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ABSTRACT

The functional and cognitive effects of traumatic brain injury (TBI) are poorly understood, as
even mild injuries (concussion) can lead to long-lasting, untreatable symptoms. Simplified
brain dynamics models may help researchers better understand the relationship between brain
injury patterns and functional outcomes. Properly developed, these computational models
provide an approach to investigate the effects of both computational and in vivo injury on
simulated dynamics and cognitive function, respectively, for model organisms. In this study,
we apply the Kuramoto model and an existing mesoscale mouse brain structural network to
develop a simplified computational model of mouse brain dynamics. We explore how to
optimize our initial model to predict existing mouse brain functional connectivity collected
from mice under various anesthetic protocols. Finally, to determine how strongly the changes
in our optimized models’ dynamics can predict the extent of a brain injury, we investigate how
our simulations respond to varying levels of structural network damage. Results predict a
mixture of hypo- and hyperconnectivity after experimental TBI, similar to results in TBI
survivors, and also suggest a compensatory remodeling of connections that may have an
impact on functional outcomes after TBI.

AUTHOR SUMMARY

Recent research has investigated the consequences of traumatic brain injuries by combining
computational models of human brain activity and structural models of the whole human
brain or cortex. As experimental injury research can only be conducted using animal models,
we apply a simplified computational model of whole-brain dynamics, the Kuramoto model, to
a mouse brain structural network. We tune our model to best predict measurements of
functional connectivity recorded from 58 fMRI scans of mice and lesion the network model to
explore the effects of injury. Our findings predict that functional connectivity may increase or
decrease in various regions of the brain, even at a high injury level, which may aid in future
predictions of cognitive impairments after brain injury.
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INTRODUCTION

Traumatic brain injury (TBI) is a pervasive health issue both globally and in the United States.
The Centers for Disease Control and Prevention reported over 220,000 hospitalizations and
over 60,000 deaths involving TBI in 2017 (Centers for Disease Control and Prevention, 2021).
At least 75% of TBI cases are typically classified as concussions, also called mild TBI (Bazarian
et al., 2005; Bruns & Hauser, 2003), and even these injuries can have high morbidity: Persis-
tent postconcussion symptoms (PPCSs) can occur months after the injury for as many as 10%–

20% of patients (Alves et al., 1993; Gozt et al., 2021; Signoretti et al., 2010; Yuh et al., 2013);
can disrupt physical, cognitive, emotional, and sleep-related function; and may be measurable
even 1 year postinjury (McMahon et al., 2014; Schneider et al., 2022). Despite a large liter-
ature describing the negative sequelae after even mild TBI, there is currently no method to
clearly link the physics of the impact to the long-term patient outcome.

For over a decade, there has been increasing focus on describing the brain as a network
system as a first step toward understanding how structural brain damage leads to cognitive
impairment. In humans, the structural connectome (SC) is frequently estimated using informa-
tion from diffusion-weighted MRI, while functional connectivity (FC) is often approximated
using blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI),
which indirectly estimates brain activity through differences in local blood oxygenation
(Sporns, 2013; van der Horn et al., 2017a, 2017b). Past work has shown that there are changes
after TBI to both the SC (Klimova et al., 2019; Messé et al., 2011; Muller et al., 2021; van der
Horn et al., 2017a; Wada et al., 2012; Ware et al., 2023) and FC (Hillary et al., 2014; Iyer
et al., 2019; Lancaster et al., 2019; Li et al., 2020; van der Horn et al., 2017a). In some studies,
changes in SC (Klimova et al., 2019; van der Horn et al., 2017b; Ware et al., 2020, 2023) and
FC (Bittencourt et al., 2022; Iyer et al., 2019; Rangaprakash et al., 2017; van der Horn et al.,
2017) are correlated with functional impairment in TBI patients. FC hyperconnectivity after TBI
has been interpreted as a compensatory response, but its correlation with impairments may
vary between studies. For example, frontal-temporal default mode network hyperconnectivity
has been correlated with emotion recognition impairment during chronic moderate TBI
(Lancaster et al., 2019), while frontal default mode network hyperconnectivity has been
negatively correlated with depression scores during the subacute period following a single
concussion (Zhou et al., 2012). In comparison, posterior default mode network hyperconnec-
tivity has been positively correlated with PPCS patients’ depression scores (van der Horn et al.,
2017b) and cognitive flexibility (Zhou et al., 2012). Given the nature of these clinical studies in
human subjects where each injury is different from another, it is not straightforward to deter-
mine a relationship between brain damage and functional impairments.

Computational modeling techniques can aid in the study of both healthy and pathological
brain states by providing theoretical models of functional network changes. Computational
researchers use models of varying complexity, including representations of neural synchroni-
zation such as the Kuramoto model of coupled oscillators (Kuramoto, 1984), to explore how
the brain’s physical structure can lead to the dynamic coupling of neural activity across brain
areas. While the Kuramoto model is greatly simplified, its output can be compared with FC or
dynamics obtained from resting-state BOLD fMRI (Cabral et al., 2011; Cocchi et al., 2016; Lee
& Frangou, 2017) and used to make predictions about dynamical changes after perturbation
(Gollo et al., 2017; Schmidt et al., 2015), structural lesions (Váša et al., 2015), and injury
(Rifkin et al., 2022; Wu et al., 2022, 2022). Past work using connectomes modified to mimic
the connectivity changes in TBI patients presented dynamics that differ from controls (Hellyer
et al., 2015). Similarly, network changes produced by computational models of biomechanical

Kuramoto model:
A mathematical model describing
dynamics on a network of
connected, oscillating elements.
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injury have been used to separate impacts by injury outcome (Wu et al., 2022) and explore
concussion vulnerability (Wu et al., 2022).

Despite these significant efforts to relate the human brain connectome to its functional neu-
rodynamic state, these studies do not offer an ability to directly manipulate the physical con-
nectome and study the corresponding effect on cognition. In comparison, preclinical models
have an ability to precisely create consistent injury patterns across animals and are central to
understanding TBI pathobiology, its relationship to cognitive deficits, and both biomarkers and
possible treatments for TBI. The C57BL/6 mouse model is perhaps best suited for studying the
relationship between lesions and cognitive behavior, as they are widely used in neuroscience,
their cognition can be interrogated with a variety of behavioral experiments (Lueptow, 2017;
Wheeler et al., 2013; Zhao et al., 2012), and their brain structure and function can be inves-
tigated using MRI techniques (Calabrese et al., 2015; Jonckers et al., 2015). Moreover, the
Allen Brain Atlas project (Lein et al., 2007) provides a precise map of directional synaptic con-
nections between different brain regions (Oh et al., 2014). To this end, recent studies have
used these mouse connectome data to develop a Virtual Brain platform for simulating dynam-
ics on the mouse brain (Melozzi et al., 2017), creating a reduced neural model of resting-state
mouse brain fMRI (Melozzi et al., 2019). However, despite the potential impact of direction-
ality on simulations of neural dynamics (Crofts et al., 2022), relatively few studies have
explored the utility of the Kuramoto model on directed mouse brain networks developed from
these data (Choi & Mihalas, 2019), or the effects of injuring mouse networks.

In this study, we build and test Kuramoto oscillator-based models of neurodynamics on a
mouse brain connectome (Oh et al., 2014) and examine the key model features that optimize
the fit of these models to empirical FC networks from mice (Grandjean et al., 2014). We use the
neurodynamics models from this analysis to study how a mouse model of mild TBI (Chen et al.,
2014) will affect FC. Our results demonstrate the importance of building subject-specific models
of neural dynamics, indicate that key features of the connectome are necessary to generate con-
sistent predictions of changes in neural dynamics after injury, and predict both hypoconnec-
tivity and hyperconnectivity as direct outcomes of TBI.

METHODS

In this study, we applied network theory and computational modeling to mathematically
model different functional states of the mouse brain from both uninjured and injured connec-
tomes (Figure 1). Our overarching goal was to develop models that were relatively similar to
empirical mouse FC and would be disrupted consistently in a dose-dependent manner by a
network model of TBI. We used a previously published mesoscale mouse brain connectome
(Oh et al., 2014) to represent brain structure and a dynamical model to simulate FC. We com-
pared our simulations with empirical mouse FC networks developed from different anesthe-
tized BOLD fMRI recordings (Grandjean et al., 2014), used an optimization algorithm to more
closely fit our model to the empirical data, and explored the influence of injuring the structural
network on our simulated FC by decreasing structural edges that were connected to brain
regions known to be injured in a mouse model of mild TBI (Chen et al., 2014).

Mouse Connectome

For our dynamical modeling, we generated a mouse brain SC from Oh et al.’s (2014) best fit,
weighted, directed connectivity model of 213 regions of the Allen Mouse Brain Connectivity
Atlas (AMBCA) based on their anterograde tracing data. We used an approach from research
by Melozzi et al. (2017) and assumed bilateral symmetry, as diffusion MRI tractography has

Anterograde tracing:
Labeling projections in the brain
using an injection of a tracer, such as
a fluorescent viral vector, at their
source.
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previously observed high similarity between right and left hemisphere white matter tracts in
the mouse brain (Calabrese et al., 2015). This method produced a 426-node SC where all ipsi-
lateral and contralateral connection weights directed from the left hemisphere brain regions
are equal to their counterparts directed from right hemisphere regions. To explore the effects of
using a directed connectivity model more closely, we also developed a weighted and undi-
rected connectivity model from these data, where relative connection weights between each
pair of regions were set by adding the connectivity strengths in both directions together. Before
simulating dynamics using either network, all connection weights were rescaled to set the
maximum edge strength in the network to 1, and in accordance with standard network anal-
ysis practices, the main diagonal connections (i.e., self-connections) were set to 0.

FC From Empirical Mouse fMRI Data

We generated FC networks from publicly available resting-state BOLD fMRI data (Grandjean,
2020) originally collected as part of a single mouse study by Grandjean et al. (2014), which
compared the effects of different anesthetics and protocols on resting-state mouse fMRI. We
used data from 58 available subjects, which were scanned in groups of 4–14 mice per anes-
thetic protocol (Table 1). The BOLD time-series data from each mouse were recorded from 604
brain regions of interest. To create FC networks that we could robustly compare with our
model predictions, we reduced the 604 regions of interest to 354, which were exact regions
in the 426-region SC developed for the computational model, then further chose to include
only regions above the median voxel count, using 178 regions. Then, for each individual
mouse recording, we further controlled the quality of our analyses by eliminating regions with
a BOLD time-series coefficient of variation less than 10−6, which enabled us to test the effects
of varying the available regions of interest on the accuracy of our predictions during optimi-
zation while avoiding regions with unreliable data. This particular quality control step

Strength:
The sum of edge weights connected
to a node on a weighted network.

Figure 1. An overview of our modeling methods. Mice were anesthetized and their BOLD signals recorded using fMRI by Grandjean et al.
(2014) (A). We used the data from that study which were published in a public dataset (Grandjean, 2020) to generate functional connectomes
(B). Tract-tracing experiments (C) were conducted in mice by Oh et al. (2014) and used to generate their directed structural connectivity data
(D), which we additionally process into whole-brain directed and undirected SCs. We can also simulate injury by reducing the edge connec-
tivity values for subsets of each connectomes’ regions of interest to explore the effects of injury on our subsequent modeling pipeline. We apply
a mathematical dynamics model, the Kuramoto model of coupled oscillators (Kuramoto, 1984) (E), to simulate neural synchronization on these
structural networks. From these data, we produce simulated functional connectomes (F). These connectomes can be further used to iteratively
optimize our simulations for improved similarity to the empirical functional data. Created in BioRender. Rayfield, A. (2024) https://BioRender
.com/z37q721.

Coefficient of variation:
A measure of variability in data,
calculated as the standard deviation
divided by the mean.
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produced a range of sizes for empirical FC networks dependent on the number of excluded
regions. Pearson correlations between the BOLD time-series for regions that remained after
quality control were used to compute empirical FC networks, resulting in network sizes of
115–146 nodes after quality control.

When comparing FC networks, we identified the common regions of interest to use for each
individual comparison and computed the Pearson correlation between the two networks using
only the undirected edge strengths between those regions. To assess the similarity of each FC
network to their average, we identified 111 regions of interest that were common to all 58
samples, produced an average FC network containing those regions, and then computed
the Pearson correlation between all edge strengths from the average FC and the corresponding
edges’ strengths from each individual FC network.

Dynamical Modeling and Simulated FC

We used the Kuramoto model of coupled oscillators to simulate the synchronization of slow
oscillations in the BOLD frequency range on the mouse brain SC. Oscillator phases were cal-
culated by numerically solving a system of differential equations:

dθa
dt

¼ ωa þ g
XN
b¼1

Aba sin θa − θbð Þ a ¼ 1; 2;…;N

where the instantaneous phase of activity at each oscillator a, θa, is simulated for N = 426
nodes corresponding to each region of the full SC, A (Hellyer et al., 2015; Schmidt et al.,
2015). Nodes were assigned natural angular frequencies, ωa, from the BOLD frequency range,
specifically the uniform distribution [0.01, 0.1] Hz multiplied by 2π (Alderson et al., 2018;
Cocchi et al., 2016; Gollo et al., 2017). Initial values for the phase of each oscillator were
distributed randomly and uniformly between 0 and 2π. The weighted structural connectivity
edges Aba provided the connectivity between each pair of nodes on the SC network, directed
specifically from oscillator b to oscillator a in simulations where the directed network was
incorporated. The sum in each equation therefore describes the influence of every other

Table 1. List of fMRI samples from different anesthetic conditions and animals recorded by Grandjean et al. (2014)

Anesthetic condition Abbreviation Animal sample numbers

Isoflurane 1% Iso1 0288, 0289, 0290, 0291, 0292, 0293, 0295, 0296,
0297, 0298

Isoflurane 1.5% Iso1.5 0285, 0286, 0287, 0294

Medetomidine 0.1-mg/kg bolus and
0.2-mg/kg/h infusion

Med0.1 0299, 0300, 0301, 0302, 0303, 0304, 0305, 0306,
0307, 0308, 0309

Medetomidine 0.05-mg/kg bolus +
0.1-mg/kg/h infusion

Med0.05 0310, 0311, 0312, 0313, 0314

Medetomidine 0.05-mg/kg bolus +
0.1-mg/kg/h infusion and isoflurane 0.5%

MedIso 0315, 0316, 0317, 0318, 0319, 0320, 0321

Propofol 30-mg/kg bolus +
120–150-mg/kg/h infusion

Pro30 0322, 0323, 0324, 0325, 0326, 0327, 0328

Urethane 1.5 g/kg intraperitoneal Ure1.5 0329, 0330, 0331, 0322, 0333, 0324, 0335, 0336,
0337, 0338, 0339, 0340, 0341, 0342

Animal sample numbers are shown as they were listed in a larger, multistudy dataset (Grandjean, 2020).
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oscillator in the network, b = 1, 2, …, N, on oscillator a. The effects of all connectivity
weights are scaled by a global coupling strength constant, g. We ran the model across a
range of coupling factors and computed the global synchrony, metastability, and
predictive power for both the directed and undirected connectomes similarly to prior
work (Cabral et al., 2011; Wu et al., 2022).

To investigate the model prior to optimization, we conducted 25 ten-minute simulations for
each value of g, which was explored (g = 0.1–2 for the undirected network and g = 0.1–4 for
the directed network, with a resolution of 0.1), initialized using 25 random distributions of ω
and initial θ values, and eliminated the first 2 min of each simulation to avoid transient effects.
Average global synchrony and metastability were calculated as in prior work using the mean
and standard deviation, respectively, of the Kuramoto order parameter R(t), calculated as:

R tð Þ ¼ 1
N

XN
b¼1

eiθb tð Þ
�����

�����
where i is the imaginary unit and θb(t) is the instantaneous phase of oscillator b among the N =
426 total network nodes (Cabral et al., 2011; Hellyer et al., 2015; Wu et al., 2022). To create
predicted FC matrices, we calculated sin(θ) for each oscillator as a simple function of phase to
represent neural activity fluctuations (Cabral et al., 2011) and computed FC as the pairwise
Pearson correlation of sin(θ) among all oscillators. The predictive power of a simulation was
defined as the Pearson correlation between edge strengths from the simulated FC network and
the corresponding edge strengths from the empirical FC network (Melozzi et al., 2019).

Random Connectivity Architectures

To determine if our chosen AMBCA-based architecture influenced the predictive power of
these initial simulations, we produced a random, directed connectivity architecture from the
directed network. We applied an algorithm from the Brain Connectivity Toolbox (Rubinov &
Sporns, 2010), which randomly swapped each edge in the network an average of 20 times
while preserving the distributions of edge weights directed in and out of each node (Rubinov
& Sporns, 2011). We also generated a corresponding undirected model by adding the edge
weights in both directions between each pair of nodes together. We repeated our procedures
for simulation using the same set of ω distributions and random initial θ values for the appro-
priate range of g values (0.1–2 for the undirected network, 0.1–4 for the directed network) and
determined the average predictive power for the randomized models, directed and undirected,
at each coupling strength. We compared the peak predictive powers for each empirical FC
network with those previously computed in the original, nonrandomized simulations.

Optimizing the Dynamical Model’s Predictive Power

To improve our simulations’ predictive power and account for differences among individual
mice subject to various anesthetic protocols (Grandjean et al., 2014), we developed an opti-
mization algorithm to better match simulated FC to any target empirical FC network. To this
end, we conducted 100 iterative dynamics simulations per empirical FC network (Supporting
Information Figure S1), during which the size of the SC (N ) was reduced in each simulation to
include only nodes that were present in the target empirical FC network of interest, unlike in
our original simulations, so that all simulated nodes could be compared with the target data
and controlled. We used global coupling strengths that produced approximate maximum
metastability for the reduced SC—proposed as the point where the dynamics of a network
are most flexible—g = 1.0 for undirected and g = 3.5 for directed (Supporting Information

Synchrony:
Phase similarity among a group of
oscillators.

Metastability:
Variability in synchrony or states of
synchronization over time among a
group of oscillators.
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Figure S2). After each 200-s iteration, we updated each node’s natural frequency by an incre-
ment scaled to the initial frequency range by a constant, 0.005, and directly proportional to the
node’s control energy (Ea) and the difference between the node’s strength (the sum of positive
functional network edges involving that node) on the simulated FC and on the empirical FC.
Control energy for a node a was calculated as:

Ea ¼
ZT

0

ua tð Þ�� ��2dt

where u* is the optimal control input calculated for a linear approximation of brain dynamics:

dx tð Þ
dt

¼ x 0 tð Þ ¼ Ax tð Þ þ Bu tð Þ

where x(t ) describes the total edge strength for each FC node, A is the stabilized structural con-
nectivity matrix, B is an identity matrix of equal size, and the initial state and target states for x(t )
were chosen to be the simulated FC network and the empirical FC network, respectively (Braun
et al., 2021; Gu et al., 2015). All initial simulations used the same random natural frequencies
for specific nodes as we determined that the variation in optimal predictive power between
simulations targeting dissimilar empirical FCs was not substantially affected by initial conditions
(Supporting Information Figure S3). Additional simulations showed the optimized predictive
power was affected by low coupling strength on the directed models (Supporting Information
Figure S4). For this reason, the approximate coupling strengths for maximum metastability were
maintained for the reduced-size undirected and directed networks. As frequencies higher than
0.1 Hz have previously been detected from the BOLD signal using fast fMRI (Lewis et al.,
2016), we did not exclude optimized distributions with frequencies greater than 0.1 Hz.

Modeling Brain Injury Using Connectivity Reduction

To explore the dynamical model’s sensitivity to injury, we chose to reduce the strength of
structural connectivity edges connected to regions that are injured in a mouse model of mild
TBI: mild controlled cortical impact (mild CCI; Chen et al., 2014). As mild CCI produced ipsi-
lateral neurodegeneration that had previously been measured by Fluoro-Jade B staining (Chen
et al., 2014), we developed a list of 14 cortical and hippocampal regions on our connectome
by locating regions on the Allen Mouse Brain Atlas, which approximately overlapped the
staining pattern, as viewed on the Scalable Brain Atlas using version 3 of the Common Coor-
dinate Framework (Bakker et al., 2015; Lein et al., 2007; Wang et al., 2020). We generated 20
additional connectomes per optimized model where all edge strengths directed to and from
these regions of interest for the first hemisphere in the connectome were decreased in incre-
ments of 5% of their maximum value, analogous to the process of incrementally removing
neurons from computational neuronal networks to model damage (Gabrieli et al., 2020;
Schumm et al., 2020). Thus, these connections lost between 5% and 100% of their original
connectivity to represent variable severities of neuronal injury. Global efficiency on the orig-
inal and injured structural networks was calculated as the average inverse of the shortest path
length between any two nodes on the network (Rubinov & Sporns, 2010), where path length of
each edge weight on the network was defined as the inverse of its connection strength.

We ran FC simulations for each network subject to connectivity reduction based on our
optimized models of both directed and undirected connectivity. For each of these simulations,
we could only decrease connectivity at eight or nine regions, which were present in the cor-
responding SC reduced to fit a specific empirical FC.

Controlled cortical impact:
An experimental method to model
traumatic brain injury by impacting a
model animal’s brain surface.

Global efficiency:
The average inverse shortest path
length between pairs of nodes in a
network.

Optimal control input:
Approximate input required at a
node to transition the functional
network from an initial state to a
target state.

Control energy:
The integral of a node’s optimal
control input, squared, over time.

Network Neuroscience 332

Modeling mouse brain functional connectivity and injury

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/doi/10.1162/netn_a_00431/2482179/netn_a_00431.pdf by guest on 28 M
arch 2025



Determining Changes in FC Strength After Injury

To further quantify the changes in simulated FC after injuring each optimized model, we
calculated the changes in FC strength at nodes in the whole-brain network. Strengths were
calculated using nodes common to all 58 optimized models and excluding any directly
damaged regions. We again computed nodal FC strength as the sum of all positive FC edge
weights connected to a node (Rubinov & Sporns, 2010). To explore the heterogeneity in post-
injury outcomes among our optimized models, we reported frequency distributions for 103
regions of interest common to all optimized connectomes, describing the proportion of the 58
models for which a region’s strength decreased (i.e., for which the nodal FC strength for the
uninjured network was greater than the nodal strength for the injured network) at a given
injury level.

Statistical Analysis

Comparisons between specific pairs of groups were conducted using the two-sample t test. For
comparisons among multiple groups, the significance of any differences among the group
means were determined using one-way analysis of variance (ANOVA) and followed by
Tukey’s multiple comparisons test to determine if specific pairs of group means were signifi-
cantly different; if variances among groups were unequal by the Brown-Forsythe test, Welch’s
ANOVA and Dunnett’s T3 multiple comparisons test were used instead. We used the Pearson
correlation coefficient to examine the association between pairs of variables, and applied the
Kolmogorov-Smirnov (K-S) test to compare the frequency distributions of FC strength decrease
at different injury levels. We used the standard α = 0.05 threshold for p value significance
throughout this study.

RESULTS

Empirical Mouse fMRI Data Were Variable, Even Within Anesthetic Groups

Before developing simulations of mouse FC, we first examined the consistency of the empirical
FC within a group of animals and compared the FC within and between anesthetic states
(Figures 2A and 2B). We sought to test how animal-to-animal variance compared with the dif-
ferences that could exist across different anesthetic states and inform our model development.
As a reference, we computed an average FC across all animals (n = 58). Correlations of each
empirical FC network with this reference FC network showed that considerable variation
existed within anesthetic groups; only 16% of the variance could be attributed to the different
types and depths of anesthesia (ANOVA group sum of squares (SS) = 0.072, total SS = 0.45). In
turn, we did not observe a significant influence of anesthesia on the correlation of empirical
FCs to the reference (ANOVA p = 0.16, ns; Figure 2C). Based on these results, we concluded
that we needed to optimize the computational model parameters for each individual animal
and could not use an averaged FC matrix for all mice or each anesthetic state.

Initial Simulations on the Directed Connectome Predicted the Empirical Data Better Than Those on the

Undirected Network

After examining the consistency of the measured FCs across anesthetic groups, we developed
Kuramoto oscillator-based models for predicting mouse brain dynamics in each animal. The
first feature studied in our model was the connectivity architecture used to estimate neural
dynamics. Most prior work assigned equal weights for network edges into and out of each
node (i.e., an undirected network). In comparison, different weights for input or output edges
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(i.e., a directed network), which can be assigned using mouse brain tract-tracing data, are used
much less frequently (Choi & Mihalas, 2019).

The choice of directed or undirected architecture affected the typical measures of Kuramoto
oscillator dynamics: synchrony and metastability. In general, both directed and undirected
architectures showed an ability to synchronize and to produce a maximum point of metasta-
bility (Figure 3A). The coupling strength needed to maximize metastability was higher for the
directed network (g = 1.4) than the undirected network (g = 0.5), and when comparing the
undirected and directed networks’ dynamics at g = 1.4, the mean synchrony and metastability
values were both significantly different (mean undirected synchrony = 0.96, mean directed
synchrony = 0.36, p < 0.0001; mean undirected metastability = 0.065, mean directed meta-
stability = 0.11, p < 0.0001). Varying the coupling strength also affected simulated FC
(Figure 3B).

We next optimized the coupling strength of each model type to best predict the 58 empir-
ical FC networks. Adjusting the coupling strength is a common approach to achieve better

Figure 2. FC heterogeneity observed after processing BOLD fMRI data obtained from resting-state, anesthetized mice by Grandjean et al.
(2014) into FC networks. (A) Representative FC networks from mouse data collected under various anesthetic conditions, individually proc-
essed from the original data (Grandjean et al., 2014), visualized using 111 common regions of interest. (B) Pairwise Pearson correlations
between the common edges of 58 individual FC networks categorized into different anesthetic conditions. (C) Group-level comparison of
the Pearson correlation of each FC network to the average FC network. There was no significant effect of the anesthetic group on similarity
to the average (ANOVA p = 0.16, ns), and the mean correlation with the average FC within each group varied between 0.51 (Isoflurane 1%)
and 0.63 (medetomidine + isoflurane). Refer to Table 1 for a comprehensive overview of each anesthetic protocol as described by Grandjean
et al. (2014), their abbreviations, and the number of mice per group.
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Figure 3. The undirected and directed mouse brain connectivity display different Kuramoto model dynamics and baseline similarity between
the simulations and empirical data. (A) Differences between undirected and directed network connectivity when simulating neural synchro-
nization on the Kuramoto model and varying the global coupling strength (g) for 25 randomized initial conditions and frequency distributions.
Maximum metastability occurs for the undirected network at g = 0.5 and for the directed network at g = 1.4. (B) Example simulated FC matrices
generated by the pairwise correlation of sin(θ) from directed Kuramoto oscillators, using the same initial conditions (random initial phase
distributions and natural frequency distributions) for each representative coupling strength (g = 0.5, 1.1, 1.4, and 2.0) and displaying the
111 common regions of interest used in Figure 2. (C) Predictive power of simulated FC from the Kuramoto model over a range of global
coupling strength values for 58 empirical FC derived from resting-state, anesthetized mouse BOLD fMRI data (Grandjean et al., 2014), deter-
mined for both the undirected (left) and directed (right) networks. Each value of predictive power for a specific g value is an average correlation
between a simulated FC matrix and the empirical FC sample for the same 25 sets of initial simulation conditions. Comparisons with samples
are sorted from 1 to 58 by decreasing average maximum predictive power of the undirected simulations to the sample. The best predictive
power of a simulated FC network from our initial Kuramoto model for an empirical FC network was significantly improved by the use of
directed connectivity (average predictive power = 0.085 for undirected, average predictive power = 0.18 for directed, p < 0.0001).
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correlation between modeling and experimental FC data (Cabral et al., 2011; Wu et al., 2022).
To this end, adjusting the coupling strengths of the model substantially improved the average
predictive power of the model for the 58 empirical FC network in the dataset (Figure 3C).
Simulations using the directed connectivity architecture predicted the data significantly better
than undirected connectivity, but neither were strongly correlated with the measured data
(undirected model average predictive power = 0.085, directed model average predictive
power = 0.18, p < 0.0001).

Brain Architecture Is an Important Component of the Kuramoto Model

After identifying differences in predictive power between simulations using undirected and
directed connectivity, we sought to characterize the influence of the AMBCA structural archi-
tecture on our simulations’ predictions. We produced a random directed architecture that pre-
served the distribution of in-strength and out-strength from the directed AMBCA network,
summed the directed edges together to produce a corresponding random undirected architec-
ture, and compared the peak predictive power achieved through simulations on these net-
works with the peak predictive powers we reported using the original architectures. Broadly,
we found that randomization reduced the peak predictive power of each prediction, with a
greater effect on the directed simulations. The random undirected architecture produced
simulations with reduced peak predictive power relative to the undirected AMBCA-based
network (Figure 4A), with the relatively small difference (random − undirected = −0.016) dem-
onstrating significance during unpaired t testing (p = 0.023) and paired t testing (p < 0.0001),
confirming that the optimal comparisons between the simulations to specific empirical FC net-
works were significantly reduced by randomization. This finding was also clear for simulations
on the directed AMBCA-based network when compared with the random directed network
(Figure 4B), with a larger difference in predictive power (random − directed = −0.086), which
was highly significant for unpaired (p < 0.0001) and paired (p < 0.0001) t testing. Due to the
significance of this influence on our initial simulations, for the remainder of the study, we used
the nonrandomized network architectures.

Figure 4. The predictive power for averaged comparisons with each of the 58 empirical FC was
significantly higher when using the original connectivity models than randomized connectivity
models. (A) A paired t test demonstrates that the predictive power of comparisons were significantly
decreased by randomization (randomized − original predictive power = −0.016), and the difference
in mean predictive power was significant by the unpaired t test (p = 0.023). (B) A paired t test dem-
onstrates that the predictive power of comparisons were significantly decreased by randomization
(randomized − original predictive power = −0.086), and the difference in mean predictive power
was significant by the unpaired t test (p < 0.0001). (****p < 0.0001 for paired t-test results).
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Frequency Optimization More Accurately Models FC for Both Undirected and Directed Simulations

Another modeling parameter that can influence the predicted brain dynamics is the distribution
of natural frequencies assigned to each node. To our knowledge, this model feature is less com-
monly examined to resolve discrepancies between modeling and experimental FC data. How-
ever, past theoretical work studies how adjusting the natural frequencies of individual nodes of
brain networks, including during dynamical simulations, may trigger the transition of network
activity to different states, which may have applications for steering the brain toward more flex-
ibility or away from pathological states (Braun et al., 2021; Gu et al., 2015; Muldoon et al.,
2016). Based on this prior research, we implemented an optimization algorithm to adjust the
natural frequencies of each node and decrease the error between simulated and empirical
FC. Natural frequencies were iteratively updated (Figure 5A) to minimize mean squared error
between simulated and empirical data, which consequently improves the simulations’ predictive
power (Figure 5B). The optimal predictive power achieved during these iterations varied
between samples. For example, the optimal frequency distribution targeted to sample 0321
on the directed connectivity model (Figure 5E) achieved the highest peak predictive power of
0.46 (Figure 5C), while the optimal frequency distribution targeted to sample 0289 achieved the
lowest peak predictive power of 0.12 (Figure 5D). Optimization on both the undirected and
directed network models achieved higher average predictive power than the baseline simula-
tions, which only used global coupling strength as an optimization parameter (undirected pre-
dictive power = 0.28 [frequency optimized] vs. 0.085 [coupling strength optimized], p < 0.0001;
directed predictive power = 0.29 [frequency optimized] vs. 0.18 [coupling strength optimized],
p < 0.0001; Figure 5F). Unlike the coupling strength optimization process, which showed a clear
advantage of the directed model framework, frequency optimizations led to no significant
difference in the optimal fit for directed or undirected models (p = 0.9990, ns). However, the
dynamical variables previously measured, synchrony and metastability, differed between undi-
rected and directed models after optimization (Supporting Information Figure S5).

Our next step was to understand if there were features of the measured FC data, rather than the
model itself, which would make a subset of imaging data ideally suited to the Kuramoto model
framework. Characteristics of the target data were significantly related to the optimized correla-
tion for both the directed and undirected models. For the undirected model, the mean FC edge
strength (R = 0.82, p < 0.0001) and standard deviation in FC edge strength (R = 0.88, p < 0.0001)
were significantly related to optimal predictive power while the number of regions of interest
(R = 0.23, p = 0.086, ns) was not (Figure 6A). The same trends also influenced the optimal
performance of the directed model. Mean FC edge strength (R = 0.82, p < 0.0001) and stan-
dard deviation of FC edge strength (R = 0.88, p < 0.0001) were significantly related to predic-
tive power of the model while the number of regions of interest (R = 0.22, p = 0.092, ns) was
not (Figure 6B).

In all, these analyses identified several features of Kuramoto models and data that influence
the model’s capacity to predict the empirical FC dataset:

• The measured FC has high animal-to-animal variance, more than the effect of anesthesia
level and type, which requires one to simulate each animal, rather than groups of animals.

• Although directed structural connectivity provides a better fit to the measured data than
undirected connectivity, these differences disappear when the natural frequencies of the
nodes are used to optimize the fit of the model to the data.

• Features of the original FC dataset—namely, the average edge strength and variance of
the edge strength in the FC matrix—had a strong influence on the fit between the model
and the measured data.
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Figure 5. The influence of natural frequency seeding on our model’s results provides an opportunity for frequency optimization to better
predict empirical data. (A) Starting from a single, random natural frequency distribution like those we have previously used, we implemented
an iterative algorithm to optimize the frequency distribution to match a specific target brain state. Frequencies were updated after comparison
of simulated FC with the target data, and then the model was used again for up to 100 iterations. Created in BioRender. Rayfield, A. (2024)
https://BioRender.com/x02x666. (B) Mean squared error (MSE) and predictive power for a single instance of the optimization algorithm applied
to the directed network for 100 iterations, using a MedIso sample (0321) as target data. Each metric is used to compare the simulated data with
the empirical data. The first iteration and iteration with peak predictive power (iteration 91) are circled in orange. (C) Empirical FC network
derived from the online dataset by Grandjean (2020) for which the model achieved the best optimal predictive power (sample 0321, R = 0.46
at iteration 91; left), compared with the first simulation (center) and the optimal simulation (right). (D) Empirical FC network for which the
model achieved the worst optimal predictive power (sample 0289, R = 0.12 at iteration 33; left), compared with the first simulation (center) and
the optimal simulation (right). (E) Initial natural frequency was randomly distributed in the [0.01, 0.1] Hz range, and the optimal frequency
distribution arrived during the same algorithm instance portrayed in B. (F) When comparing the mean predictive power achieved between
the baseline simulations and the 58 empirical FC network (Figure 4) with the optimal predictive power achieved for each FC network by the
optimization algorithm, we find that the average correlation by sample is affected by the simulation method (Welch’s ANOVA, p < 0.0001).
(Average predictive powers: mean baseline undirected = 0.085, mean baseline directed = 0.18, optimized undirected = 0.28, optimized
directed = 0.29.) The comparison between optimized, undirected correlations and optimized, directed correlations was the only comparison
among this group to not be statistically significant during post hoc testing (p = 0.9990; ****p < 0.0001).
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Network Injury Most Consistently Affects Simulated FC From the Directed Model

After comparing the performances of both directed and undirected models, we tested their
utility in predicting a dose-dependent response to simulated TBI. Broadly, experimental TBI
models in mice often use a focal mechanical insult—such as a fluid percussion pulse or a
CCI to the brain surface—to cause histological changes in the brain and cognitive impairments
in the animal. The changes caused by CCI are most often modeled with finite element models
of the brain (Chen et al., 2014; Pleasant et al., 2011). In general, increasing the mechanical
depth of impact and, to a lesser extent, the impact velocity will increase the extent of

Figure 6. Characteristics of target empirical data were related to the optimal similarity our algo-
rithm could achieve. (A) For the undirected models, optimal predictive power was strongly corre-
lated with mean edge strength (top, R = 0.8238) and the standard deviation in edge strength (center,
R = 0.8769) of the target FC network, but not significantly correlated with the target’s number of nodes
(bottom, R = 0.2277, p = 0.086). (B) The same trends were found for predictions from the directed
models. Optimal predictive power was strongly correlated with mean edge strength (top, R =
0.7790) and the standard deviation in edge strength (center, R = 0.6990) of the target FC network,
but not significantly correlated with the target’s number of regions of interest (bottom, R = 0.2232, p =
0.092; ****p < 0.0001). Substantial differences in optimal predictive power between target FC networks
were stable for multiple optimizations (Supporting Information Figure S4; R: Pearson correlation).
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deformation throughout the cortex and underlying hippocampus. Similarly, past studies show
both histological damage and cognitive impairments increase in severity as the depth and
velocity of impact are increased (Chen et al., 2014; Pleasant et al., 2011; Saatman et al., 2006).

To this end, we simulated neural synchronization on our directed, optimized models and
reduced connectivity at regions where neurodegeneration in a mouse model of mild CCI was
identified at 24 hr (Chen et al., 2014; Table 2). Not knowing the precise relationship between
mechanical deformation and connectivity changes, we progressively reduced connections
across selected regions on each structural network simultaneously. These changes also carried
over to models of FC: increasing the extent of damage via connectivity loss led to a linear
reduction in the correlation between injured FC networks and their uninjured, optimized
model FC networks from the same modeling conditions (R = −0.9893, p < 0.0001;
Figure 7A), as well as a linear increase in the mean Euclidean distance between injured FCs
and the uninjured FCs (R = 0.9788, p < 0.0001; Figure 7B). This progressive injury model
created a significant reduction in global efficiency of the network (R = −0.9747, p <
0.0001; Figure 7C), reminiscent of changes in global efficiency that may occur in TBI patients
(Chung et al., 2019; van der Horn et al., 2017a). This change in global efficiency also strongly
predicted the distance between the injured and uninjured FC simulations (R = −0.9138, p <
0.0001), suggesting that the approach of using global efficiency as a structural predictor could
generalize these trends to other injury models (Figure 7D).

Table 2. Abbreviations and names for all brain regions that were initially selected for unilateral
connectivity reduction based on the Fluoro-Jade B stain observed 24 hr after mild CCI by Chen et al.
(2014)

Brain region Full name

AUDd Dorsal auditory area

CA3 Hippocampus, field CA3

DG Hippocampus, dentate gyrus

PTLp* Posterior parietal association areas

RSPagl* Retrosplenial area, lateral agranular part

RSPd* Retrosplenial area, dorsal part

SSp-bfd Primary somatosensory area, barrel field

SSp-tr Primary somatosensory area, trunk

SSs Supplemental somatosensory area

VISal* Anterolateral visual area

VISam* Anteromedial visual area

VISl** Lateral visual area

VISp Primary visual area

VISpm Posteromedial visual area

When analyzing smaller networks that were used with the optimization algorithm, only subsets of these regions
that were contained in each smaller network could be selected. * = Region excluded from optimized connec-
tomes due to voxel count thresholding; ** = Region excluded from a subset of optimized connectomes due to
signal quality thresholding.
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To compare the effects of injury on our different connectivity models, we next injured
the 58 undirected, optimized models as well. The mean Euclidean distance between injured
and uninjured FC simulations increased linearly with an increasing loss of connectivity when
using both the undirected structural network (Figure 8A) and the directed structural network
(Figure 8B). The sensitivity of the optimized models to injury (i.e., best fit slopes of distance vs.
connectivity loss) did not significantly differ between undirected and directed models. How-
ever, when we examined the correlation between this mean Euclidean distance measure and
the degree of remaining connectivity after injury for individual models and compared the
results of using each connectivity type, we found that the correlation between distance and
connectivity was stronger for directed network simulations than undirected network simula-
tions (R = 0.91 for directed, R = 0.84 for undirected, p < 0.0001; Figure 8C), suggesting that
the observed dose-dependent response to injury is more robust when simulating FC using the
directed network, though this finding is sensitive to the target FC of each optimized model and
the global coupling strength (Supporting Information Figure S6).

Figure 7. Optimized FC is disrupted by network injury in a select series of brain regions (Chen et al., 2014; Table 2), and this disruption can
also be predicted by the change in a whole-network metric: global efficiency. (A) As the fraction of edge connectivity lost for regions of interest
injured during mild CCI increased, the average correlation between the simulated FC network and the uninjured, optimized FC network
decreased (R = −0.9893, p < 0.0001). (B) These changes to simulated FC can also be demonstrated by an average increase in the mean
regional distance between simulated FC and uninjured FC as the connectivity loss increases (R = 0.9788, p < 0.0001). (C) Connectivity
loss was strongly anticorrelated on average with the global efficiency of each structural network used for optimized simulations (R =
−0.9747, p < 0.0001). (D) The structural networks’ global efficiency and simulated FC distance from the baseline were also strongly anti-
correlated on average (R = −0.9138, p < 0.0001), suggesting further that a brain injury and its effect on FC may be characterized using global
efficiency loss as a measure of structural damage. Simulations used in this figure were conducted on the optimized, directed Kuramoto models
at their approximate global coupling strength for maximum metastability (g = 3.5), data from the 58 optimized models and underlying struc-
tural networks were averaged, and the trends observed for individual optimized models can vary (Figure 8; R: Pearson correlation).
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Simulated Network Injury Produces Both Increased and Decreased Regional Nodal Strength on

Simulated FC Networks

To broadly compare the results of our optimized, injured simulations to existing literature
regarding FC and rodent TBI, we examined whether different nodes’ FC strengths were
decreased or increased by TBI. Previous findings in humans and rodents have suggested that
both decreased functional connection strength (“hypoconnectivity”) and increased functional
connection (“hyperconnectivity”) can occur after TBI (Figure 9A) and that these effects may be
distributed in different brain regions or functional subnetworks (Kulkarni et al., 2019; Zhou
et al., 2012).

When considering all nodes that were common to our 58 optimized models and not
directly part of the regions directly targeted by our connectivity loss model of injury, we found
that the simulated FC strength was more likely to decrease at any specific node as the severity
of the simulated injury increased (i.e., as the fraction of remaining connectivity strength
decreased; R = 0.7911, p < 0.0001; Figure 9B). The specific brain regions that most frequently
displayed a decrease in FC strength across our models tended to be in the ipsilateral hemi-
sphere and included both cortical and subcortical regions, while the regions that most
frequently displayed an increase in FC strength included ipsilateral regions involved in scent
processing (the olfactory tubercle and the taenia tecta) and contralateral regions, particularly
regions in the contralateral amygdala (Supporting Information Table S1; Figure 9C). The nodal
distribution of FC strength decrease frequencies among our models were noticeably different
between specific injury levels; for example, the nodal distribution of strength decrease
frequency at minimal injury (i.e., connectivity loss = 0.05) differed from the nodal distribution
strength at slightly more severe injury (connectivity loss = 0.25; K-S p < 0.0001), but the
distribution between connectivity loss = 0.25 and connectivity loss = 0.50 was not different
(K-S p = 0.11, ns; Supporting Information Figure S7), and this general lack of difference
persisted between more severe injury levels (Supporting Information Figure S7). Overall, these
simulated FC results demonstrate the potential presence of both hypoconnectivity and hyper-
connectivity for the functional connections at different brain regions as a consequence of
connectivity loss, even at severe injury levels, though increased severity does lead to relatively
more common regional hypoconnectivity throughout our simulated outcomes.

Figure 8. Connectivity injury in a select series of brain regions (Chen et al., 2014; Table 2) disrupts simulated FC for optimized models,
particularly for simulations on the directed connectome. Changes in simulated FC can be measured using the distance between simulated
FC and the uninjured FC, which increases in response to reduced connectivity for (A) the optimal undirected models (average distance vs.
connectivity loss = 0.84) and for (B) the optimal directed models (average distance vs. connectivity loss = 0.91). The average distance versus
connectivity loss relationship was significantly more correlated for the directed models (C), suggesting that simulations on the directed con-
nectome respond more consistently to network injury than those on the undirected connectome (****p < 0.0001). Comparisons with samples
in A and B are sorted from 1 to 58 by decreasing correlation between each of the mean distance from uninjured network and connectivity.
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DISCUSSION

Our broad goal was to develop optimized computational models of mouse brain dynamics
that would be disrupted by a realistic injury, allowing us to explore possible FC changes after
experimental TBI. We found that structural directionality and a new fitting process that
adjusted the frequencies of each node contributed to our models’ predictive power. The opti-
mized models predicted a consistent magnitude of FC disruption in response to a degree of
simulated mild CCI, a model of mild TBI. Intriguingly, the models predicted regions of
increased connectivity (hyperconnectivity) and decreased connectivity (hypoconnectivity)
after injury, resembling the changes observed in FC after both experimental and human TBI.

One of our first steps was analyzing whether the experimental data showed enough simi-
larity within anesthetic states to develop generalized models for each. Past work has com-
mented on differences among mouse anesthetic states; for example, Grandjean et al. (2014)
noted that their propofol and urethane procedures produced relatively shallow and deep
anesthesia, respectively, and that medetomidine anesthesia could produce epileptic activity
when not combined with isoflurane. Likewise, mouse fMRI collected under a combination of
low-dosage medetomidine and isoflurane may be optimal for consistently measuring resting-
state FC patterns such as cortical and striatal connectivity (Fukuda et al., 2013; Grandjean et al.,
2014, 2020). However, we did not find significant differences among anesthetic groups’ similar-
ity to the average FC network. Without a rationale for averaging animals within each anes-
thetic group, we generated best fit models to each of the 58 measured FC networks and used
these models to examine a range of potential healthy and injured brain states.

Figure 9. FC changes after simulated injury involve both increases and decreases in FC edge strength. (A) Strength at a network node is
calculated as the sum of all FC edges connected to that node. After an injury, we can determine whether the FC strength at a specific node
has decreased or increased. Created in BioRender. Rayfield, A. (2024) https://BioRender.com/m36a192. (B) We considered only the FC edges
between 103 nodes corresponding to regions of interest that were common to all 58 optimized models and not directly injured by the con-
nectivity reduction model. Among all these nodes in our optimized models, nodes decreased in strength more frequently after injury as the
connectivity loss fraction increased (R = 0.7911, p < 0.0001). (C) Visual representation of the considered brain regions that most frequently
displayed a decrease in FC strength (blue) and that most frequently displayed an increase in FC edge strength (red) after a single injury level
(connectivity loss = 0.75). Broadly, the brain regions that most frequently displayed a strength decrease were ipsilateral to the injured nodes,
while those that most frequently displayed a strength increase were contralateral. Refer to Supporting Information Table S1 for a list of the
visualized brain regions. Created with DSI Studio. (D) The frequency distribution of strength decreases after minimal injury (left, connectivity
loss = 0.05) was significantly different from the distribution at a more severe injury (center, connectivity loss = 0.25, K-S p < 0.0001), which
also significantly differs from the distribution at a relatively severe injury level (right, connectivity loss = 0.75, K-S p = 0.015; R: Pearson
correlation).
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Our model is a simplified representation of brain dynamics, and this will inevitably limit the
predictive accuracy of the model until its predictions are rigorously tested. The Kuramoto
oscillator model’s simplified formulation has both advantages and disadvantages—the low
computational complexity can provide insights into how manipulations at specific brain
regions affect global brain dynamics (Gollo et al., 2017; Schmidt et al., 2015; Váša et al.,
2015) without great computational cost. To this end, the Kuramoto model has been used to
predict how FC may arise from brain structure in health or human TBI (Cabral et al., 2011;
Hellyer et al., 2015; Wu et al., 2022) and can simulate FC with fidelity comparable with other
neurodynamics models (Messé et al., 2015). However, one design limitation is determining the
ideal pattern of natural frequencies to distribute throughout the network. Our work uses
random oscillations in the BOLD range similarly to how slow oscillations have been used
in prior research (Alderson et al., 2018; Cocchi et al., 2016; Gollo et al., 2017; Schmidt et al.,
2015) and then optimizes their frequencies and computes FC directly from correlations in the
Kuramoto output. An alternative choice was to use nodal frequencies from higher frequency
EEG bands, such as gamma oscillations, which may produce substantially different results from
the low-frequency oscillations used in this paper. These dynamics may be combined with time
delays and methods such as the Balloon–Windkessel hemodynamic model (Friston et al.,
2000) to model the BOLD signal (Cabral et al., 2011; Pope et al., 2023; Wu et al., 2022).
Given our low-frequency range and the small size of the mouse brain, we did not include
time delays or phase lags. Delays may be more relevant if we modeled fast oscillations (Cabral
et al., 2011; Ghosh et al., 2008; Lee & Frangou, 2017).

Another attribute to consider when developing models for brain dynamics is structural con-
nectivity architecture. The Kuramoto model has frequently been applied to undirected, MRI-
based SCs, particularly from human subjects, though prior work has noted that simulations
using undirected connectomes derived from directed data synchronized faster than those
using the original directed connectomes (Crofts et al., 2022). Our comparative work showed
a similar trend, as undirected connectomes more readily synchronized than directed connec-
tomes. An analysis of our directed connectome architecture revealed that it was strongly direc-
tional, with individual edges showing a strong bias in connection direction between node
pairs (Supporting Information Figure S8), perhaps explaining the significant difference in
coupling dynamics between our two modeling approaches. Another study that applied the
Kuramoto model to directed mouse connectivity data (Choi & Mihalas, 2019) found that its
global synchronization behavior was powerfully dependent on strong, long-distance connec-
tions, so such connections may also have a greater effect on the undirected network. We
also need to consider our simplification of using one connectome for all models, rather than
an individual mouse connectome for each model. Prior research by Melozzi et al. (2019)
found that FC predictions simulated using the reduced Wong Wang model on mouse MRI
SCs could be improved using the SCs for individual animals rather than the average of these
connectomes. However, the same study found that the tracer-based connectome significantly
outperformed individual MRI data, suggesting that the detail added by using directed tracer
information from the AMBCA connectome, rather than diffusion MRI estimation, improves
predictions more than using individual data alone.

Although both our undirected and directed models were optimized to fit target data similarly
well, the mean predictive power that we achieved without optimization was substantially lower
than that of Melozzi et al. (2019; R = 0.488). While this may be due to the low complexity of the
Kuramoto model, the recording conditions used to obtain empirical FC are another potential
cause. Melozzi et al. recorded their fMRI data from a group of awake mice, while the fMRI
dataset we used contained scans from multiple anesthetic conditions and demonstrated
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relatively low intersubject correlations. Differences between the populations of mice imaged
with fMRI and injected for tracer data may also affect predictive power, as SC and FC charac-
teristics can differ between distinct mouse populations (Karatas et al., 2021). The fMRI study we
used (Grandjean et al., 2014) imaged female C57BL/6 mice, while the tracer-based connectome
was determined from experiments in hundreds of male C57BL/6 J mice (Oh et al., 2014) and
Melozzi et al. (2019) collected FC data from male B6/129P hybrid mice.

One broad goal for developing this model of mouse brain dynamics is to provide a predic-
tive tool for how neural dynamics will change after specific brain lesions and to eventually
correlate these changes in brain dynamics with cognitive function. Both structural connectivity
and FC changes occur in humans after TBI (Caeyenberghs et al., 2017; Li et al., 2020; van der
Horn et al., 2017a), and recent research suggests that both networks may predict symptoms
after concussion (van der Horn et al., 2017b; Ware et al., 2023). Recent work that predicts
injury using the features of brain networks after simulated impacts (Anderson et al., 2020;
Wu et al., 2022) only examines the diagnosis—concussion or no concussion—and does not
predict behavioral changes. Our approach to modeling injury was inspired by the neurode-
generation observed after an in vivo injury model (Chen et al., 2014) and aimed to represent
the consequences of a mouse concussion model more closely than prior research using lesions
to identify the most important brain areas regulating FC and dynamics (Alstott et al., 2009;
Váša et al., 2015). However, our specific findings concerning changes in structural global
efficiency, simulated FC, and their correlation should be confirmed for different approaches
to injuring brain regions and different SC. Having applied our Kuramoto model to an experi-
mental model of TBI, we could begin a more precise study of the relationship between lesion
patterns in TBI and neurobehavioral outcomes.

A number of observations from our model are consistent with past studies: Simulated net-
work dynamics and FC are disrupted by network injury (Alstott et al., 2009; Wu et al., 2022), a
small group of nodes can have a significant influence on global efficiency (Anderson et al.,
2020), and injury will produce areas of functional hypo- and hyperconnectivity (Bittencourt
et al., 2022; Messé et al., 2013; Sharma et al., 2023; Zhou et al., 2012). Interestingly, we found
that models optimized with directed connectivity were more consistently disrupted by simu-
lated injury than those optimized with undirected connectivity, though this finding appears
sensitive to changes in global coupling strength (Supporting Information Figure S6). This
may be related to the higher sensitivity of synchrony on undirected networks to global cou-
pling relative to directed networks, or to differences specific to the dynamics of the opti-
mized simulations such as the broader, lower synchrony distribution and lower metastability
distribution we found in the optimized, undirected simulations relative to the optimized,
directed simulations (Supporting Information Figure S5). As neurodegeneration occurs over
time after experimental TBI (Chen et al., 2014; Pleasant et al., 2011), future models should
investigate connectivity loss in additional areas. Indeed, study of human subjects has sug-
gested that structural global efficiency decreases that are not previously apparent can
develop 1 year after concussion in adolescent patients (Chung et al., 2019). On the other
hand, patients with concussion and reported PPCS complaints 3 months postinjury may pres-
ent with higher structural global efficiency 4 weeks postinjury than those with concussion
and no complaints (van der Horn et al., 2017a). Understanding longitudinal changes in
mouse brain global efficiency and their relationship to behavioral impairments could pro-
vide additional insight into understanding how the human brain can change and recover
after concussion.

The predicted emergence of hypoconnectivity and hyperconnectivity is intriguing, as it
implies that neurodynamics can immediately compensate for physical loss in connectivity

Network Neuroscience 345

Modeling mouse brain functional connectivity and injury

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/doi/10.1162/netn_a_00431/2482179/netn_a_00431.pdf by guest on 28 M
arch 2025



after TBI. However, the exact regions that we find to demonstrate relatively high likelihoods of
hypoconnectivity and hyperconnectivity may be sensitive to the initial conditions and target
FC network used to optimize each model, and the robustness of these exploratory findings
under different simulation conditions and computational models should be investigated by
future researchers. Furthermore, the mild CCI study from which we selected regions of interest
to injure did not measure FC for a direct comparison. Our hypoconnectivity findings accord with
recent calcium imaging experiments that found that cortical FC in mice was decreased after a
CCI injury, particularly for interhemispheric connections and connections within the ipsilateral
hemisphere, though these deficits slowly improved between 3 and 21 days postinjury (Bottom-
Tanzer et al., 2024). Regional FC hypoconnectivity has been observed near a severe CCI lesion
in rats 7 and 28 days postinjury using fMRI (Harris et al., 2016). This mirrors the predominant
hypoconnectivity that we predicted in our model and is similar to the hypoconnectivity
observed after mouse CCI, but this finding was weaker on day 14, and regional hyperconnec-
tivity also emerged early and were most persistent for subcortical and contralateral cortical
regions. Severe rat CCI has been shown to produce motor deficits in prior work (Harris et al.,
2010), similar to the finding of early rotarod deficits caused by mild CCI in mice (Chen et al.,
2014), which suggests that our hypoconnectivity predictions may be behaviorally relevant, as
regions that were likely to display hypoconnectivity across our models included the primary
motor area (Supporting Information Table S1). Hyperconnectivity during resting-state mouse
fMRI has also been reported when measured 2 and 14 days postinjury for a closed-head con-
cussion model (To & Nasrallah, 2021), though this finding was strongest for local changes in
connectivity (regional homogeneity) and not identified on day 7, demonstrating the significance
of time after injury to empirical findings. Additional rat research using EEG following fluid per-
cussion injury has found postinjury hyperconnectivity to emerge early and change differently
over time depending on the methods used to produce networks (Fox et al., 2024). Interestingly,
increased FC between the cerebellum and amygdalar regions—similar to our model predictions
of contralateral amygdala hyperconnectivity—was reported in another rat model after a single
concussion (Kulkarni et al., 2019). As the original mouse mild CCI study could not identify a
fear conditioning deficit (Chen et al., 2014), our modeling results suggest that such compen-
satory hyperconnectivity in the contralateral fear circuitry could be behaviorally relevant.
Future functional imaging of brain regions involved in fear behavior (Wheeler et al., 2013)
can explore this possibility, as injury severity, neurodegeneration changes at least 8 days after
mild CCI (Chen et al., 2014), and longitudinal FC changes may influence both brain activity
and behavior. Recent research has also predicted global decreases in simulated FC similar to
empirical data when modeling mouse brain thalamic lesions or cortical inhibition by increas-
ing the excitability of specific regions (Rabuffo et al., 2023). To study FC changes after injury
with more realism and detail, future injury models should combine changes in regional activ-
ity with the connectivity loss we implemented in this work, which may also be achievable in
future Kuramoto model studies by altering nodal oscillation frequencies (Wu et al., 2022).

Our modeling process demonstrates that directly representing the BOLD signal with the
Kuramoto model can estimate FC. We further demonstrate that directed connectivity may
improve the fidelity of FC predictions and change simulations more consistently in response
to injuries when compared with undirected connectivity and compare our findings to rodent
TBI literature. Given the prevalent use of undirected network measures, researchers should
consider the importance of direction in brain connectomes when possible. For both archi-
tectures, we demonstrate that nodal frequency optimization can more closely fit models to
individual FC networks, which may improve the accuracy of future studies that simulate FC
or predict cognition from dynamical models. By investigating the effects of injury on mouse
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connectome simulations, our work proposes a means to interrogate theoretical research
through experiments that compare predicted changes in brain dynamics to in vivo measure-
ments. Researchers may model lesions or more complex injuries that incorporate finite ele-
ment modeling (Chen et al., 2014; Pleasant et al., 2011) and neurodegeneration predictions
(Kraft et al., 2012; Wu et al., 2022) to determine how these affect FC networks and behavior.
Future studies combining computational and experimental research will compare their results
to observational studies of TBI patients, which suggest that postinjury FC, whether measured or
simulated, may predict functional deficits.
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