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• players best responding in a repeated game converge to an -approx correlated 
equilibrium 

ϵ
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Discontinuous in predictions 
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learning/sequential 

prediction
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Punchline: Hard to have low ECE, but easy to be “close” 

Cannot minimize ECE at “good” rates
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Why distance to calibration?
Continuous in predictions

We give a predictor that achieves  distance to calibration.2 T + 1
Bonus: it’s deterministic!

Before: existence proof of randomized predictor achieving  distance to calibration 
[Qiao-Zheng ’24]

O( T)

Beats  lower bound for ECET0.54

Maintains trustworthiness properties for Lipschitz utilities [e.g. Collina-Goel-Gupta-Roth ’24]

And… much more tractable!
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(Set )m = TTheorem: Almost One Step Ahead achieves CalDist ≤ 2 T + 1
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How should we measure forecast quality? One answer: calibration.

Expected Calibration Error (ECE) is a classic measure of miscalibration, but has 
disadvantages (discontinuous in predictions, cannot get good rates, etc).

Distance to Calibration (CalDist) resolves some of these shortcomings. 

In particular, unlike ECE, it is incredibly tractable: we give a simple, efficient, and 
deterministic algorithm.
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Thanks!


