best compromise between leakage savings and speed in normal operation mode.

RBB, however, requires the generation and routing of extra power supply to the
body and well terminals of n- and p-MOS transistors. In addition, it requires the usage
of a triple-well bulk CMOS process increasing the overall implementation cost [49]. If
the ease of fabrication is taken into account, the best compromise in leakage savings and
switching speed between high-leak and low-leak modes is the drowsy mode (DVS)—for
state-preserving techniques—or gated-Vdd (Vss)—for non-state-preserving techniques.

Combined DVFS and ABB: Adaptive RBB techniques increase the threshold voltage and thus
bring an exponential reduction in leakage power. However, the increase in threshold voltage
reduces the (Vdd − VT) difference, slowing down switching [195]:

Delay ∝ Vdd

(Vdd − VT)a
.

It is evident that either scaling Vdd or increasing VT slows down switching. The question
is which one to change for a given performance level.

� Voltage scaling, discussed extensively in Chapter 3, decreases dynamic power quadrat-
ically to the supply voltage:

P = Ceff × f × V 2
dd
.

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 173

FIGURE 5.18: Relative contribution of dynamic and leakage power in an embedded processor. Repro-
duced from [231]. Copyright 2005 IEEE.

� Increasing VT exponentially decreases the subthreshold leakage current and conse-
quently subthreshold leakage power, in accordance to the formulas given in Section
5.1.1. Assuming Vgs = 0 and Vds = Vdd, the formula for the subthreshold leakage
power becomes:

Psub = Vdd IDsub = Vdd Is0

(
1 − e

−Vdd
Vt

)
e

−VT−Voff
n vt .

Considering dynamic or leakage power independently, the performance can be traded
for power by scaling either Vdd or VT. Because in both cases performance degradation is linear
to the scaling of the Vdd or VT, whereas power savings are either quadratic or exponential, the
resulting improvement in EDP is substantial.

Considering, however, total power, the sum of the dynamic and leakage powers, it is not
obvious which quantity is more profitable to scale for a given performance degradation. This
depends on the relative contribution of the two components to the total power consumption.
For example, Yan, Luo, and Jha [231] consider the three scenarios, shown in Figure 5.18, for
the relative contribution of dynamic and leakage power in an embedded processor.

In the 70 nm technology, scaling the supply voltage is bound to have a greater effect than
raising VT, for a given performance level—a given frequency—since dynamic power dominates
in this technology. In contrast, in the 35 nm technology, increasing VT is the more profitable
route. Not only the balance of dynamic and leakage power shifts across technologies, or among
different implementations in the same technology, but also changes dynamically as a function
of temperature which has a profound effect on leakage. This aspect, however, has not been
researched adequately.

For a given frequency—a given switching delay—the best possible power savings come
from carefully adjusting both Vdd and VT, depending on the balance of dynamic versus leakage

kaxiras3 MOCL005.cls June 27, 2008 9:33

174 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

power at that point. While the Vdd − VT difference determines switching speed, maximum
gains in power consumption come from a combined adjustment of the two. Three independent
studies come to the same conclusion.

� Duarte, Vijaykrishnan, Irwin, Kim, and McFarland study the impact of scaling on a
number of approaches for dynamic power reduction [70]. Among their experiments
they simultaneously scale the supply voltage (Vdd) and the body-to-source bias voltage
(Vbs), i.e., they simultaneously perform DVS and ABB. Their study is not constrained
in any variable, meaning that they examine a wide spectrum of possible values for the
two quantities. Their results show a clear advantage over DVS alone.

� The work of Martin, Flautner, Mudge, and Blaauw combines DVS and Adaptive Body
Biasing to lower both dynamic and static power of a microprocessor during execution
[163]. They derive a closed-form formula for the total power consumption, expressing
it as a function of Vdd and Vbs (the body-to-source bias controlled by ABB). The
formula is the following:

P = Ceff V 2
dd f + Vdd K3 eK4 Vdd eK5 Vbs + |Vbs| · Ij,

where, K3, K4, and K5 are constants derived from simplifications made by expressing
VT as a function of Vdd and Vbs. The formula also includes a term for junction leakage
(Ij) which the authors consider important in this situation. In a similar manner, they
arrive at the following formula for the frequency, f :

f = (Ld K6)−1 ((1 + K1) Vdd + K2 Vbs − Vth1)a ,

where K1, K2, K6, and Vth1, are constants derived from approximations, Ld is the
depth of the logic path in relation to an inverter, and a is the exponent of the alpha-
power delay model of an inverter (here a = 1). As it is evident from the above formula,
f —performance—is a linear function of Vdd and Vbs.

Martin et al. use the system-level technique of automatic performance setting
presented in Chapter 3 as a DVS-only technique (Section 3.2). In this technique,
deadlines are derived from monitoring system calls and interprocess communication.
The performance setting algorithm sets the processor frequency for the executing
workload so as to not disturb its real-time behavior.

Solving the system of the two equations above for a given performance setting,
Martin et al. are able to estimate the most profitable combination of Vdd and Vbs to
maximize power consumption savings. The approach can deliver savings over DVS
alone of 23% in a 180 nm process and 39% in a (predicted) 70 nm process [163].

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 175

FIGURE 5.19: Combined DVS and ABB for an embedded processor with hard real-time constraints.
Reproduced from [231]. Copyright 2005 IEEE.

� Finally, Yan, Luo, and Jha study the application of combined DVS and ABB in
heterogeneous distributed real-time embedded systems [231]. In analogy to the work
of Martin et al., they determine the lowest frequency of operation that can satisfy the
real-time constraints of an embedded system using the worst-case analysis. In contrast
to the previous work, the deadlines are known and are hard real time.

Given the required operation frequencies, Yan et al. show that both Vdd and VT

have to scale to obtain the minimum power across the range of frequencies for a 70 nm
technology (Figure 5.19). Initially, Vdd is scaled as this yields the most power reduction
for the given frequencies. However, at some point Vdd scaling reduces dynamic power
to the point where leakage starts to dominate, thus triggering ABB (scaling the body-
to-source bias Vbs). Yan et al. conclude their study by presenting a heuristic on-line
algorithm that can estimate the proper Vdd and Vbs for a list of tasks with a slack in
their execution schedule.

5.4.2 Static Approaches
In the static, multiple-VT approaches, transistors on the same die are manufactured as either
high-VT or low-VT (by varying the channel-doping profile, or the oxide thickness, or the channel
length). These are referred to as multi-threshold voltage CMOS (MTCMOS) technologies
with the appropriate libraries providing devices with different VT. The designer or architect
selects where the high-VT or low-VT devices go at design time and the chip is manufactured
accordingly. There are two major design methodologies in using multiple threshold voltages.

� The first methodology is to use low-VT devices (high-performance, high-leakage)
in the performance-critical paths of a design and use high-VT (lower-performance,

kaxiras3 MOCL005.cls June 27, 2008 9:33

176 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

low-leakage) everywhere else; as long as the increased delay of the high-VT devices can
be hidden in the slack this saves leakage without affecting speed. An example of this
technique is in dynamic domino logic [124] which is described in detail in Section 5.4.3.
The asymmetric cell design presented in Section 5.4.4 is an analogous methodology
but is intended for memory and exploits a different storage asymmetry [17, 18].

� The second design methodology uses high-VT sleep transistors to gate off the power
to high-speed, low-VT, logic when such a logic is idle. This is similar to the gated-Vdd

approach mentioned above, the difference being the use of dual threshold voltages. The
leakage reduction in the low-VT logic is still a result of the stacking effect as described
previously, but now enhanced by the presence of the high-VT sleep transistors. We will
not expand separately on this methodology since it is a dual-VT version of the gated-Vdd

approach already described in Section 5.2.

5.4.3 Dual-VT in Functional Units
One of the few architectural-level studies for the use of dual-VT in functional units is by Drop-
sho, Kursun, Albonesi, Dwarkadas, and Friedman [69]. For performance reasons, functional
units are typically designed using dynamic domino logic instead of static CMOS. Figure 5.20
contrasts an AND gate in static CMOS and in dynamic domino logic. In terms of dynamic
power the difference in the two designs is that, every clock cycle, the domino logic is charged
and discharged (if needed) by the evaluation of its inputs. As mentioned in Chapter 4, Section
4.2, this can consume power even when the inputs do not change. The only way out is to stop
the clock, i.e., clock gate the entire circuit not just its inputs. With respect to static power,

FIGURE 5.20: AND gate in static CMOS and in dynamic domino logic. The “Dynamic” node in (b)
is precharged during the low phase of the clock. Inputs are evaluated during the high phase of the clock
and can discharge the dynamic node. Reproduced from [69]. Copyright 2002 IEEE.

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 177

FIGURE 5.21: Low-leakage dual-VT AND gate (a) and same with sleep mode (b). In (a) P1, P2, and
N5 are high-VT devices (they are not on the critical path for evaluation). In (b) the NS high-VT transistor
is the “sleep” transistor that discharges the dynamic node. Reproduced from [69]. Copyright 2002 IEEE.

leakage paths in dynamic domino logic depend on the state of the internal dynamic nodes. This
property is exploited for the implementation of a sleep mode specific to domino logic.

The low-leakage domino logic is built using dual-VT devices according to the MTCMOS
design methodology described above. By selectively using high-VT devices in the non-critical
paths, performance is not compromised. Figure 5.21 shows the integration of high-VT devices
(shaded transistors) in the domino-logic AND gate. Evaluation speed is not affected by this
configuration.

However, an asymmetry in the leakage currents is created. This asymmetry depends on
the voltage level at the internal dynamic node. If either input is low, the dynamic node remains
charged, resulting in a large subthreshold leakage current through the high-leakage transistors
N1, N2, N3, and N4. But, when the dynamic node is discharged, the low leakage transistors
P1, P2, and N5 are strongly cutoff and the leakage in the whole circuit is dramatically reduced.

Thus, to put a dynamic domino circuit in a low-leakage state, all that is needed is
to discharge its dynamic nodes (and of course clock-gate it to prevent them from getting
recharged). This can only be done if the circuit is idle since in the low-leakage state it cannot
evaluate its inputs—it first needs to be recharged. This is a distinct technique, for a low-leakage
state, from the power gating techniques presented in Section 5.2.6 or from ordinary clock gating
for dynamic power.

Similarly to switching on and off the sleep transistor in the power-gating techniques
(Section 5.2.6), discharging the dynamic nodes of a domino circuit carries an energy penalty.
The energy cost is proportional to the number of nodes discharged to enter the sleep mode. As

kaxiras3 MOCL005.cls June 27, 2008 9:33

178 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

FIGURE 5.22: Gradual sleep mode. Reproduced from [69]. Copyright 2002 IEEE.

with power gating, the question then becomes, whether the idle time of the functional units is
long enough for the gains in leakage energy to outpace the penalty of entering the low-leakage
mode. Typically, it may not be profitable to enter in low-leakage mode for very short idle
periods.

Unfortunately, the distribution of the idle periods for the integer functional units is
dominated by short times [69]. This means that an overly aggressive policy to enter the sleep
mode is probably not optimal. For this reason, Dropsho et al. propose a gradual sleep policy
that puts the functional unit in sleep mode in stages. The technique is shown in Figure 5.22.
The functional unit is divided in slices which are put in sleep mode consecutively as long as the
functional unit remains idle. As soon as it is needed again, all slices are brought back to active
mode and are precharged.

The gradual sleep technique can tie very well with the narrow-width operand techniques
discussed in Chapter 4, Section 4.3, in relation to dynamic power. However, such a possibility
was not considered. Nevertheless, the gradual sleep technique effectively harvests the idle times
of the functional units for leakage savings without incurring large penalties, thus, making it
very difficult for a more sophisticated technique to do much better.

5.4.4 Asymmetric Memory Cells
Using dual-VT in functional units relies on timing asymmetries in the circuits. Non-critical paths
can be populated by slower, high-VT transistors taking up some of the time slack. Memory
structures, however, are regular when it comes to timing. Azizi, Moshovos, and Najm, exploit
a different kind of asymmetry, a storage asymmetry, to selectively introduce high VT devices in
SRAM design [17, 18].

Their technique relies on an imbalance in the number of ones and zeros that appears
in the memory system for ordinary programs. The observation is that the number of zeros by

kaxiras3 MOCL005.cls June 27, 2008 9:33

MANAGING STATIC (LEAKAGE) POWER 179

FIGURE 5.23: Symmetric versus asymmetric SRAM cell. Voltage levels (shaded 1 and 0) and leakage
paths are shown in the ordinary symmetric cell when it is holding a “0.” The Asymmetric Cell utilizes
high-VT (low-leakage but slow) transistors for N2, P1, and N4 (the leakage paths). The result is low
leakage in state 0 (reduced by 40◦) but also higher latencies in discharging the bitlines (46% for the BL
and 12% for the BLB). Reproduced from [18]. Copyright 2003 IEEE.

far outstrips the number of ones in memory. And this holds for both data and instructions,
regardless of whether they are actively or rarely accessed.

This observation implies that the number of zero bits in the cache is also proportionally
greater than the number of ones. We have encountered a similar approach for dynamic power
in Chapter 4, Section 4.4.1, but at the byte level. Villa, Zhang, and Asanović observe that a
large percentage of bytes in the memory system are zero, and therefore can be represented by
a single bit, the Zero Indicator Bit (ZIB) [221]. Although they operate different granularity
and for different kinds of power (dynamic versus leakage), the Azizi et al. and the Villa et al.
techniques are closely related.

The idea in the Azizi et al. technique is to selectively use high-VT devices to build a
memory cell that is more power-efficient in holding zeros than ones. Such a cell is shown in
Figure 5.23 (on the right) and contrasted to a standard cell (on the left). The transistors on
the leakage paths (when the standard cell holds a zero) are replaced with high-VT devices.
The resulting asymmetry saves 40× of leakage when holding a zero—holding a one makes no
difference. At the same time, an asymmetry is created in the access times: the discharge of the
bit-line (BL) is slowed down by 46%, whereas the discharge of the negated bit-line (BLB) is
slowed much less, only 12%. In contrast, building a whole cell out of high-VT transistors saves
leakage no matter what the stored value but the access speed is symmetrically impaired in both
bitlines (BL and BLB).

The asymmetry in the access times proves to be the key in making the scheme perform
on a par with ordinary cells. With a novel sense-amp design, complete with dummy bitlines

kaxiras3 MOCL005.cls June 27, 2008 9:33

180 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

FIGURE 5.24: Two improved Asymmetric Cells: the Leakage Enhanced (LE) and Speed Enhanced
(SE). Reproduced from [18]. Copyright 2003 IEEE.

connected on extra dummy cells, Azizi et al. are able to exploit the timing asymmetry in the
discharge of the bitlines and trick the sense-amp in detecting zeros almost as fast as detecting
ones. The details are explained in [17, 18].

The asymmetric design in Figure 5.23 is only one of the nine plausible asymmetric
designs—but not the best. Azizi et al. describe and evaluate the other nine designs and determine
for each the leakage savings when storing a zero or a one and the respective latencies in the
discharge of the bitlines BL and BLB [18].

Two improved designs are shown in Figure 5.24. The first is a leakage enhanced (LE)
version and the second is a speed enhanced (SE) version. In the LE cell, the replacement of
N1 and P2 by high-VT devices improves the leakage power consumption when the cell holds
a 1. The savings are 40% and 7% for holding a 0 or a 1 respectively. The discharge of the
BLB is slowed further, reaching 61% of the normal low-VT cell but the discharge of the BL
is not affected remaining 12% slower than the normal cell. Still the extra latency for the BLB
is hidden by the new sense-amp design that detects a zero from the dummy bitlines exactly
because the BLB discharge is slowed. The SE design puts the emphasis on speed. Although
its leakage reduction is not as impressive (only 2× and 7× compared to a normal cell when
holding a 0 and a 1 respectively), its response time, with the help of the new sense-amp, is
virtually identical to a normal (low-VT) cell.

kaxiras3 MOCL005.cls June 27, 2008 9:33

181

C H A P T E R 6

Conclusions

While performance considerations have always played a prominent role in computer architec-
ture, power consumption has been an increasingly significant driver of the field in recent years.
Both the increase in dynamic power and even more so the exponential increase of static power
have brought sweeping changes in the way we design and build processors.

In the last two decades or more, the industry has benefited from exponential performance
improvments stemming from a combination of exponential increase in clock frequency, along
with architectural innovations. Clock frequencies today, however, have hit the power wall. They
are currently increasing at a much slower pace than ever before, and in some cases have decreased
from prior chip generations. Instead of frequency increases as the main performance driver,
other options become paramount. In particular, there is much greater focus today on chip
multiprocessors (CMPs) and on application-specific designs. Both of these have interesting
and important power implications, as we will discuss below. In the subsections that follow, we
conclude this book with summaries of current state of the art, as well as views of promising
future techniques and trends.

6.1 DYNAMIC POWER MANAGEMENT VIA VOLTAGE AND
FREQUENCY ADJUSTMENT: STATUS AND FUTURE TRENDS

Much of the early focus on dynamic power management concerned possible voltage and fre-
quency adjustments, and a wide range of dynamic or offline policies to guide them. This work
has had high leverage both in terms of published research results as well as in terms of com-
mercial adoption. Part of the success of these techniques has stemmed from the quadratic (or
more) influence of (V , f) scaling on power; it has unequivocably been a high-payoff technique.
Another reason for its success stems from the fact that the mechanism of DVFS has been built
into many processors, and its existence has given researchers an excellent platform with which
to expeirment with increasingly effective policies for managing it.

Looking forward, it seems unlikely that reliance on further DVFS techniques will offer
as significant further payoffs in the future. First, much of the “low-hanging fruit” has been

kaxiras3 MOCL005.cls June 27, 2008 9:33

182 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

harvested; further success will likely result in smaller improvements to existing policies. Second,
as leakage energy plays a greater role in total power dissipation, DVFS techniques are less
promising because of their detrimental impact on leakage.

Third, and most importantly, while DVFS has been the backbone of power management
in most processors, it faces some important limitations that will diminish its value in future pro-
cessors. While DVFS offered quadratic reduction in power (∼V 2 f) with only linear slowdown
(∼ f) its practical value rests on a wide range of supply voltages (e.g., 3 V to 1 V). This range is
continuously shrinking with the lowering of the upper limit but not a corresponding lowering
of the lower limit. ITRS projects for the upcoming generations (2007–2014) supply voltages
in the range of 0.9 V to 0.6 V giving a useful dynamic range of 0.2 V–0.3 V. In addition, the
lower supply voltages significantly increase the susceptibility of the devices to soft or transient
errors. And this for technologies that are inherently unreliable to begin with! It is very likely
that in future processors, DVFS will either be impractical or unfruitful if the power needed to
correct errors outweighs the power saved by voltage scaling.

6.2 DYNAMIC POWER REDUCTIONS BASED ON EFFECTIVE
CAPACITANCE AND ACTIVITY FACTOR: STATUS AND
FUTURE TRENDS

A significant portion of both published research and industry practice is devoted in reducing
the effective capacitance (Ceffective = A × C) term of the dynamic power equation. Classifying
the types of excess switching activity can offer a summarized checklist of steps for architects
interested in power-efficient design:

� Check for idle-unit switching. Clock gate every unit that can be deterministically as-
certained as idle. The granularity for clock gating should be such that its overhead is
insignificant.

� Check for idle-width. Check to see if the width of various structures, functional units,
data paths, memories (latches, registers, caches, etc.) is too wide for the common case.
If it is, either (dynamically) disable the unused width or overload the width by packing
more than one “narrow” operation at a time.

� Check for idle-capacity. Check to see if the capacity of large structures is fully utilized.
If not, resize to accommodate the common case without inordinately harming perfor-
mance. This eliminates switching in the unused parts of a large structure. It is also
beneficial for static power if the disabled parts, after a resizing, are completely powered
down or alternatively put into a state-preserving low-leakage mode.

kaxiras3 MOCL005.cls June 27, 2008 9:33

CONCLUSIONS 183

� Check for parallel/speculative activity. Parallel speculative activities such as set-associative
cache access, parallel searches, indiscriminate snooping, etc., can be significantly re-
duced by performing first only what is most likely to succeed.

� Check for repetitive/cacheable activity. Complex computation that repeats verbatim can
be possibly memoized—that is, stored as an association of the inputs to a specific
output. If retrieving the result consumes less energy than computing it, this method
can yield excellent improvements in power. Caches can also be cached. After all, the
cache hierarchy itself is a power optimization.

� Check for Speculative activity at a large scale that is wasted on misspeculations. Find a
way to reduce the work performed during probable misspeculations.

� Check for value-dependent activity. A different encoding can sometimes lead to a totally
different switching profile. Although we present this type of activity last, an encoding
change is a fundamental and fairly low-level optimization that can performed before
any of the above optimizations.

Most of low-power research and practice centers around these types of excess or avoidable
activity. As long as there is a consistent and persistent effort to systematically address each and
every one of these cases, the power inefficiency that we have seen, especially in out-of-order
superscalar processors, can be largely rectified.

Optimizing a component to reduce excess activity in some cases may have undesired
consequences. In these situations, a work steering strategy can be used where both the optimized
and the unoptimized versions of the component are provided; work is then dynamically steered
to the appropriate component according to run-time conditions.

Looking forward, one can view future CMP trends through the prism of their impact
on power. In particular, the effective capacitance clearly demonstrates the inefficiency of the
ILP “uni-core” approach. With each new and more complex ILP unicore, the core size has
increased, leading to longer wires on average. In addition, the activity factor also increases.
While performance has increased somewhat in return the marginal performance benefits have
been decreasing with each generation, while power and power density have been increasing.

In other words, each successive ILP architecture was less power-efficient for its perfor-
mance gains. The move to multi-core architectures, using a power-efficient core as a building
block, has many benefits. Among them, it allows the activity factor to be controlled on a per-
core basis, and allows average wire lengths to be primarily limited by core size, rather than die
size.

While multi-cores reduce global wiring, they do not eliminate it. In particular, on-chip
processors are interconnected either by a shared bus or by some sort of on-chip (perhaps

kaxiras3 MOCL005.cls June 27, 2008 9:33

184 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

packet-switched) network-on-chip (NoC). Interesting future research directions must focus
on power-efficient implementations of these interconnects, as well as optimization of the
inter-processor communication patterns in order to save power and energy.

6.3 LEAKAGE POWER REDUCTIONS: STATUS
AND FUTURE TRENDS

Leakage energy remains the most vexing of the problems raised in this book. Below the
architecture level, process technology has come up with solutions to reduce gate leakage (e.g.,
high-k dielectrics) but subthreshold leakage remains a problem. Circuit techniques to “power-
gate” regions of a design are promising, but continue to require increases in wiring or in cicuit
complexity. Furthermore, in contrast to dynamic power, there have been fewer good abstractions
for how architects can reason about leakage energy and control it, without dropping to circuit-
level design.

Currently and into the future, the leakage problem is exacerbated by high-performance
chips operating at or near the top of their thermal envelope. Significant effort must be expended
at the architectural level to fight leakage even at the smallest structures to avoid thermal runaway
effects because of the exponential relation of subthreshold leakage to temperature. Scaling the
supply voltage does reduce both the dynamic power and leakage power (e.g., drowsy techniques)
but, as we mentioned above, reduced supply voltages significantly compromise reliability of the
upcoming nanoscale technologies. Thus, drowsy techniques are expected to cause significant
increases in soft errors.

Overall, we see leakage management as one of the key areas of future architecture-level
power research. A particularly pressing need is on general techniques and abstractions for
reasoning about leakage in more circuit-oblivious ways.

6.4 FINAL SUMMARY
The past decade has seen a dramatic evolution in how architects view power dissipation and
related issues. Roughly ten years ago when architecture conferences began publishing power-
oriented papers, they were somewhat at the fringe of the community, with most attention still
be focused on performance-enhancing/power-oblivious techniques. This was followed by years
in which the “power problem” saw intense research interest and a flurry of interesting and
varied results on how to build power-efficiency into a range of microprocessor architectures and
structures.

We now appear to be at a new inflection point in the timeline of architectural power
research. In particular, power now plays some role in almost every paper or technique proposed,

kaxiras3 MOCL005.cls June 27, 2008 9:33

CONCLUSIONS 185

rather than being a fringe issue in isolated papers. On the other hand, it is rare for power to
be the sole focus, and we feel this is rightly so. Rather, power is viewed holistically as part of
a family of design goals, along with performance, reliability, design verifiability, and others.
Architects of the future will need to maintain this balanced and holistic view across the entire
design space. Without this holistic approach, architects are wasting the leverage offered to us
by being high-level guides for design trends, and by being the “translators” at the hardware
software interface.

kaxiras3 MOCL005.cls June 27, 2008 9:33

186

kaxiras3 MOCL005.cls June 27, 2008 9:33

187

Glossary

This glossary provides short descriptions for acronyms appearing in this book.

� ALU: Arithmetic/Logic Unit.
� CAM: Content Addressable Memory, a fully-associative memory organization.
� CMP: Chip MultiProcessor, a multiprocessor comprising several interconnected cen-

tral processing units (CPUs)—and possibly their caches—on the same chip.
� DVS: Dynamic Voltage Scaling.
� DVFS: Dynamic Voltage/Frequency Scaling.
� EDP: A power-efficiency metric taking into account the impact on both energy and

performance.
� ED2P: A power-efficiency metric taking into account the impact on both energy and

performance but with an emphasis on performance.
� FIFO: First-In First-Out: a common organization for hardware queues.
� FU: Functional Unit.
� GALS: Globally Asynchronous – Locally Synchronous, refers to a design style where

a processor or other complex device is composed of multiple units operating asyn-
chronously using different clocks. Each unit is clocked with its own clock and it is
(internally) synchronous.

� IPC: Instructions Per Cycle, a measure of performance.
� IQ: Instruction Queue, a queue of instructions waiting to be issued to execution units.
� IW: Instruction Window, the main hardware structures handling in-flight instructions

in an out-of-order, super-scalar, CPU.
� L1, L2: Level-1 and Level-2 caches. If not explicitly indicated, a data cache (instead

of an instruction cache) is assumed for the Level-1 and a unified cache (caching both
data and instructions) is assumed for the Level-2.

� LRU: Least Recently Used: a common replacement algorithm for set-associative caches.
� LSQ: Load/Store Queue, a queue of load/store instructions awaiting address resolution

or completion from the memory system.

kaxiras3 MOCL005.cls June 27, 2008 9:33

188 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

� MCD: Multiple-Clock Domains, refers to a design style where more than one clock is
available on a chip.

� MediaBench: An embedded benchmark suite by the MediaBench Consortium.
� MiBench: A commercially representative embedded benchmark suite from the

University of Michigan.
� MRU: Most Recently Used: the last accessed item in an associative structure (or cache

set).
� Multi-core: a more recent name for a CMP.
� OLDEN: A pointer-intensive benchmark suite.
� Perfect (Club): A supercomputer benchmark suite.
� SPEC95, SPEC2000, SPEC2K, SPEC-int, SPEC-fp: Benchmark suites developed

by the Standard Performance Evaluation Corporation.
� SPLASH, SPLASH-2: Parallel benchmark suites compiled at Stanford University.
� SMT: Simultaneous MultiThreading, executing several threads concurrently in an

out-of-order, super-scalar CPU by replicating the architectural state for each thread.
� SRAM: Static Random Access Memory.
� TLB: Translation Look-aside Buffer, a fully-associative structure holding recent

virtual-to-physical address translations.
� uop(s), µop(s): Micro-operation(s), Intel’s term for the internal instruction format in

Pentium Pro and newer processors. In these processors the well known x86 or IA-32
Instruction Set Architecture (ISA) is translated internally to uops.

kaxiras3 MOCL005.cls June 27, 2008 9:33

189

Bibliography

[1] J. Abella, A. González, X. Vera, and M. F. P. O’Boyle, “IATAC: a smart predictor to
turn-off L2 cache lines,” ACM Trans. Architecture Code Optim., Vol. 2, No. 1, 2005.

[2] Advanced Micro Devices Corp. 2002. AMD-K6 Processor Mobile Tech Docs.
http://www.amd.com.

[3] A. Agarwal and S. D. Pudar, “Column-associative caches: a technique for reducing the
miss rate of direct mapped caches,” in Proc. 20th Int. Symp. on Computer Architecture
(ISCA-20), pp. 179–190, IEEE, 1993.

[4] A. Agarwal, J. Hennesy, and M. Horowitz, “Cache performance of operating systems
and multiprogramming," in ACM Transactions on Computer Systems, pp. 393–431, Nov.
1988. doi:10.1145/48012.48037

[5] H. Akkary, R. Rajwar, and S. T. Srinivasan, “Checkpoint processing and recovery:
Towards scalable large instruction window processors,” in Proc. 36th Annual IEEE/ACM
Int. Symp. on Microarchitecture (MICRO-36), 2003.

[6] A. Alameldeen and D. Wood, “Adaptive cache compression for high-performance
processors,” in Proc. 31st Int. Symp. on Computer Architecture (ISCA-31), 2004.

[7] D. H. Albonesi, “Dynamic IPC/clock rate optimization,” in Proc. 25th Int. Symp. on
Computer Architecture (ISCA-25), 1998.

[8] D. H. Albonesi, “Selective cache ways: On-demand cache resource allocation,” in Proc.
32nd Annual IEEE/ACM Int. Symp. on Microarchitecture (MICRO-32), pp. 248–259,
Nov. 1999.

[9] D. H. Albonesi, R. Balasubramonian, S. Dropsho, S. Dwarkadas, E. G. Friedman, M.
C. Huang, V. Kursun, G. Magklis, M. L. Scott, G. Semeraro, P. Bose, A. Buyukto-
sunoglu, P. W. Cook, and S. Schuster, “Dynamically tuning processor resources with
adaptive processing,” IEEE Computer, Vol. 36, No. 12, pp. 49–58, 2003.

[10] M. Alidina, G. Burns, C. Holmqvist, E. Morgan, D. Rhodes, S. Simanapalli, and
M. Thierbach, “DSP16000: A high performance, low-power dual-MAC DSP core
for communications applications,” in Proceedings of the IEEE Custom Integrated Circuits
Conference, 1998.

[11] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papefthymiou,
“Precomputation-based sequential logic optimization for low power,” IEEE/ACM In-
ternational Conference on Computer-Aided Design, Nov 1994.

http://dx.doi.org/10.1145/48012.48037

kaxiras3 MOCL005.cls June 27, 2008 9:33

190 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

[12] B. Allu and W. Zhang, “Static next sub-bank prediction for drowsy instruction cache,”
in Proceedings of the 2004 International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, pp. 124–131, 2004. doi:10.1145/1023833.1023852

[13] H. Ananthan, C. H. Kim, and K. Roy, “Larger-than-Vdd forward body bias in sub-0.5
V nanoscale CMOS,” in Proc. Int. Symp. on Low Power Electronics and Design (ISLPED),
2004.

[14] M. Anis, S. Areibi, M. Mahmoud, and M. Elmasry, “Dynamic and leakage power
reduction in MTCMOS circuits using an automated efficient gate clustering,” in Proc.
Design Automation Conf. (DAC), 2002.

[15] M. Annavaram, E. Grochowski, and J. P. Shen, “Mitigating Amdahl’s law through EPI
throttling", in Proc. 32nd Int. Symp. on Computer Architecture (ISCA-32), pp. 298–309,
2005. doi:10.1109/ISCA.2005.36

[16] J. L. Aragón, J. González and A. González, “Power-aware control speculation through
selective throttling,” in Proc. 9th Int. Symp. on High-Performance Computer Architecture
(HPCA-9), Feb. 2003.

[17] N. Azizi, A. Moshovos, and F. N. Najm, “Low-leakage asymmetric-cell SRAM,” in
Proc. Int. Symp. on Low Power Electronics and Design (ISLPED), 2002.

[18] N. Azizi, F. N. Najm, and A. Moshovos, “Low-leakage asymmetric-cell SRAM” IEEE
Trans. Very Large Scale Integration (VLSI) Systems, Vol. 11, No. 4, Aug. 2003.

[19] R. I. Bahar and S. Manne, “Power and energy reduction via pipeline balancing,” in Proc.
28th Int. Symp. on Computer Architecture (ISCA-28), 2001.

[20] R. I. Bahar, G. Albera, and S. Manne, “Power and performance tradeoffs using
various caching strategies,” in Proc. Int. Symp. on Low-Power Electronics and Design,
1998.

[21] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas, “Memory
hierarchy reconfiguration for energy and performance ingeneral-purpose processor ar-
chitectures,” in Proc. of the 33rd Annual IEEE/ACM Int. Symp. on Microarchitecture
(MICRO-33), 2000.

[22] K. Basu, A. Choudhary, J. Pisharath, and M. Kandemir, “Power protocol: reducing
power dissipation on off-chip data buses,” in Proc. 35th Annual IEEE/ACM Int. Symp.
on Microarchitecture (MICRO-35), 2002.

[23] B. Batson and T. N. Vijaykumar, “Reactive-associative caches,” in Proceedings of the
International Symposium on Parallel Architectures and Compiler Techniques (PACT),
pp. 49–60, Aug. 2001. doi:10.1109/PACT.2001.953287

[24] N. Bellas, I. Hajj, C. Polychronopoulos, and G. Stamoulis, “Energy and performance
improvements in microprocessor design using a loop cache,” in International Conference
on Computer Design (ICCD), 1999.

http://dx.doi.org/10.1145/1023833.1023852
http://dx.doi.org/10.1109/ISCA.2005.36
http://dx.doi.org/10.1109/PACT.2001.953287

kaxiras3 MOCL005.cls June 27, 2008 9:33

BIBLIOGRAPHY 191

[25] N. Bellas, I. Hajj, and C. Polychronopoulos, “Using dynamic cache management tech-
niques to reduce energy in a high-performance processor," in Proc. Int. Symp. on Low
Power Electronics and Design (ISLPED), pp. 64–69, 1999.

[26] L. Benini, A. Macii, E. Macii, M. Poncino, and R. Scarsi, “Synthesis of low-overhead
interfaces for power-efficient communication over wide buses,” in Proc. ACM/IEEE
Design Automation Conference (DAC), pp. 128–133, 1999. ’ doi:10.1145/309847.309898

[27] L. Benini, G. Demicheli, E. Macii, D. Sciuto, and C. Silvano, “Asymptotic zero-
transition activity encoding for address busses in low-power microprocessor-based
systems,” in Proceedings of the Great Lakes Symposium on VLSI, pp. 77–82, 1997.
doi:10.1109/GLSV.1997.580414

[28] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano, “Address bus encoding
techniques for system-level power optimization,” in Proc. Design, Automation and Test
in Europe (DATE), pp. 861–866, Feb. 1998. doi:10.1109/DATE.1998.655959

[29] J. Birnbaum and S. Williams, “Physics and the information revolution,” Physics Today,
Vol. 54, No. 1, pp. 38–42, Jan. 2000. doi:10.1063/1.882936

[30] B. Bloom, “Space/time tradeoffs in hash coding with allowable errors,” Commun. ACM,
Vol. 13, No. 7, 1970. doi:10.1145/362686.362692

[31] M. T. Bohr, R. S. Chau, T. Ghani, and K. Mistry, “The high-k solution,” IEEE
Spectrum, Oct. 2007.

[32] S. Borkar, “Design challenges of technology scaling,” IEEE Micro. Jul–Aug 1999. Vol.
19, No. 4, pp. 23–29, 1999. doi:10.1109/40.782564

[33] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, and A. Keshavarzi, and V. De, “Parameter
variations and impact on circuits and microarchitecture,” in Proc. Design Automation
Conference (DAC), June 2–6, 2003.

[34] E. Brekelbaum, J. II Rupley, C. Wilkerson, and B. Black, “Hierarchical scheduling
windows,” in Proc. 35th Annual IEEE/ACM Int. Symp. on Microarchitecture (MICRO-
35), 2002.

[35] D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyuktosunoglu,
J.-D. Wellman, V. Zyuban, M. Gupta, and P. W. Cook, “POWER-AWARE MI-
CROARCHITECTURE: design and modeling challenges for next-generation micro-
processors,” IEEE Micro, Nov./Dec. 2000.

[36] D. M. Brooks, P. Bose, V. Srinivasan, M. Gschwind, P. Emma, and M. Rosenfield,
“New methodology for early-stage, microarchitecture-level power-performance analysis
of microprocessors,” IBM J. Res. Dev., Nov./Dec. 2003.

[37] D. Brooks and M. Martonosi, “Dynamically exploiting narrow width operands to
improve processor power and performance,” in Proc. 5th Int. Symp. on High-Performance
Computer Architecture (HPCA-5), Jan. 1999.

http://dx.doi.org/10.1145/309847.309898
http://dx.doi.org/10.1109/GLSV.1997.580414
http://dx.doi.org/10.1109/DATE.1998.655959
http://dx.doi.org/10.1063/1.882936
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1109/40.782564

kaxiras3 MOCL005.cls June 27, 2008 9:33

192 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

[38] D. M. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for architectural-
level power analysis and optimizations,” in Proc. 27th Int. Symp. Computer Architecture
(ISCA-27), 2000.

[39] T. D. Burd and R. W. Brodersen, “Energy efficient CMOS microprocessor design”
HICSS, 1995.

[40] D. Burger, and T. M. Austin, “The SimpleScalar tool set, version 2.0,” SIGARCH
Comput. Arch. News, Vol. 25, Jun. 1997.

[41] J. A. Butts and G. S. Sohi, “A static power model for architects,” in Proc. 33rd Annual
IEEE/ACM Int. Symp. on Microarchitecture (MICRO-33), Dec. 2000.

[42] A. Buyuktosunoglu, D. Albonesi, S. Schuster, D. Brooks, P. Bose, and P. Cook, “A cir-
cuit level implementation of an adaptive issue queue for power-aware microprocessors,”
in Proc. Great Lakes Symp. on VLSI Design, 2001.

[43] B. Calder, D. Grunwald, and J. Emer, “Predictive sequential associative cache,"
in Proc. 2nd Int. Symp. on High-Performance Computer Architecture (HPCA-2),
pp. 244–254, 1996. doi:10.1109/HPCA.1996.501190

[44] R. Canal, A. González, and J. E. Smith, “Very low power pipelines using significance
compression" in Proceedings of the 33rd International Symp. on Microarchitecture, pp.
181–190, Monterrey, CA, Dec 2000.

[45] R. Canal and A. González, “A low-complexity issue logic,” in Proc. 2000 Int. Conf. on
Supercomputing, pp. 327–335, May 2000. doi:10.1145/335231.335263

[46] —“Reducing the complexity of the issue logic, in Proc. 2001 Int Conf. on Supercomputing,
June 2001.

[47] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-Power CMOS Digital
Design", J. Solid-State Circuits, Vol. 27, No. 4 April 1992, pp. 473–484.

[48] J. H. Chang, H. Chao, and K. So, “Cache design of a sub-micron CMOS System/370,”
in 14th Annual International Symposium on Computer Architecture, SIGARCH Newsletter,
208–213, IEEE, June 1987.

[49] B. Chatterjee, B. Chatterjee, M. Sachdev, S. Hsu, R. Krishnamurthy, and S. Borkar,
“Effectiveness and scalling trends of leakage control techniques for Sub-130 nm CMOS
technologies,” in Proc. Int. Symp. on Low Power Electronics and Design (ISLPED), 2003.

[50] R. S. Chau, “Intel’s breakthrough in high-k gate dielectric drives Moore’s law well into
the future,” http://www.intel.com/technology/magazine/silicon/it01041.pdf.

[51] D. Chen, E. Peserico, and L. Rudolph, “A dynamically partitionable compressed cache,”
Singapore-MIT Alliance Symposium, 2003.

[52] X. Cheng and M. S. Hsiao, “Region-level approximate computation reuse for power
reduction in multimedia applications," in Proc. Int. Symp. on Low Power Electronics and
Design (ISLPED), pp. 119–122, 2005.

[53] J. H. Chern, J. Jurang, L. Arledge, P. Li, and P. Yang, “Multilevel metal capacitance

http://dx.doi.org/10.1109/HPCA.1996.501190
http://dx.doi.org/10.1145/335231.335263

kaxiras3 MOCL005.cls June 27, 2008 9:33

BIBLIOGRAPHY 193

models for CAD design synthesis systems,” IEEE Electron Dev. Lett., Vol. 13, pp. 32–
34, Jan. 1992. doi:10.1109/55.144942

[54] R. C. Chu, R. E. Simons, and G. M. Chrysler, “Experimental investigation of an
enhanced thermosyphon heat loop for cooling of a high performance electronics mod-
ule,” Proc. 15th Semiconductor Thermal Measurement and Management Symposium (IEEE
SEMI-THERM), March 1999, pp. 1–9.

[55] D. Citron and L. Rudolph, “Creating a wider bus using caching techniques,” in
Proc. of IEEE Symp on High Performance Computer Architecture, pp. 90–99, Jan. 1995.
doi:10.1109/HPCA.1995.386552

[56] D. Citron, D. Feitelson, and L. Rudolph, “Accelerating multi-media processing by
implementing memoing in multiplication and division units,” in Proc. 8th Int. Conf.
on Architectural Support for Programming Languages and Operating Systems (ASPLOS-8),
1998.

[57] J. Clabes, J. Friedrich, M. Sweet, J. DiLullo, S. Chu, D. Plass, J. Dawson, P. Muench,
L. Powell, M. Floyd, B. Sinharoy, M. Lee, M. Goulet, J. Wagoner, N. Schwartz, S.
Runyon, G. Gorman, P. Restle, R. Kalla, J. McGill, and S. Dodson, “Design and im-
plementation of the POWER5 Microprocessor,” in Proc. Design Automation Conference
(DAC), 2004.

[58] L. T. Clark, E. J. Hoffman, J. Miller, M. Biyani, L. Liao, S. Strazdus, M. Morrow, K.
E. Velarde, and M. A. Yarch, “An embedded 32-b microprocessor core for low-power
and high-performance applications,” IEEE J. Solid-State Circuits, Vol. 36, No. 11, Nov.
2001. doi:10.1109/4.962279

[59] Computing in the 21st Century: Nanocircuitry, Defect Tolerance and Quantum Logic [and
Discussion], R. S. Williams, B. Christianson, Th. Beth. Philosophical Transactions: Math-
ematical, Physical and Engineering Sciences, Vol. 356, No. 1743, Quantum Computation:
Theory and Experiment (Aug. 15, 1998), pp. 1783–1791. doi:10.1098/rsta.1998.0249

[60] D. A. Connors and W. M. Hwu, “Compiler-directed dynamic computation reuse: ratio-
nale and initial results,” in Proc. 32nd Annual IEEE/ACM Int. Symp. on Microarchitecture
(MICRO-32), 1999.

[61] —“Hardware support for dynamic activation of compiler-directed computation reuse,"
in Proc. 9th Int. Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-9), 2000.

[62] G. Contreras, and M. Martonosi, “Power prediction for intel XScale R© processors using
performance monitoring unit events,” in Proc. Proc. Int. Symp. on Low Power Electronics
and Design (ISLPED), 2005.

[63] V. Degalahal, L. Li, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “Soft error issues
in low-power caches,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Vol. 13, No. 10, pp. 1157–1166, Oct. 2005. doi:10.1109/TVLSI.2005.859474

http://dx.doi.org/10.1109/55.144942
http://dx.doi.org/10.1109/HPCA.1995.386552
http://dx.doi.org/10.1109/4.962279
http://dx.doi.org/10.1098/rsta.1998.0249
http://dx.doi.org/10.1109/TVLSI.2005.859474

kaxiras3 MOCL005.cls June 27, 2008 9:33

194 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

[64] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor, “Longest prefix matching using
Bloom filters,” in SIGCOMM, 2003.

[65] A. Dhodapkar, C. H. Lim, G. Cai, W. R. Daasch, “TEM2P2EST: a thermal enabled
multi-model power/performance ESTimator,” Proc. First Int. Workshop on Power-Aware
Computer Systems-Revised Papers, pp. 112–125, Nov. 12, 2000.

[66] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scale, “AltiVec extension to
PowerPC accelerates media processing” IEEE Micro, Mar/Apr 2000.

[67] J. Donald and M. Martonosi, “Techniques for multicore thermal management: classifi-
cation and new exploration,” in Proc. 33rd Int. Symp. on Computer Architecture (ISCA-33),
pp. 78–88, 2006. doi:10.1109/ISCA.2006.39

[68] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas,
G. Semeraro, G. Magklis, M. L. Scottt, “Integrating adaptive on-chip storage structures
for reduced dynamic power,” in Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, 2002.

[69] S. Dropsho, V. Kursun, D. H. Albonesi, S. Dwarkadas, and E. G. Friedman, “Man-
aging static leakage energy in microprocessor functional units,” in Proc. 35th Annual
IEEE/ACM Int. Symp. on Microarchitecture (MICRO-35), Dec. 2002.

[70] D. Duarte, N. Vijaykrishnan, M. J. Irwin, H.-S. Kim, and G. McFarland, “Impact
of scaling on the effectiveness of dynamic power reduction schemes,” in Proceedings
of the 20th International Conference on Computer Design (ICCD), Freiburg, Germany,
pp. 16–18, Sept. 2002.

[71] D. Dunn, “The best and worst cities for data centers,” Information Week, Oct. 23, 2006
edition.

[72] O. Ergin, D. Balkan, K. Ghose, D. Ponomarev, “Register packing: exploiting narrow-
width operands for reducing register file pressure,” Proc. 37th Annual IEEE/ACM Int.
Symp. on Microarchitecture (MICRO-37), 2004.

[73] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, Toan Pham Ziesler, C. Blaauw, D.
Austin, T. Flautner, K. Mudge, T, “Razor: a low-power pipeline based on circuit-level
timing speculation,” in Proc. 36th Annual IEEE/ACM Int. Symp. on Microarchitecture
(MICRO-36), Dec. 2003.

[74] X. Fan, W. Weber, and L. A. Barroso, “Power provisioning for a warehouse-sized
computer,” in Proc. 34th Int. Symp. on Computer Architecture (ISCA-34), 2007.

[75] M. Farrens and A. Park, “Dynamic base register caching: A technique for reduc-
ing address bus width,” in Proc. 18th Int. Symp. on Computer Architetcure (ISCA-18),
1991.

[76] B. Fields, R. Bodik, M. D. Hill, “Slack: maximizing performance under technological
constraints” Proc of the 29th Annual International Symp on Computer Architecture, 2002.

http://dx.doi.org/10.1109/ISCA.2006.39

kaxiras3 MOCL005.cls June 27, 2008 9:33

BIBLIOGRAPHY 195

[77] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy caches: simple
techniques for reducing leakage power,” in Proc. of the 29th Int. Symp. on Computer
Architecture (ISCA-29), pp. 148–157, 2002. doi:10.1109/ISCA.2002.1003572

[78] K. Flautner, S. Reinhardt, and T. Mudge, “Automatic performance setting for dynamic
voltage scaling,” Wireless Networks Vol. 8, 2002. doi:10.1023/A:1016546330128

[79] M. J. Flynn, “Deep-Submicron Microprocessor Design Issues,” IEEE Micro,
Vol. 19, No. 4, July/Aug. 1999, pp. 11–22. doi:10.1109/40.782563

[80] D. Folegnani and A, González, “Energy-effective issue logic,” in Proc. 28th Int. Symp.
on Computer Architecture, July 2001.

[81] F. Gabbay and A. Mendelson, “Can program profiling support value prediction?,” in
30th International Symposium on Microarchitecture, 1997.

[82] M. Galluzzi, V. Puente, A. Cristal, R. Beivide, J.-A. Gregorio, M. Valero, “A
first glance at Kilo-instruction based multiprocessors,” Conf, Computing Frontiers,
pp. 212–221, 2004.

[83] K. Ghose and M. B. Kamble, “Reducing power in superscalar processor caches using
subbanking, multiple line buffers, and bit-line segmentation,” Int. Symp. on Low Power
Electronics and Design, 1999.

[84] S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed, Z.
Sperber, and R. Valentine, “The Intel Pentium M Processor: Microarchitecture and
Performance,” Intel Tech. J., May 2003, pp. 21–36.

[85] R. Gonzalez and M. Horowitz, “Energy dissipation in general purpose micropro-
cessors,” IEEE J. Solid-State Circuits, Vol. 31, No. 9, Sept. 1996, pp. 1277–1284.
doi:10.1109/4.535411

[86] A. González, J. Tubella, and C. Molina, “Trace-level reuse,” in Proceedings of the Inter-
national Conference on Parallel Processing (ICPP), 1999.

[87] M. K. Gowan, L. L. Biro, and D. B. Jackson, “Power considerations in the design of the
alpha 21264 microprocessor,” Proc. 35th Design Automation Conference (DAC), 1998.

[88] D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun, “Confidence estimation for
speculation control,” in Proc. 25th Intl. Symp. on Computer Architecture, (ISCA-25), pp.
122–131, 1998.

[89] D. Grunwald, P. Levis, K. I. Farkas, C. B. Morrey, III, and M. Neufeld, “Policies for
dynamic clock scheduling,” in Proc. Fourth USENIX Symp on Operating Systems Design
and Implementation (OSDI 2000).

[90] E. Hallnor and S. Reinhardt, “A unified compressed memory hierarchy,” in Proc. 11th
Int. Symp. on High Performance Computer Architecture (HPCA-11), 2005.

[91] H. F. Hamann, A. Weger, J. Lacey, Z. Hu, P. Bose, E. Cohen, J. Wakil,
“Hotspot-limited microprocessors: direct temperature and power distribution

http://dx.doi.org/10.1109/ISCA.2002.1003572
http://dx.doi.org/10.1023/A:1016546330128
http://dx.doi.org/10.1109/40.782563
http://dx.doi.org/10.1109/4.535411

kaxiras3 MOCL005.cls June 27, 2008 9:33

196 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

measurements,” IEEE J. Solid-State Circuits, Vol. 42 No. 1 Jan. 2007, pp. 56–65.
doi:10.1109/JSSC.2006.885064

[92] A. Hamilton, “Brains that click,” Popular Mechanics, March 1949.
[93] H. Hanson, M. S. Hrishikesh, V. Agarwal, S. W. Keckler, and D. Burger,

“Static energy reduction techniques for microprocessor caches,” IEEE Trans. and
Very Large Scale Integration (VLSI) Systems, Vol. 11, No. 3, pp. 303–313, June
2003. doi:10.1109/TVLSI.2003.812370

[94] H. Hanson, S. W. Keckler, and D. Burger, “Static energy reduction techniques in mi-
croprocessor caches,” Tech Report TR2001-18, Computer Architecture and Technology
Laboratory, Department of Computer Sciences, The University of Texas at Austin,
2001.

[95] A. Hasegawa, I. Kawasaki, K. Yamada, S. Yoshioka, S. Kawasaki, P. Biswas,
“SH3: high code density, low power,” IEEE Micro, Vol. 15, No. 6, Dec. 1995.
doi:10.1109/40.476254

[96] J. L. Hennessy, and D. A. Patterson, “Computer Architecture: A Quantitative Approach.”
4th edition. Morgan Kaufmann, 2006.

[97] S. Heo, K. Barr, and K. Asanović. “Reducing power density through activity migration,”
in Proc. Int. Symp. on Low Power Electronics and Design (ISLPED), Aug. 2003.

[98] S. Heo, K. Barr, M. Hampton, and K. Asanović, “Dynamic fine-grain leakage reduction
using leakage-biased bitlines,” in Proceedings of the 29th Annual International Symposium
on Computer Architecture, May 2002.

[99] M. Hill, “A case for direct-mapped cache,” IEEE Computer, Vol. 21, No. 12, pp. 25–40,
Dec. 1988.

[100] S. Hines, J. Green, G. Tyson, and D. Whalley, “Improving program efficiency by
packing instructions into registers,” Proc. 32nd Int. Symp. on Computer Architecture
(ISCA-32), pp. 260–271, 2005. doi:10.1109/ISCA.2005.32

[101] M. Horowitz, T, Indermaur, and R. Gonzalez, “Low-power digital design," Proc.
IEEE Symp. on Low Power Electronics, San Diego CA, October 1994, pp. 8–11.
doi:10.1109/LPE.1994.573184

[102] HotSpot. http://lava.cs.virginia.edu/HotSpot/.
[103] C. Hsu, and U. Kremer, “The design, implementation, and evaluation of a compiler

algorithm for CPU energy reduction”, in Proc. of the ACM SIGPLAN 2003 Conf. on
Programming Language Design and Implementation (San Diego, CA, USA, June 09–11,
2003), PLDI ’03, pp. 38–48. doi:10.1145/781131.781137

[104] J. S. Hu, A. Nadgir, N. Vijaykrishnan, M. J. Irwin, M. Kandemir, “Exploiting program
hotspots and code sequentiality for instruction cache leakage management,” in Proc. Int.
Symp. on Low Power Electronics and Design (ISPLED), 2003.

http://dx.doi.org/10.1109/JSSC.2006.885064
http://dx.doi.org/10.1109/TVLSI.2003.812370
http://dx.doi.org/10.1109/40.476254
http://dx.doi.org/10.1109/ISCA.2005.32
http://dx.doi.org/10.1109/LPE.1994.573184
http://dx.doi.org/10.1145/781131.781137

kaxiras3 MOCL005.cls June 27, 2008 9:33

BIBLIOGRAPHY 197

[105] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose,
“Microarchitectural techniques for power gating of execution units,” in Proc. Int. Symp.
on Low Power Electronics and Design (ISLPED), 2004.

[106] Z. Hu, P. Juang, P. Diodato, S. Kaxiras, K. Skadron, M. Martonosi, D. W. Clark
“Managing leakage for transient data: decay and quasi-static memory cells,” in Proc. Int.
Symp. on Low Power Electronics and Design, 2004.

[107] J. Huang and D. J. Lilja, “Exploiting basic block value locality with block reuse,” in
Proc. 5th Int. Symp. on High-Performance Computer Architecture (HPCA-5), 1999.

[108] M. C. Huang, J. Renau, S.-M. Yoo, and J. Torrellas, “L1 data cache decomposition for
energy efficiency,” in Proc. Int. Symp. on Low Power Electronics and Design (ISLPED),
pp. 10–15, 2001.

[109] T. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-associative cache for
high performance and low energy consumption,” in Proc. of the International Symposium
on Low Power Electronics and Design, pp. 273–275, 1999.

[110] Intel Corp. Intel R©64 and IA-32 Architectures Optimization Reference Manual,
http://www.intel.com/ design/processor/manuals/248966.pdf

[111] Intel Corp. Intel R©SA-1110 Processor Developer’s Manual. http://developer.intel.com/
design/strong/.

[112] Intel Corp. Intel R©XscaleTM Core Developer’s Manual. http://developer.intel.com/
design/intelxscale/.

[113] International Technology Roadmap for Semiconductors, 2005 edition, 2006 update.
http://www.itrs.net/

[114] C. Isci and M. Martonosi, “Runtime power monitoring in high-end processors: method-
ology and empirical data,” in Proc. 36th Annual IEEE/ACM Int. Symp. on Microarchi-
tecture (MICRO-36), pp. 93–104, 2003.

[115] C. Isci and M. Martonosi, “Identifying program power phase behavior using power vec-
tors", in Proc of the IEEE International Workshop on Workload Characterization (WWC6),
2003.

[116] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase monitoring and
prediction on real systems with application to dynamic power management,” in
Proc. 39th Annual IEEE/ACM Int. Symp. on Microarchitecture (MICRO-39), Dec.
2006.

[117] A. Iyer and D. Marculescu, “Power and performance evaluation of globally asyn-
chronouslocally synchronous processors,” Proc. 29th Int. Symp. Computer Architecture
(ISCA-29), pp. 158–170, 2002. doi:10.1109/ISCA.2002.1003573

[118] M. G. Johnson Kin and W. H. Mangione-Smith, “The filter cache: an energy-efficient
memory structure,” in Proc. 30th Int. Symp. on Microarchitecture, Nov. 1997.

http://dx.doi.org/10.1109/ISCA.2002.1003573

kaxiras3 MOCL005.cls June 27, 2008 9:33

198 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

[119] R. Joseph and M. Martonosi, “Run-time power estimation in high performance micro-
processors,” in Proc. Int. Symp. on Low Power Electronics and Design (ISLPED), 2001.

[120] N. P. Jouppi, P. Boyle, J. Dion, M. J. Doherty, A. Eustace, R. W. Haddad, R. Mayo, S.
Menon, L. M. Monier, D. Stark, S. Turrini, J. L. Yang, R. Hamburgen, J. S. Fitch, and
R. Kao, “A 300-MHz, 115W, 32b bipolar ECL microprocessor,” IEEE J. Solid-State
Circuits, Nov. 1993, pp. 1152–1166. doi:10.1109/4.245601

[121] N. P. Jouppi, P. Boyle, and J. S. Fitch, “Designing, packaging, and testing a 300-
MHz, 115 W ECL microprocessor,” IEEE Micro. Vol. 14, No. 2 (April 1994)
pp. 50–58. doi:10.1109/40.272837

[122] T. Juan, T. Lang, and J. J. Navarro, “The difference-bit cache," in Proc. 23rd An-
nual International Symp. on Computer Architecture (ISCA-23), pp. 114–120, 1996.
doi:10.1145/232973.232986

[123] M. B. Kamble and K. Ghose, “Analytical energy dissipation models for low power
caches,” in Proc. Int. Symp. on Low-Power Electronics and Design, 1997.

[124] J. Kao and A. Chandrakasan, “Dual-threshold voltage techniques for low-power digital
circuits,” IEEE J. Solid State Circuits Vol. 35, 2000. doi:10.1109/4.848210

[125] A. Karandikar and K. K. Parhi, “Low power SRAM design using hierarchical divided
bit-line approach,” in Proc. Int. Conf. Computer Design (ICCD), Oct. 1998.

[126] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor model,” Proceedings
of the 31st Annual International Symposium on Computer Architecture, p. 338, June 19–23,
2004. doi:10.1109/ISCA.2004.1310786

[127] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting generational behavior
to reduce cache leakage power,” in Proc. 28th Int. Symp. on Computer Architecture (ISCA-
28), 2001.

[128] S. Kaxiras and P. Xekalakis, “4T-decay sensors: a new class of small, fast, robust, and
low-power, temperature/leakage sensors,” in Proc. Int. Symp. on Low Power Electronics
and Design, 2004.

[129] S. Kaxiras, P. Xekalakis, and G. Keramidas, “A simple mechanism to adapt leakage-
control policies to temperature,” in Proc. Int. Symp. on Low Power Electronics and Design,
2005.

[130] G. Keramidas, K. Aisopos, and S. Kaxiras, “Dynamic dictionary-based data compression
for level-1 caches,” Architecture of Computer Systems, 2006.

[131] G. Keramidas, P. Xekalakis, and S. Kaxiras, “Applying decay to reduce dynamic power
in set-associative caches,” in Procecedings of the High-Performance Embedded Architetcure
and Compilation Conference, 2007.

[132] A. Keshavarzi, S. Ma, S. Nagendra, B. Bloechel, K. Mistry, T. Ghani, S. Borkar, and
V. De, “Effectiveness of reverse body bias for leakage control in scaled dual Vt CMOS

http://dx.doi.org/10.1109/4.245601
http://dx.doi.org/10.1109/40.272837
http://dx.doi.org/10.1145/232973.232986
http://dx.doi.org/10.1109/4.848210
http://dx.doi.org/10.1109/ISCA.2004.1310786

kaxiras3 MOCL005.cls June 27, 2008 9:33

BIBLIOGRAPHY 199

ICs,” in Proc. Int. Symp. on Low Power Electronics and Design (ISLPED), pp. 207–212,
2001.

[133] R. E. Kessler, R. Jooss, A. Lebeck, and M. Hill, “Inexpensive implementations of
set-associativity,” in Proceedings of the 16th Annual International Symposium on Computer
Architecture, pp. 131–139, May 1989. doi:10.1109/ISCA.1989.714547

[134] R. E. Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, Vol. 19, No. 2,
pp. 24–36, Mar/Apr 1999. doi:10.1109/40.755465

[135] M. Kharbutli and Y. Solihin, “Counter-based cache replacement algorithms,” in Proc.
2005 International Conference on Computer Design, 2005.

[136] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin,
M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets static power,”
Computer, Vol. 36, pp. 68–75, 2003.

[137] N. S. Kim, K. Flautner, D. Blaauw, T. Mudge, “Circuit and microarchitectural tech-
niques for reducing cache leakage power,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, Feb. 2004

[138] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Drowsy instruction caches–leakage
power reduction using dynamic voltage scaling,” in Proc. 33rd Annual ACM/IEEE
International Symposium on Microarchitecture (MICRO-35), Nov. 2002.

[139] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Single-Vdd and single-
VT super-drowsy techniques for low-leakage high-performance instruction caches,”
in Proc. Int. Symp. on Low Power Electronics and Design (ISLPED), pp. 54–57,
2004.

[140] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache structure for
wire-delay dominated on-chip caches,” in Proc. 10th Int. Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-10), 2002.

[141] D. Kim, T. Austin, and T. Mudge, “Low-energy data cache using sign compression
and cache line bisection,” Workshop on Memory Performance Issues, 2002.

[142] J. Kin, M. Gupta, and W. H. Mangione-Smith, “The filter cache: an energy efficient
memory structure,” in Proc. 30th Annual IEEE/ACM International Symp on Microarchi-
tecture, MICRO-30, 1997.

[143] P. Ko, J. Huang, Z. Liu, and C. Hu, “BSIM3 for analog and digital circuit simulation,”
in Proc. IEEE Symp. on VLSI Technology CAD, pp. 400–429, Jan. 1993.

[144] J. Kolodzey, CRAY-1 Computer Technology, IEEE Trans. Components, Packag.,
Manuf. Technol., Part A, B, C, Jun 1981, Vol. 4, No. 2. pp. 181–186.

[145] G. Kucuk, K. Ghose, D. V. Ponomarev, and P. M. Kogge, “Energy-efficient instruction
dispatch buffer design for superscalar processors,” in Proc. Int. Symp. on Low Power
Electronics and Design (ISLPED), 2001.

http://dx.doi.org/10.1109/ISCA.1989.714547
http://dx.doi.org/10.1109/40.755465

kaxiras3 MOCL005.cls June 27, 2008 9:33

200 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

[146] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan, “Heterogeneous chip
multiprocessors”, IEEE Computer, Vol. 38, No. 11, pp. 32- 38, Nov. 2005.

[147] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen, “Single-ISA
heterogeneous multi-core architectures: The potential for processor power reduction,”
in Proc. 36th Annual IEEE/ACM Int. Symp. on Microarchitecture, (MICRO-36), Dec.
2003.

[148] S. Y. Larin, “Exploiting program redundancy to improve performance.” Ph.D. thesis,
N. Carolina State University, 2000.

[149] A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg, “A large, fast
instruction window for tolerating cache misses,” in Proc. 29th Int. Symp. on Computer
Architecture (ISCA-29), 2002.

[150] L. H. Lee, B. Moyer, and J. Arends, “Instruction fetch energy reduction using loop
caches for embedded applications with small tight loops,” in Proc. Int. Symp. on Low
Power Electronics and Design (ISLPED), 1999.

[151] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens, “Eager Writeback – A Technique
for Improving Bandwidth Utilization”, in Proc. 33rd Annual IEEE/ACM Int. Symp. on
Microarchitecture (MICRO-33), Dec. 2000.

[152] H. Li, S. Bhunia, Y. Chen, T. N. Vijaykumar, and K. Roy, “Deterministic clock
gating for microprocessor power reduction,” in Proc. 9th Int. Symp. on High-Performance
Computer Architecture (HPCA-9), 2003.

[153] J. Li and J. F. Martinez, “Dynamic power-performance adaptation of parallel com-
putation on chip multiprocessors,” in Proccedings of the Twelfth International Symp. on
High-Performance Computer Architecture, 2006, Feb. 2006.

[154] L. Li, I. Kadayif, Y. F. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and A.
Sivasubramaniam, “Leakage Energy Management in Cache Hierarchies,” in Proc.
2002 Inte. Conf. on Parallel Architectures and Compilation Techniques, pp. 131–140,
2002. doi:10.1109/PACT.2002.1106012

[155] Y. Li, D. Parikh, Y. Zhang, K. Sankaranarayanan, M. Stan, and K. Skadron, “State-
preserving vs. non-state-preserving leakage control in caches,” in Proc. Conf. on Design,
Automation and Test in Europe (DATE), pp. 22–27, Feb. 2004.

[156] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via value prediction,” in
Proc. 29th Annual IEEE/ACM Int. Symp. on Microarchitecture (MICRO-29), 1996.

[157] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality and load value
prediction,” Architectural Support for Programming Languages and Operating Systems,
1996.

[158] L. Liu, “Cache designs with partial address matching," in Proc. 27 Internaltional Sym-
posium on Microarchitecture, pp. 128–136, 1994.

http://dx.doi.org/10.1109/PACT.2002.1106012

kaxiras3 MOCL005.cls June 27, 2008 9:33

BIBLIOGRAPHY 201

[159] C.-K. Luk, R. Cohn, R. Muth, R. Muth, H. Patil, A. Kaluser, G. Lowney, S. Wallace,
V.J. Reddi, and K. Hazelwood, “PIN: Building customized program analysis tools with
dynamic instrumentation”, in Proc. of PLDI 05, June 2005.

[160] J. Lyman, “Special Report–Supercomputers demand innovation in packaging and cool-
ing,” Electronics, Sept. 1982, pp. 136–143.

[161] S. Manne, A. Klauser, and D. Grunwald, “Pipeline gating: speculation control for
energy reduction,” in Proc. 25th Int. Symp. on Computer Architecture (ISCA-25), 1998.

[162] J. Markoff and S. Hansell, “Hiding in plain sight,” Google Seeks More Power, New York
Times, Jun. 14, 2006.

[163] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, “Combined dynamic voltage
scaling and adaptive body biasing for lower power microprocessors under dynamic
workloads,” in Int. Conf. Computer Aided Design (ICCAD), 2002.

[164] Y. Meng, T. Sherwood, and R. Kastner, “On the limits of leakage power reduction in
caches,” in Proc. 11th Int. Symp. on High-Performance Computer Architecture (HPCA-11),
pp. 154–165, 2005.

[165] F. J. Mesa-Martinez, J. Nayfach-Battilana, and J. Renau, “Power model validation
through thermal measurements,” in Proc. 34th Int. Symp. on Computer Architecture (ISCA-
34), pp. 302–311, 2007. doi:10.1145/1250662.1250700

[166] P. Michaud and A. Seznec, “Data-flow prescheduling for large instruction windows in
out-of-order processors,” in Proc. 7th Int. Symp. on High-Performance Computer Archi-
tecture (HPCA-7), pp. 27–36, Jan. 2001. doi:10.1109/HPCA.2001.903249

[167] P. Michaud, Y. Sazeides, A. Seznec, T. Constantinous, and D. Fetis, “An analytical
model of temperature in microprocessors,” Research Report RR-5744, INRIA, Nov.
2005.

[168] R. Min, W. B. Jone, Y. Hu, “Location cache: A low-power L2 cache system,” in Proc.
of the International Symposium on Low Power Electronics and Design, 2004.

[169] J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M. Cooper, D. W. Dobberpuhl,
P. M. Donahue, J. Eno, W. Hoeppner, D. Kruckemyer, T. H. Lee, P. C. M. Lin,
L. Madden, D. Murray, M. H. Pearce, S. Santhanam, K. J. Snyder, R. Stehpany, and
S. C. Thierauf, “A 160-MHz, 32-b, 0.5 W CMOS RISC microprocessor,” IEEE J.
Solid-State Circuits, Nov. 1996, Vol. 31, No. 11, pp. 1703–1714.

[170] T. Y. Morad, U. C. Weiser, A. Kolodnyt, M. Valero, E. Ayguade. “Performance,
power efficiency and scalability of asymmetric cluster chip multiprocessors,” Computer
Architecture Letters, Vol. 5, No. 1, pp. 14–17, Jan.–June 2006.

[171] A. Moshovos, B. Falsafi, and A. Choudhary, “JETTY: filtering snoops for reduced
energy consumption in smp servers,” in Proceedings of the 7th International Symposium
on High-Performance Computer Architecture, Jan. 2001.

http://dx.doi.org/10.1145/1250662.1250700
http://dx.doi.org/10.1109/HPCA.2001.903249

kaxiras3 MOCL005.cls June 27, 2008 9:33

202 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

[172] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing NUCA organi-
zations and wiring alternatives for large caches with CACTI 6.0,” in Proc. 40th Annual
IEEE/ACM Int. Symp. on Microarchitecture (MICRO-40), Chicago, Dec. 2007.

[173] E. Musoll, T. Lang, and J. Cortadella, “Working zone encoding for reducing the energy
in microprocessor address buses,” IEEE Trans. VLSI Systems, 6(4):568–572, 1998.

[174] S. Mutah, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada, “1-
V Power Supply High-Speed Digital Circuit Technology with Multi-Threshold
Voltage CMOS,” IEEE J. Solid-State Circuits, Vol. 30, No. 8, pp. pp. 847–853,
1995. doi:10.1109/4.400426

[175] Hiding in Plain Sight, Google Seeks More Power, J. Markoff and S. Hansell, New York
Times, June 14, 2006.

[176] R. M. Owens, H. Mehta, and M. J. Irwin, “Some issues in gray code addressing,” in
Proc. Great Lakes Symp. VLSI, Mar. 1996, pp. 178–180.

[177] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective superscalar proces-
sors,” in Proc. 24th Int. Symp. on Computer Architecture, pp. 206–218, June 1997.

[178] D. Parikh, Y. Zhang, K. Sankaranarayanan, K. Skadron, and M. Stan, “Comparison
of state-preserving vs. non-state-preserving leakage control in caches,” Workshop on
Duplicating, Deconstructing and Debunking (held in conjunction with ISCA-30), pp. 14–
25, 2003.

[179] I. Park, C. L. Ooi, and T. N. Vijaykumar, “Reducing design complexity of the load/store
queue,” in Proc. 36th Annual IEEE/ACM Int. Symp. on Microarchitecture (MICRO-36),
2003.

[180] J-K. Peir, S. Lai, S. LU, J. Stark, and K. Lai, “Bloom filtering cache misses for accurate
data speculation and prefetching,” in Proc. Int. Conference Supercomputing, June 2002.

[181] S. Petit, J. Sahuquillo, J. M. Such, and D. Kaeli, “Exploiting temporal locality in drowsy
cache policies,” in Conf. on Computing Frontiers (CF’05), Ischia, Italy, pp. 371–377,
2005. doi:10.1145/1062261.1062321

[182] D. Ponomarev, G. Kucuk, and K. Ghose, “Reducing power requirements of instruction
scheduling through dynamic allocation of multiple datapath resources,” in Proc. of the
International Symp. on Microarchitecture, Dec. 2001.

[183] M. Powell, A. Agrawal, T. Vijaykumar, B. Falsafi, and K. Roy, “Reducing set-associative
cache energy via way-prediction and selective direct-mapping," in Proc. 34th Annual
IEEE/ACM Int. Symp. on Microarchitecture (MICRO-34), pp. 54–65, Dec. 2001.

[184] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar, “Gated-Vdd: a
circuit technique to reduce leakage in deep-submicron cache memories,” in International
Symposium on Low Power Electronics and Design (ISPLED’00), Rapallo, Italy, pp. 90–95,
2000. doi:10.1145/344166.344526

http://dx.doi.org/10.1109/4.400426
http://dx.doi.org/10.1145/1062261.1062321
http://dx.doi.org/10.1145/344166.344526

kaxiras3 MOCL005.cls June 27, 2008 9:33

BIBLIOGRAPHY 203

[185] P. Pujara and A. Aggarwal, “Restrictive compression techniques to increase level 1 cache
capacity,” International Conference on Computer Design, 2005.

[186] S. E. Raasch, N. L. Binkert, and S. K. Reinhardt, “A scalable instruction queue design
using dependence chains,” in Proc of the 29th Annual International Symp. on Computer
Architecture, 2002.

[187] S. K. Raman, V. Pentkovski, and J. Keshava, “Implementing streaming SIMD exten-
sions on the Pentium III processor,” IEEE Micro, Jul/Aug 2000.

[188] S. Ramprasad, N. R. Shanbhang, and I. N. Hajj, “A coding framework for low-power
address and data busses,” IEEE Trans. VLSI Systems, Vol. 7, No. 2, June, 1991.

[189] P. Ranganathan, S. Adve, and N. P. Jouppi, “Reconfigurable caches and their application
to media processing,” in Proceedings of the 27th International Symposium on Computer
Architecture, 2000.

[190] R. M. Rao, J. L. Burns, A. Devgan, and R. B. Brown, “Efficient techniques for gate
leakage estimation,” in Proc. Int. Symp. on Low Power Electronics and Design (ISLPED),
2003.

[191] G. Reinman and N. P. Jouppi, “CACTI 2.0: an integrated cache timing and power
model,” Compaq Technical Report #2000/7, Feb. 2000, Compaq Western Research Lab.

[192] O. Rochecouste, G. Pokam, and A. Seznec, “A case for a complexity-effective, width-
partitioned microarchitecture,” ACM Trans. Architecture Code Optim. Vol. 3 , No. 3,
Sep. 2006.

[193] E. Rotenberg, J. Smith, and S. Bennett, “Trace cache: A low latency approach to
high bandwidth instruction fetching,” in Proc. 29th Annual IEEE/ACM Int. Symp. on
Microarchitecture (MICRO-29), 1996.

[194] M.-N. Sabry, “High-precision compact-thermal models,” IEEE Trans. Com-
ponents Packag. Technol., Vol. 28, No. 4, pp. 623–629, Dec. 2005.
doi:10.1109/TCAPT.2005.859666

[195] T. Sakurai and A. R. Newton, “Alpha-power law MOSFET model and its applications
to CMOS inverterdelay and other formulas,” IEEE J. Solid-State Circuits, Vol. 25,
No. 2, pp. 584–594, Apr. 1990. doi:10.1109/4.52187

[196] H. Sanchez, B. Kuttanna, T. Olson, M. Alexander, G. Gerosa, R. Philip, and J. Alvarez,
“Thermal management system for high performance PowerPCTMmicroprocessors,”
in Proc. 42nd IEEE Int. Computer Conf. (Feb. 23–26, 1997), COMPCON, IEEE
Computer Society, Washington, DC, p. 325.

[197] H. Saputra, M. Kandemir, N. Vijaykrishnan, M. Irwin, J. Hu, C.-H. Hsu, and U.
Kremer. “Energy-conscious compilation based on voltage scaling”, in Joint Conference
on Languages, Compilers, and Tools for Embedded Systems (LCTES’02) and Software and
Compilers for Embedded Systems (SCOPES’02).

http://dx.doi.org/10.1109/TCAPT.2005.859666
http://dx.doi.org/10.1109/4.52187

kaxiras3 MOCL005.cls June 27, 2008 9:33

204 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

[198] Y. Sazeides, R. Kumar, D. M. Tullsen, and T. Constantinou, “The danger of interval-
based power efficiency metrics: When worst is best,” IEEE Computer Architecture Letters,
Vol. 4, No. 1, 2005. doi:10.1109/L-CA.2005.2

[199] G. Semeraro, D. H. Albonesi, S. G. Dropsho, G. Magklis, S. Dwarkadas, and M. L.
Scott, “Dynamic frequency and voltage control for a multiple clock domain microarchi-
tecture”, Proc. of the 35th Annual ACM/IEEE International Symp. on Microarchitecture,
2002.

[200] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas, and M.
L. Scott, “Energy-efficient processor design using multiple clock domains with dynamic
voltage and frequency scaling,” High-Performance Computer Architecture, 2002.

[201] J. S. Seng, E. S. Tune, and D. M. Tullsen, “Reducing power with dynamic critical path
information,” Micro 34, 2001.

[202] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore, and S. W. Keckler, “Scal-
able hardware memory disambiguation for high ILP processors," in Proc. 36th Annual
IEEE/ACM Int. Symp. on Microarchitecture (MICRO), Dec. 2003.

[203] K. Shevory, “Cultivating server farms,” Oct. 25, 2006. New York Times newspaper.
[204] P. Shivakumar and N. P. Jouppi. “CACTI 3.0: An integrated cache timing, power, and

area model,” WRL Research Report, 2001.
[205] N. Sirisantana, L. Wei, and K. Roy, “High-perfomance low-power CMOS circuits

using multiple channel length and multiple oxide thickness,” in Proc. ICCD, 2000.
[206] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D.

Tarjan. “Temperature-Aware Microarchitecture,” in Proc. 30th Int. Symp. on Computer
Architecture (ISCA-30), pp. 2–13, June 2003.

[207] K. So and R. N. Rechtschaffen, “Cache operations by MRU change,” IEEE Trans. on
Comput., Vol. 37, No. 6, pp. 700–709, June 1988. doi:10.1109/12.2208

[208] A. Sodani and G. S. Sohi, “Dynamic instruction reuse,” in Proc. 24th Int. Symp. on
Computer Architetcure (ISCA-24), 1997.

[209] G. S. Sohi, S. Breach, and T. N. Vijaykumar, “Multiscalar processors,” in Proc. 22nd
Int. Symp. on Computer Architecture (ISCA-22), 1995.

[210] B. Solomon, A. Mendelson, D. Orenstien, Y. Almog, and R. Ronen, “Micro-operation
cache: a power aware frontend for variable instruction length ISA,” in Proc. Int. Symp.
on Low Power Electronics and Design (ISLPED), 2001.

[211] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. N Strenski, and P.
G. Emma, “Optimizing pipelines for power and performance,” in Proc. 35th Annual
IEEE/ACM Int. Symp. on Microarchitecture (MICRO-35), Nov. 2002.

[212] M. R. Stan and W. P. Burleson, “Bus-invert coding for low power I/O,” IEEE Trans.
VLSI Systems, Vol. 3, No. 1, March 1995. doi:10.1109/92.365453

http://dx.doi.org/10.1109/L-CA.2005.2
http://dx.doi.org/10.1109/12.2208
http://dx.doi.org/10.1109/92.365453

kaxiras3 MOCL005.cls June 27, 2008 9:33

BIBLIOGRAPHY 205

[213] C. Su and A. Despain, “Cache designs for energy efficiency,” in Proc. 28th Hawaii Int.
Conf. on Systems Science, 1995.

[214] D. C. Suresh, B. Agrawal, J. Yang, and W. Najjar, “Tunable bus encoder for off-chip
data buses,” in Proc. Int. Symp. on Low Power Electronics and Design (ISLPED), 2001.

[215] D. C. Suresh, B. Agrawal, J. Yang, W. Najjar, and L. Bhuyan, “Power efficient encoding
techniques for off-chip data buses,” International Conference on Compilers, Architecture,
and Synthesis of Embedded Systems (CASES), 2003.

[216] E. Talpes and D. Marculescu, “Toward a multiple clock/voltage island design style
for power-aware processors,” IEEE Trans. VLSI Syst Vol 13, No. 5, pp. 591–603,
2005. doi:10.1109/TVLSI.2005.844305

[217] D. Tarjan, S. Thoziyoor, and N. P. Jouppi, “CACTI 4.0,” Hewlett-Packard Laboratories
Technical Report #HPL-2006-86, June 2006.

[218] V. Tiwari, S. Malik, and P. Ashar, “Guarded evaluation: Pushing power management
to logic-synthesis/design computer-aided design of integrated circuits and systems,”
IEEE Trans, Vol. 17, No. 10, pp. 1051–1060, Oct. 1998.

[219] S. Velusamy, K. Sankaranarayanan, D. Parikh, T. Abdelzaher, and K. Skadron, “Adap-
tive cache decay using formal feedback control,” in Proc. Workshop on Memory Performance
Issues, 2002, in Conjunction with ISCA-29, 2002.

[220] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye, “Energy-driven
integrated hardware-software optimizations using simplepower,” in 27th Annual Inter-
national Symposium on Computer Architecture, June 2000.

[221] L. Villa, M. Zhang, and K. Asanović, “Dynamic zero compression for cache en-
ergy reduction,” in 33rd International Symposium on Microarchitecture, MICRO-33,
2000. cache energy reduction,” in Proc. 33rd Annual IEEE/ACM Int. Symp. on Mi-
croarchitecture (MICRO-33), 2000.

[222] L. Wei, Z. Chen, M. Johnson, and K. Roy, “Design and optimization of low voltage
high performance dual threshold CMOS circuits,” in Proc. 35th Annual Conference on
Design Automation (DAC), 1998.

[223] M. Weiser, B. Welch, A. J. Demers, and S. Shenker, “Scheduling for reduced CPU
energy,” in Operating Systems Design and Implementation, pp. 13–23, 1994.

[224] S. J. E. Wilton and N. P. C. Jouppi, “An enhanced cache access and cycle time model,”
IEEE J. Solid-State Circuits, 1996.

[225] D. A. Wood, M. D. Hill, and R. E. Kessler, “A model for estimating trace-sample miss
ratios,” in Proc. ACM SIGMETRICS Conference on Measurement & Modeling Computer
Systems, pp. 79–89, San Diego, CA, May 1991. doi:10.1145/107971.107981

[226] Q. Wu, V. J. Reddi, Y. Wu, J. Lee, D. Connors, D. Brooks, M. Martonosi, and D.
W. Clark, “A dynamic compilation framework for controlling microprocessor energy

http://dx.doi.org/10.1109/TVLSI.2005.844305
http://dx.doi.org/10.1145/107971.107981

kaxiras3 MOCL005.cls June 27, 2008 9:33

206 COMPUTER ARCHITECTURE TECHNIQUES FOR POWER-EFFICIENCY

and performance”, in Proc. 38th Annual IEEE/ACM Int. Symp. on Microarchitecture
(MICRO-38), pp. 271–282, 2005.

[227] Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors, Y. Wu, J. Lee, and D.
Brooks, “Dynamic compiler driven control for microprocessor energy and performance”,
in IEEE Micro Special Issue: Top Picks from Computer Architecture Conferences, Vol. 26,
No. 1, Feb. 2006.

[228] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark, “Formal online methods for
voltage/frequency control in multiple clock domain microprocessors,” in Proc. 11th
Int. Conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-11), pp. 248–259, 2004. doi:10.1145/1024393.1024423

[229] F. Xie, M. Martonosi, and S. Malik, “Compile-time dynamic voltage scaling settings:
opportunities and limits,” in Proc of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation (San Diego, CA, USA, June 09–11, 2003), PLDI
’03, pp. 49–62.

[230] F. Xie, M. Martonosi, and S. Malik, “Intraprogram dynamic voltage scaling: bounding
opportunities with analytic modeling,” ACM Trans. Archit. Code Optim. Vol 1, No. 3
(Sep. 2004), pp. 323–367.

[231] L. Yan, J. Luo, and N. K. Jha, “Joint dynamic voltage scaling and adaptive body biasing
for heterogeneous distributed real-time embedded systems,” IEEE Trans. Computer-
Aided Des. Integrated Circuits Systems, Vol. 24, No. 7, July 2005.

[232] C. Yang and C. H. Lee, “HotSpot cache: joint temporal and spatial locality exploitation
for I-cache energy reduction," in Proc. Int. Symp. on Low Power Electronics and Design
(ISLPED), pp. 114–119, 2004.

[233] J. Yang and R. Gupta, “FV encoding for low-power data I/O”, in Proc. of ACM/IEEE
International Symp on Low Power Electronics and Design, Huntington Beach, CA, Aug.
2001.

[234] J. Yang and R. Gupta, “Frequent value locality and its applications,” ACM Trans.
Embedded Computing Systems, 2002.

[235] J. Yang and R. Gupta, “Energy efficient frequent value data cache design,” in Proc. 35th
Annual IEEE/ACM Int. Symp. on Microarchitecture (MICRO-35), 2002.

[236] J. Yang and R. Gupta, “Frequent value encoding for low power buses,” ACM Trans.
Embedded Computing Systems, 2004.

[237] J. Yang, Y. Zhang, and R. Gupta, “Frequent value compression in data caches,” in
Proc. 33rd IEEE/ACM International Symposium on Microarchitecture, Monterey, CA,
December 2000.

[238] S.-H. Yang and B. Falsafi, “Near-optimal precharging in high-performance nanoscale
CMOS caches, in Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, 2003.

http://dx.doi.org/10.1145/1024393.1024423

kaxiras3 MOCL005.cls June 27, 2008 9:33

BIBLIOGRAPHY 207

[239] S.-H. Yang, M. D. Powell, B. Falsafi, K. Roy, and T. N. Vijaykumar, “An integrated
circuit/architecture approach to reducing leakage in deep-submicron high-performance
I-caches,” in Proc. Symposium on High Performance Computer Architecture, 2001.

[240] Y. Ye, S. Borkar, and V. De, “A new technique for standby leakage reduction in high
performance circuits,” in IEEE symposium on VLSI circuits, pp. 40–41, 1998.

[241] C. Zhang, F. Vahin, J. Yangm, and W. Najjar, “A way-halting cache for low-energy
high-performance systems,” in Proc. of the International Symposium on Low Power Elec-
tronics and Design(ISLPED), 2004.

[242] C. Zhang, X. Zhang, and Y. Yan, “Two fast and high-associativity cache schemes.”
IEEE Micro, Vol. 17, No. 5, pp. 40-49, 1997. doi:10.1109/40.621212

[243] M. Zhang and K. Asanović, “Fine-grain cam-tag cache resizing using miss tags,” in
Proc. International Symp. on Low Power Electronics and Design, 2002.

[244] M. Zhang and K. Asanović, “Highly-associative caches for low-power processors,” Kool
Chips Workshop, 33rd International Symp. on Microarchitecture, Dec. 2000.

[245] W. Zhang, S. Gurumurthi, M. Kandemir, and A. Sivasubramaniam, “ICR: in-cache
replication for enhancing data cache reliability,” in Proc. Int. Conf. on Dependable Systems
and Networks, 2003.

[246] W. Zhang, J. S. Hu, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. J. Ir-
win, “Compiler-directed instruction cache leakage optimization,” in Proc. 35th Annual
IEEE/ACM Int. Symp. on Microarchitecture (MICRO-35), 2002.

[247] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan, “HotLeakage: an
architectural, temperature-aware model of subthreshold and gate leakage,” Tech. Report
CS-2003-05, CS Dept., University of Virginia, Mar. 2003.

[248] Y. Zhang, J. Yang, and R. Gupta , “Frequent value locality and value-centric data cache
design,” Architectural Support for Programming Languages and Operating Systems, 2000.

[249] Z. Zhu and X. Zhang, “Access-mode predictions for low-power cache design,” IEEE
Micro, Vol. 22, No. 2, pp. 58-71, 2002.

[250] H. Zhou, M. C. Toburen, E. Rotenberg, and T. M. Conte, “Adaptive mode control: a
static-power-efficient cache design,” in Proc. PACT 2001, Sept. 2001.

[251] V. Zyuban, D. Brooks, V. Srinivasan, M. Gschwind, P. Bose, P. N. Strenski, and P. G.
Emma, “Integrated analysis of power and performance of pipelined microprocessors,”
IEEE Trans. Comput., Vol. 53, No. 8, Aug. 2004. doi:10.1109/TC.2004.46

[252] V. Zyuban and P. Kogge, “Optimization of high-performance superscalar architectures
for energy efficiency,” in Proc. Int. Symp. on Low Power Electronics and Design (ISLPED),
2000.

http://dx.doi.org/10.1109/40.621212
http://dx.doi.org/10.1109/TC.2004.46

	MOCL005-Book_Kaxirus.pdf.pdf
	Introduction
	BRIEF HISTORY OF THE ``POWER PROBLEM''
	CMOS POWER CONSUMPTION: A QUICK PRIMER
	Dynamic Power
	Leakage
	Other Forms of CMOS Power Dissipation

	POWER-AWARE COMPUTING TODAY
	THIS BOOK

	Modeling, Simulation,and Measurement
	METRICS
	MODELING BASICS
	Dynamic-power Models
	Leakage Models
	Thermal models

	POWER SIMULATION
	MEASUREMENT
	Performance-Counter-based Power and Thermal Estimates
	Imaging and Other Techniques

	SUMMARY

	Using Voltage and Frequency Adjustments to ManageDynamic Power
	DYNAMIC VOLTAGE AND FREQUENCY SCALING: MOTIVATION AND OVERVIEW
	Design Issues and Overview

	SYSTEM-LEVEL DVFS
	Eliminating Idle Time
	Discovering and Exploiting Deadlines

	PROGRAM-LEVEL DVFS
	Offline Compiler Analysis
	Online Dynamic Compiler analysis
	Coarse-Grained Analysis Based on Power Phases

	PROGRAM-LEVEL DVFS FOR MULTIPLE-CLOCK DOMAINS
	DVFS for MCD Processors
	Dynamic Work-Steering for MCD Processors
	DVFS for Multi-Core Processors

	HARDWARE-LEVEL DVFS

	Optimizing Capacitance and Switching Activity to Reduce Dynamic Power
	A Road Map for EffectiveSwitched Capacitance
	Excess Switching Activity
	Capacitance

	Idle-Unit Switching Activity: Clock gating
	Circuit-Level Basics
	Precomputation and Guarded Evaluation
	Deterministic Clock Gating
	Clock gating examples

	Idle-Width Switching Activity: Core
	Narrow-Width Operands
	Significance Compression
	Further Reading on Narrow Width Operands

	Idle-Width Switching Activity: Caches
	Dynamic Zero Compression: Accessing Only Significant Bits
	Value Compression and the Frequent Value Cache
	Packing Compressed Cache Lines: Compression Cacheand Significance-Compression Cache
	Instruction Compression

	Idle-Capacity Switching Activity
	Power-inefficiency of Out-of-order Processors
	Resource Partitioning

	Idle-Capacity Switching Activity:Instruction Queue
	Physical Resizing
	Readiness Feedback Control
	Occupancy Feedback Control
	Logical Resizing Without Partitioning
	Other Power Optimizations for the Instruction Queue
	Related Work on Instruction Windows

	Idle-Capacity Switching Activity: Core
	Idle-Capacity Switching Activity: Caches
	Trading Memory Between Cache Levels
	Selective Cache Ways
	Accounting Cache
	CAM-Tag Cache Resizing
	Further Reading on Cache Reconfiguration

	Parallel Switching-Activityin Set-Associative Caches
	Phased Cache
	Sequentially Accessed Set-Associative Cache
	Way Prediction
	Advanced Way-Prediction Mechanisms
	Way Selection
	Coherence Protocols

	Cacheable Switching Activity
	Work Reuse
	Filter Cache
	Loop Cache
	Trace Cache

	Speculative Activity
	Value-dependent Switching Activity:Bus encodings
	Address Buses
	Address and Data Buses
	Further Reading on Data Encoding

	Dynamic Work Steering

	Managing Static (Leakage) Power
	A QUICK PRIMER ON LEAKAGE POWER
	Subthreshold Leakage
	Gate Leakage

	ARCHITECTURAL TECHNIQUES USINGTHE STACKING EFFECT
	Dynamically Resized (DRI) Cache
	Cache Decay
	Adaptive Cache Decay and Adaptive Mode Control
	Decay in the L2
	Four-Transistor Memory Cell Decay
	Gated Vdd Approaches for Functional Units

	ARCHITECTURAL TECHNIQUES USINGTHE DROWSY EFFECT
	Drowsy Data Caches
	Drowsy Instruction Caches
	State Preserving versus No-state Preserving
	Temperature
	Reliability
	Compiler Approaches for Decay and Drowsy Mode

	ARCHITECTURAL TECHNIQUES BASED ON VT
	Dynamic Approaches
	Static Approaches
	Dual-VT in Functional Units
	Asymmetric Memory Cells

	Conclusions
	DYNAMIC POWER MANAGEMENT VIA VOLTAGE AND FREQUENCY ADJUSTMENT: STATUS AND FUTURE TRENDS
	DYNAMIC POWER REDUCTIONS BASED ON EFFECTIVE CAPACITANCE AND ACTIVITY FACTOR: STATUS AND FUTURE TRENDS
	LEAKAGE POWER REDUCTIONS: STATUSAND FUTURE TRENDS
	FINAL SUMMARY

