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Why ECE?

[Foster-Vohra '96]

Trustworthy tor decision makers: it predictions satisfy ECE < ¢,

® best responding to predictions is an e-approx dominant strategy, no matter what
utility

® players best responding in a repeated game converge to an e-approx correlated
equilibrium
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Why not ECE?

[Dagan-Daskalakis, Fishelson-
Golowich-Kleinberg-Okoroafor '24] [Foster-Vohra '98]

O(T2/3—€) 0(T2/3)
Discontinuous in predictions l l

Cannot minimize ECE at “good” rates

VT

target rate in online

learning/sequential Q(TO'54)

prediction [Qiao-Valiant 21, Dagan-Daskalakis,
Fishelson-Golowich-Kleinberg-

Okoroator '24]

Punchline: Hard to have low ECE, but easy to be “close”
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Why distance to calibration?

Continuous in predictions

Maintains trustworthiness properties for Lipschitz utilities [e.g. Collina-Goel-Gupta-Roth '24]

And... much more tractable!

We give a predictor that achieves Zﬁ + 1 distance to calibration.

Bonus: it's deterministic!

Before: existence proof of randomized predictor achieving O(ﬁ) distance to calibration
[Qiao-Zheng '24]
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Let's go.
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First, a fictitious algorithm: One Step Ahead ﬂ"

Ondayr=1,..,T Discretize predictions:

1. Fix two adjacent points i/m and bias <0 bias 20

(i + 1)/m with negative and positive
bias so tfar (quaranteed to exist!)

3. Predicti/mify'=0,(+ 1)/mify' =1

Q: What is CalDist ot One Step Ahead?
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Lemma: One Step Ahead achieves

CalDist <m + 1 bias <0 bias>0

Proof:
CalDist < ECE

p€|0,1

bias moves in opposite direction every
day — absolute value always < 1

<m++1
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Almost One Step Ahead

Idea: Mimic One Step Ahead without looking into future

Ondayt=1,.T: bias <0 bias>0
1. Predict (arbitrarily) one of two points

i/mand (i + 1)/m that One Step Ahead

would commit to on day ¢

2. Observe outcome y’

3. Keep track of bias of predictions that
One Step Ahead would have made p'

Let’s analyze CalDist of Almost One Step Ahead
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Theorem: Almost One Step Ahead achieves CalDist < 2\/7’ + 1 (Setm=+/T)
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to summarize

How should we measure forecast quality? One answer: calibration.

Expected Calibration Error (ECE) is a classic measure of miscalibration, but has
disadvantages (discontinuous in predictions, cannot get good rates, etc).

Distance to Calibration (CalDist) resolves some of these shortcomings.

In particular, unlike ECE, it is incredibly tractable: we give a simple, efficient, and
deterministic algorithm.
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to summarize

Fictitious lookahead algorithm (One Step Ahead) obtains low distance to calibration

Can't look ahead, but...
Can make a prediction within small distance every day (A/most One Step Ahead)

Not much difference between looking ahead and not looking ahead

Almost One Step Ahead obtains low distance to calibration



An Elementary Predictor Obtaining 24/T + 1 Distance to Calibration

Eshwar Ram Arunachaleswaran, Natalie Collina, Aaron Roth, and Mirah Shi

1 Introduction

Probabilistic predictions of binary outcomes are said to be calibrated, if, informally, they are unbiased
conditional on their own predictions. For predictors that are not perfectly calibrated, there are a variety of
ways to measure calibration error. Perhaps the most popular measure is Expected Calibration Error (ECE),
which measures the average bias of the predictions, weighted by the frequency of the predictions. ECE has
a number of difficulties as a measure of calibration, not least of which is that it is discontinuous in the
predictions. Motivated by this, Blasiok et al. [2023] propose a different measure: distance to calibration,
which measures how far a predictor is in ¢, distance from the nearest perfectly calibrated predictor. In the
online adversarial setting, it has been known since Foster and Vohra [1998] how to make predictions with
ECE growing at a rate of O(T*/%). Qiao and Valiant [2021] show that obtaining O(+/T) rates for ECE is
impossible. Recently, in a COLT 2024 paper, Qiao and Zheng\ 12024] showed that it was possible to make
sequential predictions against an adversary guaranteeing expected distance to calibration growing at a rate
of O(\/T ). Their algorithm is the solution to a minimax problem of size doubly-exponential in 7". They leave
as an open problem finding an explicit, efficient, deterministic algorithm for this problem. In this paper we
resolve this problem, by giving an extremely simple such algorithm with an elementary analysis.

Algorithm 1: Almost-One-Step-Ahead

Input: Sequence of outcomes y''7 € {0,1}T

Output: Sequence of predictions p* € {0, i, ..., 1}T for some discretization parameter m > 0
fort=1to T do

Given look-ahead predictions p'*~!, define the look-ahead bias conditional on a prediction p as:

t—1
aﬁm—l(p) = Z ]lws = p](ﬁs — ys)
s=1
Choose two adjacent points p; = %,p,q.l = % satisfying:

aﬁu-l(pi) S 0 and Qprit—1 @i+l) 2 0

Arbitrarily predict p* = p; or p* = p;.1;
Upon observing the (adversarially chosen) outcome ¢, set look-ahead prediction

p= argming, e, .3 P — v

2 Setting

We study a sequential binary prediction setting: at every round ¢, a forecaster makes a prediction p* € [0, 1],
after which an adversary reveals an outcome y* € {0,1}. Given a sequence of predictions p*7 and outcomes

y T, we measure expected calibration error (ECE) as follows:

T

ECE(p" ",y ) = Y D 1" =pl(' - ")

p€(0,1] [t=1

Following Qiao and Zheng [2024], we define distance to calibration to be the minimum /; distance between
a sequence of predictions produced by a forecaster and any perfectly calibrated sequence of predictions:

CalDist l:T’ 1:T — min LT 1T
"y ) qwec(ylzr,”f’ 't

where C(y*T) = {¢"T : ECE(¢"T,y*T) = 0} is the set of predictions that are perfectly calibrated against
outcomes y''T. First we observe that distance to calibration is upper bounded by ECE.

Lemma 1 (Qiao and Zheng [2024]). Fiz a sequence of predictions pT and outcomes y*'T. Then, CalDist(p*7T,y*T) <

ECE(pl:T’ yI:T).

Proof. For any prediction p € [0, 1], define

T
Llp" = p]
T t
y (p) = T y
; > i1 L[p*t =p]
to be the average outcome conditioned on the prediction p. Consider the sequence g7 where ¢t = 57 (p).
Observe that q'*7 is perfectly calibrated. Thus, we have that

CalDiSt(pl:T’ylzT) S "pl:T _ ql:T”l
T
=Y I -
t=1

>N 1t =pllp -7 )

pE[O,l] t=1
T
= > =7 ®I>_1p" =9
p€e(0,1] t=1
T T
= > pD_ L' =p-¥" ()Y 1" =p|
pef0,1] | t=1 t=1
T
=Y. Do1p =pl-v"
pe[Oa]-] t=1

— ECE(pl:T, yl:T)
O

The upper bound is not tight, however. The best known sequential prediction algorithm obtains ECE
bounded by O(T?%®) [Foster and Vohra, 1998, and it is known that there is no algorithm guaranteeing ECE
below O(T9-54389) [Qiao and Valiant, 2021, Dagan et al., 2024]. Qiao and Zheng [2024] give an algorithm
that is the solution to a game of size doubly-exponential in 7" that obtains expected distance to calibration
O(V/T). Here we give an elementary analysis of a simple efficient deterministic algorithm (Algorithm 1) that
obtains distance to calibration 2v/T + 1. .

Theorem 1. Algorith\r/nﬂ (Almost-One-Step-Ahead) guarantees that against any sequence of outcomes,
CalDist(ptT, y¥T) < 2y/T + 1.

3 Analysis of Algorithm (1]

Before describing the algorithm, we introduce some notation. We will make predictions that belong to a
grid. Let B, = {0,1/m,..., 1} denote a discretization of the prediction space with discretization parameter
m > 0, and let p; = i/m. For a sequence of predictions p',...,p* and outcomes y, ..., y*, we define the bias

conditional on a prediction p as:
t

oz (p) = ) 1[5 = pl(5° ~ °)
s=1
To understand our algorithm, it will be helpful to first state and analyze a hypothetical “lookahead”
algorithm that we call “One-Step-Ahead”, which is closely related to the algorithm and analysis given by

Gupta and Ramdas [2022] in a different model. One-Step-Ahead produces predictions 3', ..., 57 as follows.

At round t, before observing y*, the algorithm fixes two predictions p;, p; 11 satisfying azi:c-1(p;) < 0 and
azre-1(piy1) > 0. Such a pair is guaranteed to exist, because by construction, it must be that for any history,
az1:e-1(0) <0 and ai:e-1(1) > 0. Note that a well known randomized algorithm obtaining diminishing ECE
(and smooth calibration error) uses the same observation to carefully randomize between two such adjacent
predictions |[Foster, 1999, Foster and Hart, 2018|. Upon observing the outcome y*, the algorithm outputs
prediction p* = argmin, (pipiss} P — y'|. Naturally, we cannot implement this algorithm, as it chooses its
prediction only after observing the outcome, but our analysis will rely on a key property this algorithm
maintains—namely, that it always produces a sequence of predictions with ECE upper bounded by m + 1,

the number of elements in the discretized prediction space.
Theorem 2. For any sequence of outcomes, One-Step-Ahead achieves ECE(p*T,yt'T) < m + 1.

Proof. We will show that for any p; € By, we have |a;::7(p;)| < 1, after which the bound on ECE will follow:
ECE(p"T,y"T) = 3, .cp,. lapr(pi)| < m+ 1. We proceed via an inductive argument. Fix a prediction
pi € By, At the first round ¢, in which p; is output by the algorithm, we have that |az.., (p;)| = |[p** —y*| < 1.
Now suppose after round ¢ — 1, we satisfy |az1.c-1(p;)| < 1. If p; is the prediction made at round ¢, it must
be that either: az.c-1(p;) < 0 and p; — y* > 0; or aze-1(p;) > 0 and p; — y* < 0. Thus, since azie-1(p;)
and p; — y' either take value 0 or differ in sign, we can conclude that

laree (pi)| = |ogre—1(pi) + pi — y'| < max{|agre— (pi)], [pi — '} < 1

which proves the theorem. O

Algorithm@ (Almost-One-Step-Ahead) maintains the same state a;1:¢(p) as One-Step-Ahead (which it can
compute at round ¢ after observing the outcome 7;_1). In particular, it does not keep track of the bias of its
own predictions, but rather keeps track of the bias of the predictions that One-Step-Ahead would have made.
Thus it can determine the pair p;, p;+; that One-Step-Ahead would commit to predict at round ¢. It cannot
make the same prediction as One-Step-Ahead (as it must fix its prediction before the label is observed) — so
instead it deterministically predicts p* = p; (or p* = p; ;1 — the choice can be arbitrary and does not affect
the analysis). Since we have that |p; —p; 41| < %, it must be that for whichever choice One-Step-Ahead would
have made, we have |p* — p?| < # In other words, although Almost-One-Step-Ahead does not make the same
predictions as One-Step-Ahead, it makes predictions that are within ¢; distance T'/m after T rounds. The
analysis then follows by the ECE bound of One-Step-Ahead, the triangle inequality, and choosing m = v/T.
Proof of Theorem Observe that internally, Algorithm |1 maintains the sequence p!,...,p* which corre-
sponds exactly to predictions made by One-Step-Ahead. Thus, by Lemma |1 and Theorem |2, we have that
CalDist(p* T, y*T) < ECE(p*T,y*T) < m + 1. Then, we can compute the distance to calibration of the
sequence p*,...,p":

CalDist 1:T, 1Ty min 1.7 _ 1:T
"y S [/ I
: 1:T ~1:T =1:T 1:T
= min - + -
S [P ="+ — a7 |
< 1:T _ =1:T + min ~1:7 _ 1.T
<™ =5 S, 15" =" |1
T
<—+m+1
m
where in the last step we use the fact that [p* — | < 1/m for all ¢ and thus ||p*T — p*T||; < T/m. The
result then follows by setting m = v/T. O
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An Elementary Predictor Obtaining 24/T + 1 Distance to Calibration
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1 Introduction

Probabilistic predictions of binary outcomes are said to be calibrated, if, informally, they are unbiased
conditional on their own predictions. For predictors that are not perfectly calibrated, there are a variety of
ways to measure calibration error. Perhaps the most popular measure is Expected Calibration Error (ECE),
which measures the average bias of the predictions, weighted by the frequency of the predictions. ECE has
a number of difficulties as a measure of calibration, not least of which is that it is discontinuous in the
predictions. Motivated by this, Blasiok et al. [2023| propose a different measure: distance to calibration,
which measures how far a predictor is in ¢, distance from the nearest perfectly calibrated predictor. In the
online adversarial setting, it has been known since Foster and Vohra [1998] how to make predictions with
ECE growing at a rate of O(T*/%). Qiao and Valiant [2021] show that obtaining O(+/T) rates for ECE is
impossible. Recently, in a COLT 2024 paper, Qiao and Zheng [2024] showed that it was possible to make
sequential predictions against an adversary guaranteeing expected distance to calibration growing at a rate
of O(\/T ). Their algorithm is the solution to a minimax problem of size doubly-exponential in 7". They leave
as an open problem finding an explicit, efficient, deterministic algorithm for this problem. In this paper we
resolve this problem, by giving an extremely simple such algorithm with an elementary analysis.

Algorithm 1: Almost-One-Step-Ahead

Input: Sequence of outcomes y''7 € {0,1}T

Output: Sequence of predictions p* € {0, i, ..., 1}T for some discretization parameter m > 0
fort=1to T do

Given look-ahead predictions p'*~!, define the look-ahead bias conditional on a prediction p as:

t—1
aﬁlzl—l(p) = Z ]lws = p](ﬁs — ys)
s=1
Choose two adjacent points p; = %,piﬂ = % satisfying:

aﬁlzt—l(pi) S 0 and Qprit—1 @i+l) 2 0

Arbitrarily predict p* = p; or p* = p;.1;
Upon observing the (adversarially chosen) outcome ¢, set look-ahead prediction

p= argminge o, ..y -yl

2 Setting

We study a sequential binary prediction setting: at every round ¢, a forecaster makes a prediction p* € [0, 1],
after which an adversary reveals an outcome y* € {0,1}. Given a sequence of predictions p*7 and outcomes

y T, we measure expected calibration error (ECE) as follows:

T

ECE(" ", ¢"") = > D 1p* =pl(p* - v

pe(0,1] |t=1

Following Qiao and Zheng [2024], we define distance to calibration to be the minimum /; distance between
a sequence of predictions produced by a forecaster and any perfectly calibrated sequence of predictions:

CalDist l:T’ 1:T — min LT 1T
"y ) qlzTec(ym,”P 't

where C(y*T) = {¢"T : ECE(¢"T,y*T) = 0} is the set of predictions that are perfectly calibrated against
outcomes y''T. First we observe that distance to calibration is upper bounded by ECE.

Lemma 1 (Qiao and Zheng [2024]). Fiz a sequence of predictions p*T and outcomes y¥'T. Then, CalDist(p'7, ylZT) <

ECE(pl:T’ yI:T).
Proof. For any prediction p € [0, 1], define
T
1[p* = p| t

_T —
V)= ST

to be the average outcome conditioned on the prediction p. Consider the sequence g7 where ¢t = 57 (p).
Observe that q'*7 is perfectly calibrated. Thus, we have that

CalDiSt(plzT,ylzT) S "pl:T _ ql:T”1
T
=) Ip'—¢'l
t=1

>N 1t =pllp -7 )

pe[O’]'] t=1
T
= > =7 ®I>_1p" =9
pe0,1] t=1
T T
= > pD_ L' =p-¥" ()Y 1" =p|
pef0,1] | t=1 t=1
T
=Y. Do1p =pl-v"
pe[Oall t=1

— ECE(plzT, yl:T)
O

The upper bound is not tight, however. The best known sequential prediction algorithm obtains ECE
bounded by O(T?%®) [Foster and Vohra, 1998, and it is known that there is no algorithm guaranteeing ECE
below O(T9-54389) [Qiao and Valiant, 2021, Dagan et al., 2024]. Qiao and Zheng [2024] give an algorithm
that is the solution to a game of size doubly-exponential in 7" that obtains expected distance to calibration
O(V/T). Here we give an elementary analysis of a simple efficient deterministic algorithm (Algorithm 1) that
obtains distance to calibration 2v/T + 1. .

Theorem 1. Algorith\f/nﬂ (Almost-One-Step-Ahead) guarantees that against any sequence of outcomes,
CalDist(ptT, y¥T) < 2y/T + 1.

3 Analysis of Algorithm (1]

Before describing the algorithm, we introduce some notation. We will make predictions that belong to a
grid. Let B, = {0,1/m,..., 1} denote a discretization of the prediction space with discretization parameter
m > 0, and let p; = i/m. For a sequence of predictions p',...,p* and outcomes y, ..., y*, we define the bias

conditional on a prediction p as:
t

ape(p) = Y 1[5 = pl(5° — v*)
s=1
To understand our algorithm, it will be helpful to first state and analyze a hypothetical “lookahead”
algorithm that we call “One-Step-Ahead”, which is closely related to the algorithm and analysis given by

Gupta and Ramdas [2022] in a different model. One-Step-Ahead produces predictions 5!, ...,p* as follows.
At round t, before observing y*, the algorithm fixes two predictions p;, p; 11 satisfying azi:c-1(p;) < 0 and
azre-1(piy1) > 0. Such a pair is guaranteed to exist, because by construction, it must be that for any history,
az1:e-1(0) <0 and ai:e-1(1) > 0. Note that a well known randomized algorithm obtaining diminishing ECE

(::nd smooth calibration error) uses the same observation to carefully randomize between two such adjacent
predictions |[Foster, 1999, Foster and Hart, 2018|. Upon observing the outcome y*, the algorithm outputs
prediction p* = argmin, (pipiss} P — y'|. Naturally, we cannot implement this algorithm, as it chooses its
prediction only after observing the outcome, but our analysis will rely on a key property this algorithm
maintains—namely, that it always produces a sequence of predictions with ECE upper bounded by m + 1,

the number of elements in the discretized prediction space.
Theorem 2. For any sequence of outcomes, One-Step-Ahead achieves ECE(p*T,yt'T) < m + 1.

Proof. We will show that for any p; € By, we have |a;::7(p;)| < 1, after which the bound on ECE will follow:
ECE(p"T,y"T) = 3, .cp,. lapr(pi)| < m+ 1. We proceed via an inductive argument. Fix a prediction
pi € By, At the first round ¢, in which p; is output by the algorithm, we have that |az.., (p;)| = |[p** —y*| < 1.
Now suppose after round ¢ — 1, we satisfy |az1.c-1(p;)| < 1. If p; is the prediction made at round ¢, it must
be that either: az.c-1(p;) < 0 and p; — y* > 0; or aze-1(p;) > 0 and p; — y* < 0. Thus, since azie-1(p;)
and p; — y' either take value 0 or differ in sign, we can conclude that

laree (pi)| = |ogre—1(pi) + pi — y'| < max{|agre— (pi)], [pi — '} < 1

which proves the theorem. O

Algorithmy (Almost-One-Step-Ahead) maintains the same state a;1:¢(p) as One-Step-Ahead (which it can
compute at round ¢ after observing the outcome 7;_1). In particular, it does not keep track of the bias of its
own predictions, but rather keeps track of the bias of the predictions that One-Step-Ahead would have made.
Thus it can determine the pair p;, p;+; that One-Step-Ahead would commit to predict at round ¢. It cannot
make the same prediction as One-Step-Ahead (as it must fix its prediction before the label is observed) — so
instead it deterministically predicts p* = p; (or p* = p; ;1 — the choice can be arbitrary and does not affect
the analysis). Since we have that [p; —p; 41| < -, it must be that for whichever choice One-Step-Ahead would
have made, we have |p* — p?| < # In other words, although Almost-One-Step-Ahead does not make the same
predictions as One-Step-Ahead, it makes predictions that are within ¢; distance T'/m after T rounds. The
analysis then follows by the ECE bound of One-Step-Ahead, the triangle inequality, and choosing m = v/T.
Proof of Theorem Observe that internally, Algorithm |1 maintains the sequence p!,...,p* which corre-
sponds exactly to predictions made by One-Step-Ahead. Thus, by Lemma |1 and Theorem |2, we have that
CalDist(p'7, y*T) < ECE(p*T,y"T) < m + 1. Then, we can compute the distance to calibration of the
sequence p*,...,p":

CalDist 1:T, 1Ty min 1.7 _ 1:T
"y S [/ I
: 1:T ~1:T =1:T 1:T
= min - + -
S [P =" +p7 —a |
< 1:T _ =1:T + min ~1:7 _ 1.T
<™ =5 S, 15" =" |1
T
<—+m+1
m
where in the last step we use the fact that |p' — p*| < 1/m for all ¢ and thus |[p*T — p¥T|; < T/m. The
result then follows by setting m = v/T. O
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