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ABSTRACT

This thesis focuses on enabling robots to robustly perform complex, multi-step manipulation
tasks, like chopping vegetables or wielding a wrench. Completing such tasks requires a robot
to plan and execute long sequences of actions, where each action involves many connected,
discrete and continuous choices that are critically impacted by constraints relating to force,
motion and contact. To tackle this, this thesis contributes models and algorithms that exploit
the physics and geometry of the world in order to address the dual challenges of long-horizon
decision-making and acting under uncertainty. We apply this in the context of three domains:
in-hand manipulation, forceful manipulation and briefly-dynamic manipulation.

First, to reorient a grasped object, we develop a sampling-based motion planner to generate
sequences of pushes that slide the object in-hand. We derive an abstraction for pushing
to enable the planner to reason about frictional constraints. Second, we focus on forceful
manipulation tasks, such as opening a childproof medicine bottle or twisting a nut on a
bolt, where the robot’s planning choices are impacted by the need to exert force. We define
constraints that explicitly consider torque and frictional limits and integrate these into an
existing task and motion planning framework. We leverage cost-sensitive planning to enable
the robot to generate plans that are robust to uncertainty in the physical parameters. Finally,
we frame planning with dynamic actions, like shoveling or toppling, as requiring the robot
to reason about both action uncertainty and potential dead ends. We learn a simple action
model and formulate a sample-based manipulation planner that guards against dead ends in
the face of uncertainty. Throughout this thesis, we validate the practical applicability of our
model-based approaches by evaluating them on real robots.
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with a tool (in blue), fixturing with a vise (in grey), fixturing against the ta-
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3.6 Along each joint of the forceful kinematic chain, we first project the expected
wrench into the subspace defined by each joint and then verify if the joint
is stable under that wrench. The figure illustrate the wrench limits for each
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ary of the limit surface. In contrast, the bottom grasp, which leverages kine-
matics to resist the large torque, is stable. 65
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output either new parameter values that are certified to satisfy some constraint
or simply a certification that the inputs satisfy a constraint. Samplers can be
conditioned upon each other such that the output of one sampler is the in-
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3.11 Pick-and-Place Example. Expanded view of the PDDLStream search pro-
cedure. The state is composed of facts from the initial set of facts (in blue)
and the set of certified static facts generated by the samplers (in green). An
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3.13 For each setting, we provide the number of steps for each strategy and the
average planning time in seconds (and standard error) over five runs. *: Uti-
lized a higher friction coefficient µ to increase feasibility **: Invalidated shorter
strategies to force to planner to find these longer strategies. 78

3.14 In opening the childproof bottle, the robot can fixture against the low-friction
table ( ), a medium-friction mat ( ) or a high-friction mat ( ). For each cost
threshold we run the planner ten times, noting which surface is used. As the
cost threshold decreases, the robot is forced to more frequently use higher
friction surfaces that are more robust to uncertainty. 79

3.15 We evaluate how decreasing the cost threshold impacts what fixturing sur-
face the planner uses in the childproof bottled domain (Fig.3.14). As the cost
threshold decreases, the planning time increases. 79

3.16 In the nut-twisting domain we consider the trade-off between the grasp cost
and the fixturing cost. On the left, at each weight value, we randomly sam-
ple, 100 times, the pose of the weight along the beam and the grasp on the
weight. Since, at the extremes, some costs evaluate to infinity, we plot the
median and a 95% confidence interval. We then demonstrate how the trade
off impacts the choices made by the planner by considering an environment
in which there are three possible masses, as shown in the center. The robot
can fixture using the 2.6kg mass ( ), the 3.5kg mass ( ) or the 4.4kg mass
( ). Without accounting for robustness, the robot chooses any of the masses.
When planning robustly, the robot more often picks the medium weight, which
balances the trade-off in costs. In both cases we run the planner ten times,
noting which weight is used. 80

3.17 In the vegetable cutting domain, we show how robust planning leads the plan-
ner to select grasps that are closer to the blade of the knife, because doing
so creates a smaller torque that the grasp needs to resist. For each cost thresh-
old, the planner is run 10 times and the grasping offset is plotted. An offset
of 0 corresponds to a grasp at the butt of the knife. 81

3.18 We evaluating slicing success for three grasps (from top to bottom: side_grasp,
top_grasp_close and top_grasp_far) across three foods. For the
cucumbers and bananas with peel we perform 15 iterations, for the banana
without the peel we perform 10. We classify each interaction as a success
/ partial success / failure. 83

4.1 The robot gives a quick shove in order to push the green block across the ta-
ble. As shown, there are many possible outcomes as a result of this action,
including the object toppling over or teetering on the edge of the table. In
this work we focus on enabling robots to leverage dynamic actions like this
while accounting for uncertainty and irrecoverable outcomes, or dead ends. 86
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4.2 The lefthand side show an example environment viewed from the side. The
environment includes with a robot, surface (the grey table top), a target ob-
ject (the blue rectangular prism), an obstacle (in black), a glass vase serving
as a non-interactable (in purple) and a goal region (highlighted in green). The
center shows this same environment from an overhead view. The righthand
side shows the factored 2D representation of our 3D environments. Each of
the colors correspond to the lefthand side, but the robot is omitted. This shows
one mode, for a fixed choice of target object orientation and face. 90

4.3 We consider three experimental domains: corner (left), slipperyslope
(middle) and glasswall (right). The target object, at its starting config-
uration, is blue, the goal is the highlighted green region, obstacles are black
and non-interactables are purple. 91

4.4 (Left) In the slipperyslope environment, for one mode, we overlay the
FeasibleArea for four actions. (Right) The result of the shattering al-
gorithm is to compute all possible intersections of the subsets of FeasibleAreas
such that the space is partitioned into regions where each region has a specifed
set of actions, thus defining the ActionRegions. Given this representa-
tion, we can query a specific point in configuration space (shown as the black
dot) to retrieve the set of feasible actions. 94

4.5 DangerZones in the slipperyslope domain. Here we show the zones
across six modes, capturing the three object faces and two orientations. The
obstacles (and configuration space obstacles) are given in black (and grey).
We color z0 in dark red and show z1 and z2 in brighter shades. 96

1 Across varying stiffnesses with Cartesian impedance control, we plot the ex-
perimental relation between the offset in the commanded offset in the z di-
rection and the exerted force in z, as measured by an external force-torque
sensor. For each stiffness we plot all five experimental runs, bolding the av-
erage. The result shows that the relation between the offset and force exerted
is nearly linear. 119



1
Introduction

The goal of this thesis is to enable robots to robustly perform multi-step,
contact-rich manipulation tasks in everyday environments. We consider tasks
such as cooking dinner at home, packing supplies in hospitals and cleaning
up messy classrooms (Fig.1.1).

Completing these types of tasks requires a robot to execute long sequences
of actions, where each action involves many connected, discrete and continu-
ous choices that are critically impacted by physical constraints. For example,
if a stack of chairs is too heavy for a robot to carry, can the robot detect this
and instead choose to push the stack, while also deciding how to push the
stack? In preparing stir fry, can the robot choose between different utensils,
using various tools to chop vegetables and mix ingredients and then even
clean up afterwards? Furthermore, for robots to operate in the real world, it is
crucial that they be able to cope with partial or uncertain information. While
the robot may not know the exact shape or weight of every ingredient, we still
want it to be able to manipulate each with ease.

These three issues — long-horizon decision-making, the mechanics
of contact-rich interaction and uncertainty — are at the core of robot
manipulation tasks. These issues interact in critical ways, as illustrated
by Fig.1.2, where the robot must generate a sequence of actions to open a
childproof medicine bottle.

To exert the significant amount of downward force and torque needed
to open the push-and-twist bottle, the robot could use its fingers to grip
the cap. In this particular case, however, the blue tool allows the robot to
more robustly apply the desired force. Unfortunately, cluttered environment
prevents the robot from directly and securely grasping the tool, since only the
very top of the tool is reachable. While the robot could rearrange the scene,
carefully moving the other tools out of the way, the robot instead grasps the
top of the tool and leverages its environment to achieve a more secure grasp.
The robot then uses the tool to exert the desired push-and-twist and, finally,
uncap the bottle.

In addressing these core challenges of manipulation, this example high-
lights the importance of enabling the robot to reason over what choices are
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Figure 1.1: The goal of this thesis is to
enable robots to complete a wide range
of multi-step manipulation tasks.

suitable given the constraints of the task and the environment. In particular,
the need to make robust choices, exert substantial force and operate in clutter
impacted our robot’s decision-making, both with respect to the sequence of
actions and the parameters of those actions. And, if the environment didn’t
have a wall for the robot to utilize in changing its grasp on the tool, we would
still want our robot to be able to complete the task, by, for instance, using the
aforementioned rearrangement strategy.

We believe that this type of reasoning – where the robot is empowered to
search over a combinatorial number of strategies and choices — is crucial to
enabling a robot’s behavior to generalize across a diverse range of tasks and
environments. This thesis adopts a model-based approach, where we develop
planning frameworks and algorithms that leverage composable models of the
world to sequence complex robotic behavior. We contribute models that draw
from tools in classical mechanics, including kinematics, statics and dynamics,
and those learned from data. We consider models that account for uncertainty,
specifically focusing on uncertainty in the physical parameters that govern the
mechanics models and uncertainty in the dynamics models of the action.

Summarizing, this thesis contributes models and algorithms that ex-
ploit the physics and geometry of the world in order to tackle the dual
challenges of long-horizon decision-making and acting under uncer-
tainty, in the context of robotic manipulation. We demonstrate this in three
domains: in-hand manipulation, forceful manipulation and briefly dynamic
manipulation:

In-Hand Manipulation We focus on in-hand manipulation as strategy for the
robot to change its grasp on, or regrasp, an object. Specifically, this thesis
considers reorienting a grasped object in-hand by repeatedly pushing
against features in the environment. Critical to enabling this behavior is
capturing how a grasped object can move when pushed, accounting for the
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BottleTools

WallRobot

grasp(tool,..) reorient(tool,..) pushtwist
(bottle,..)

uncap
(bottle,..)

move(robot,..)

Figure 1.2: Complex manipulation tasks,
like opening a push-and-twist child-
proof medicine bottle, require robots to
reason over many physically-complex
actions. Here, the robot wants to use
a tool (outlined in black) but because
the tool is surrounded by other objects,
the robot can only reach the top of the
tool. The robot then leverages the envi-
ronment to create a more secure grasp,
thus allowing the robot to use the tool
to exert the necessary force to uncap the
bottle.

underactuation of friction and the effect of gravity. We contribute a model
for frictional pushing in the gravitational plane that extends the notion
and construction of the motion cone (Mason, 1986). This model defines
the set of motions that it is possible to produce when pushing an object.
We we leverage in a sample-based motion planning algorithm to generate
sequences of pushes to manipulate the object in-hand. We additionally
show how slight modifications to the planner enable it to generate plans
that are robust to uncertainty in the physical parameters. (Chapter 2)

Forceful Manipulation We define forceful manipulation tasks as those where
the ability to generate and transmit the necessary force to objects is an
active limiting factor that constrains the action selection, both with respect
to the sequence of actions and the parameters of those actions. In this
thesis, we use opening a childproof medicine bottle, twisting a nut on a
bolt and chopping vegetables as illustrative forceful manipulation tasks.
Accomplishing these tasks requires the robot to make a wide range of
discrete and continuous choices that are constrained by both motion and,
critically, force-related contraints. To model the latter, we contribute the
forceful kinematic chain constraint, which captures the system’s ability to
stably exert the desired force. We frame forceful manipulation as a task
and motion planning (TAMP) problem and incorporate this constraint into
an existing state-of-the-art framework (Garrett et al., 2020a). Additionally,
by quantifying the probability of task success as an action cost and using
cost-sensitive planning, we enable the robot to generate plans that are
robust to uncertainty in physical parameters. (Chapter 3)

Briefly-Dynamic Manipulation Finally, we consider generating sequences
of actions that have brief periods of dynamics, referred as briefly-dynamic
manipulation (Mason, 2001). We focus on dynamic actions as an illustra-
tive instance of manipulation that has a high degree of action uncertainty
that must be reasoned over, particularly because some actions may have
outcomes that are irrecoverable, making it impossible to achieve the
goal. We learn a simplified model of the action dynamics and contribute
a search algorithm GUARD (Guiding Uncertainty Accounting for Risk
and Dynamics) for iteratively planning and executing actions. Critically,
our algorithm computes where actions may be irrecoverable and steers the
search away from these areas, enabling the robot to act safely in the face
of uncertainty. (Chapter 4)
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In each domain we model the mechanics of the task that serve as con-
straints that are integrated into a multi-step planner. We contribute methods
to generate plans that are robust to various sources of uncertainty. Our model-
based approach, both in representing the mechanics and in planning, enable
our algorithms and frameworks to generalize to new environments and to
solve long-horizon tasks. Additionally, throughout this thesis we ground the
research in real robot experiments, which are fundamental to verifying the
contributed methods.



2
Planar In-Hand Manipulation via Motion Cones

2.1 Introduction

A motion cone is the set of feasible motions that a rigid body can follow
under the action of a frictional push. We can think of it as a representation
of the underactuation inherent to frictional contacts. Since contacts can only
push, and since friction is limited, a contact can move an object only along a
limited set of rays. The concept was introduced by Mason (1986) for a point
contact in the context of a planar horizontal pushing task.
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Motion Cone
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Config.s in 
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Figure 2.1: (top) Example friction cone
and motion cone of an object moving
in the vertical plane. The pusher can
move the object along any direction
[Vx , Vz, ωy] inside the motion cone. (bot-
tom) A plan via motion cones. Motion
cones capture local reachability. A path
in the tree of motion cones generates a
pushing strategy to move an object.

Motion cones are a practical geometric representation that abstracts the
algebra involved in simulating frictional contact dynamics, and provides
direct bounds on the set of feasible object motions. A contact force on the
inside (or boundary) of the friction cone produces sticking (or slipping)
behavior, and leads to motion rays on the inside (or boundary) of the motion
cone. Lynch and Mason (1996) generalized the construction of motion cones
to line contacts in a horizontal plane. They used them to plan stable pushing
trajectories without having to deal explicitly with the complexities of the
complementarity formulations of contact dynamics (Stewart and Trinkle,
1996; Posa et al., 2014; Chavan-Dafle and Rodriguez, 2020). Since then,
motion cones have been the basis of several efficient planning and control
strategies for planar manipulations on a horizontal support surface (Erdmann,
1998; Dogar and Srinivasa, 2010; Hogan and Rodriguez, 2016; Zhou and
Mason, 2017).

This chapter studies the construction of motion cones for a broader set
of planar pushing tasks, moving beyond the horizontal plane, and includ-
ing the effect of gravity. In particular, we highlight the case of prehensile
manipulation in the vertical plane where gravity–or other possible external
forces–alter the dynamics of the contact interactions between an external
pusher and a grasped object. In this chapter we show that motion cones are
an effective representation to capture the coupled mechanics between gripper-
object-environment, which is critical for efficient simulation, planning, and
control. This research has been published at RSS

2018 and IJRR 2020 (Chavan-Dafle et al.,
2018, 2020).

We present four main contributions:
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Figure 2.2: Manipulating a T-shaped
object in a parallel-jaw grasp by pushing
it against features in the environment.
The manipulation is shown from a side
view.

• Mechanics of motion cones for planar tasks in the gravity plane. We
show that the motion cone is defined by a set of low-curvature surfaces,
intersecting at a point and pairwise in lines. We propose a polyhedral
approximation to the motion cone for efficient computation.

• Experimental validation of the boundaries of the motion cones in a pla-
nar prehensile pushing task. We record the object motion and the stick/slip
of the pusher for thousands of prehensile-pushes in three different grasp
configurations. The motion cones characterize the feasible object motions
with 80%+ average accuracy. These numbers are considerably larger
when taking conservative approximations of the coefficient of friction.

• Application of motion cones in a sampling-based planning framework for
planar in-hand manipulation using prehensile pushes (see Fig.2.1). This
yields significant speed improvements with respect to prior work (Chavan-
Dafle and Rodriguez, 2020, 2018). Fig.2.2 shows an example of a pre-
hensile pushing trajectory to change the grasp on a T-shaped object. The
trajectory is a sequence of continuous stable pushes, during which the ob-
ject sticks to an external pusher. The proposed planning algorithm obtains
these trajectories consistently in less than a second.

• Robustness of prehensile pushes to variations in friction coefficients and
gripping force. We show that conservative approximations motion cones,
and a careful selection of the orientation of the task with respect to gravity,
yield increased reliability, and, in some cases, invariance.

The generalization of motion cones to interactions with external forces
such as gravity opens a door for efficient and robust planning of in-hand
manipulation that respects–and exploits–the basic principles of frictional
rigid-body contact interactions: Newton’s second law, Coulomb’s friction law,
the principle of Maximal Dissipation, and the rigidity of rigid-bodies.

2.1.1 Structure of the Chapter

In this chapter we describe the mechanics and algorithms involved in using
motion cones. When possible, we use both the languages of algebra (for
implementation) and geometry (for intuition) to describe them.
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The chapter can be divided in four main parts: i) Mechanics of planar
pushing; ii) Construction, computation, and validation of motion cones; iii)
Using motion cones to plan in-hand manipulation; iv) Different mechanisms
to increase the reliability of motion cones.

The mechanics of planar pushing. This is the basis of the mechanics anal-
ysis in the chapter and is reviewed in detail in Sec. 2.3. We show how the
motion of a pushed object is governed by three key laws (described in three
sub-sections): 1) The frictional interaction at the contact between an object
and a supporting plane, the limit surface. 2) The frictional interaction at
the contact between the object and the pusher. When the contact is a point,
Coulomb’s law defines a friction cone. When the contact is a line or more
complex, it defines a generalized friction cone. 3) The force balance imposed
by Newton’s second law. These three constraints define the set of possible
force equilibria between the gripper, object, and environment.

Construction, computation, and validation of motion cones. In Sec. 2.4
we show how a particular choice of pusher motion, alongside the principle
of maximal dissipation, i.e., relation between the friction and velocity of
a sliding object, determines the motion of the pushed object. The set of
object motions for all possible pusher motions defines the motion cone.
Sec. 2.4 describes how to compute motion cones for the cases of an object
pushed in the horizontal plane (review) and in the vertical plane with gravity
(contribution). In Sec. 2.5 we provide an analytic expression for the motion
cone as well as an approximation in the form of a polyhedral motion cone,
which will be key to using them in a fast planning framework. At the end of
this section we detail efforts to verify experimentally the validity of motion
cones for three different task configurations, i.e., three different combinations
of grasps and prehensile pushes.

Motion cones for planning in-hand manipulation. In Sec. 2.6 we describe
how to use motion cones to manipulate grasped objects by pushing them
against contacts in the environment. Motion cones directly describe the set of
directions along which a grasped object can be displaced for a given external
contact. In practice, we compute motion cones in real-time and use them to
efficiently sample feasible regrasps in an RRT*-based planning framework.
In Sec. 2.7 we show different examples of planned and executed planar
in-hand regrasps.

Robustness of motion cones. Finally, we explore different ways to improve
the reliability of motion cones. Sec. 2.8 shows that either a conservative
approximation of motion cones, or a careful selection of the orientation of the
task with respect to gravity, are sufficient to yield mechanical robustness with
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respect to variations in the available friction at the contacts and the gripping
force.

We provide a video summarizing our approach at https://youtu.be/tVDO8QMuYhc.

2.1.2 Assumptions of the Approach

This chapter presents a model-based approach to planar in-hand manipulation
of grasped objects. The approach relies on the following assumptions and
representations:

• Objects: three dimensional objects grasped along parallel faces. The
manipulation plane is parallel to the grasped faces. The outline of the
object in the manipulation plane can be non-convex. We assume we know
the geometry and mass of the object.

• Gripper: a parallel-jaw gripper with force control. The gripping force
remains constant during the manipulation. The friction coefficient be-
tween the gripper-fingers and the objects is known, with some bounded
uncertainty.

• Environment: A rigid environment with geometric features (e.g. flat
faces, edges, corners) to push against. These provide affordances of con-
trolled patch, line or point contacts. We know the location and geometry
of the features with precision and their friction coefficient with some
bounded uncertainty.

• Regrasp Examples: planar regrasps are in the plane orthogonal to the axis
between the fingers of the parallel jaw-grasp. The configuration space, i.e.,
the space of object grasps, is three-dimensional; the object can translate
and rotate in the manipulation plane. The desired regrasp is specified by
the initial and final object pose in the grasp, as illustrated in Fig.2.2.

Gripper

Environment Pusher

Gripper

World Perspective Planner Perspective

Figure 2.3: (left) An object held in a
parallel-jaw gripper is pushed against a
fixed feature in the environment. (right)
The planner models this interaction as if
the object is held by a fixed gripper and
pushed by a moving environment, i.e. a
pusher.

The planning framework proposed in this work uses pushing dynamic,
captured in the form of motion cones, to generate a sequence of external
pushes that moves the object from the initial to the final grasp. In our imple-
mentation, the external pushes are executed by a robot forcing the grasped
object against fixed features in the environment. These pushes could also
abstract the interactions with a second robot arm or with extra fingers in a
multi-finger gripper.

Fig.2.3 shows the schematic from the planner’s perspective: in the plan-
ning phase, we imagine the alternate perspective where the parallel-jaw
gripper is fixed in the world and the environment is a “virtual” pusher with
full 3DOF mobility in the manipulation plane pushing the grasped object.
Planning external pushes is then equivalent to planning the motion of the
virtual pusher to achieve the desired regrasp. The “virtual” pusher motion is
then rendered in the real world by instead moving the gripper.

https://youtu.be/tVDO8QMuYhc
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Figure 2.4: Pushing an object (a) on a
horizontal surface, (b) on an inclined
surface, (c) in a grasp in the gravity
plane, and (d) in a grasp in a tilted plane

2.2 Related Work

Planning and control through contact is a central topic in robotic manipula-
tion research. A rigid-body contact is modeled as a series of constraints on
the possible motions and forces at contact. A particular contact mode, either
sticking or sliding, invokes a specific set of constraints on the motions and
forces at contact. Stewart and Trinkle (1996) and Trinkle et al. (1997) show
that a general rigid body dynamics problem with hybrid sticking/slipping dy-
namics at contact interactions can be modeled as a complementarity problem.

Recent work on trajectory optimization and manipulation planning show
that it is possible to reason about hybrid stick/slip contact modes and plan tra-
jectories through continuous contact with complementarity constraints (Posa
et al., 2014; Chavan-Dafle and Rodriguez, 2020). An alternative approach is
to replace the hard complementarity constraints by optimization-friendlier
soft-constraints, which yields a faster planning and control framework (Ku-
mar et al., 2014; Todorov et al., 2012). These methods, though broad in
their scope of application, often have to compromise between computational
efficiency and the realism of contact dynamics (Kolbert et al., 2017).

In contrast, a pivotal theme in the non-prehensile manipulation literature
is to identify application-specific and compact representations of contact
constraints and the mechanics of the task. Goyal (1989) introduced the con-
cept of a limit surface, a compact mapping from the friction wrench between
an object and its support surface and the sliding twist at contact. Mason
(1986) studied the mechanics of pushing and proposed the concept of the
motion cone. These two fundamental geometric constructions provide direct
force-motion mappings for contact interactions and have facilitated efficient
planning and control techniques in non-prehensile manipulation (Lynch et al.,
1992; Lynch and Mason, 1996; Dogar and Srinivasa, 2010, 2011; Hogan and
Rodriguez, 2016; Zhou and Mason, 2017).

Lynch and Mason (1996) extend the idea of motion cones to a line pusher
on a horizontal surface and show its application for planning robust pushing
strategies for which the pusher contact sticks to the object. Dogar and Srini-
vasa (2011) demonstrate the application of motion cones in the push-grasping
framework to plan pushes that capture an object before grasping it. Hogan
and Rodriguez (2016) and Zhou and Mason (2017) exploit the direct action-
effect mapping in motion cones to develop efficient planning and control
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techniques for pushing an object on a horizontal plane.
Some recent work focuses on other types of manipulation primitives.

Shi et al. (2015) demonstrates dynamic in-hand manipulation planning in a
parallel-jaw grasp by exploiting inertial forces. With a pre-defined contact
mode sequence at the fingers and a limit surface approximation for the force-
motion interaction at the fingers, they derive a control law that can move
the object to the goal grasp through a sequence of fast accelerations and
decelerations. Similar approaches are explored for planning and controlling
in-hand manipulations by actively using gravity (Viña B et al., 2016) or
dynamic motions (Holladay et al., 2015; Sintov and Shapiro, 2016; Hou,
2017).

Sundaralingam and Hermans (2017) propose a purely-kinematic approach
for in-hand manipulation based on trajectory optimization with a multi-finger
gripper. They assume that the fingers on the object do not slip and impose
soft constraints that encourage the minimization of finger slip. By assuming
all finger contacts to be sticking, they bypass the need for modelling the
dynamics of contacts and obtain fast kinematic plans.

Recent work presented a sampling-based planning framework for in-hand
manipulations with prehensile pushes, where the pusher contact is forced
to stick to the object using the mechanics of the task (Chavan-Dafle and
Rodriguez, 2018). The plans are discrete sequences of continuous pushes that
respect friction, contact, and rigid-body constraints.

These promising results on in-hand manipulation, which are limited to
certain types of manipulation primitives, motivate us to extend the concept
of motion cones to more general pushing tasks. Motion cones provide direct
bounds on the set of possible object motions and can be used in sampling-
based frameworks to guide sampling, or as a set of direct constraints in a
trajectory optimization framework.

2.3 Mechanics of Planar Pushing

Fig.2.4 shows four different cases of planar pushing. In case (a), the pusher
force is the only external force on the object in the manipulation plane.
However, in the other cases, a component of gravity is also present. The
concept of motion cones, as originally studied in Mason (1986) and Lynch
and Mason (1996), is limited to case (a). The extension of the mechanics of
motion cones that we present in this work is valid for all cases in Fig.2.4.

In this section we discuss the mechanics of pushing an object in a plane.
First, we will review the fundamental concepts, namely, the limit sur-
face (Goyal, 1989), and the generalized friction cone (Erdmann, 1994).
These tools will serve as building blocks for modeling the force-motion inter-
action at the contacts involved in pushing manipulations. Table 2.1 lists the
notation used within the rest of the chapter.
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q = [x, y, θ] ∈ SO(2) Configuration of the object

FW World frame fixed to the gripper.

FS

Support frame, fixed to the support surface and
coinciding with the world frame, FW . Located at the
center of pressure at the contact.

FO
Object frame, moving with the center of mass of the
object

FPi
Pusher contact frame, moving with the i-th point
contact modeling the pusher

wsupport ∈ [ fx, fz, my]T
Wrench exerted on the object by the support contact
(in frame FO)

wpusher ∈ [ fx, fz, my]T
Wrench exerted on the object by the pusher contact
(in frame FO)

ws ∈ [ fx, fz, my]T Wrench at the support contact (in frame FS).

fp ∈ [ fn1, ft1, fn2, ft2, ..]T
A vector of forces at pusher point contacts in
FP1,FP1, .. respectively

vobj ∈ [vx, vz, ωy]T Object twist, i.e. generalized velocity, in FO

vs ∈ [vx, vz, ωy]T Object twist at the support contact in FS

Js ∈ IR3x3 Jacobian that maps vobj to vs

Jp =


JP1

JP2

...

 ∈ IR2nx3
Jacobian that maps vobj to the velocity at the n
pusher point contacts in the pusher contact
frames (FP1,FP2, ..).

Table 2.1: (Left) Schematic of a pre-
hensile pushing scene with important
reference frame labeled. (Right) Math-
ematical notation used throughout the
chapter.

2.3.1 Limit Surface

The limit surface is a common construction to model the frictional interaction
at a planar patch contact. In this work, we use the limit surface to model the
force-motion interaction between an object and a support contact. In cases
(a) and (b) in Fig.2.4, the surface on which the object rests is the support
contact. In cases (c) and (d), the gripper fingers are the support contacts. As
summarized in Table 2.1, for object motions in the manipulation plane, the
resultant friction wrench ws offered by the support contact on the object
is composed of the frictional forces ( fx, fz) in the plane and the frictional
torque (my) about the normal to the plane.

Goyal (1989) defined the boundary of the set of all possible friction
wrenches that a contact can offer as the Limit Surface. Each wrench on
the boundary of the limit surface corresponds to a different sliding motion
of the object on the support plane. Based on the principal of maximum
dissipation, the perpendicular to the limit surface at a given wrench provides
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the corresponding generalized velocity of the object (Goyal, 1989).
Related to the limit surface, the Gravito-Inertial Wrench Cone (GIWC)

is a geometric construct in legged locomotion literature. However, the
embedding of the principal of maximum dissipation into the limit surface
construction provides the information of the sliding velocity at the contact,
which GIWC can not. 1 1 The GIWC captures the set of wrenches

the contacts between a robot and its
environment can resist (Wieber, 2006;
Caron et al., 2011). If the sum of the
gravitational and inertial wrenches on
the robot is inside the GIWC, it can be
balanced by the friction and normal
forces at the contacts and consequently
the pose of the robot can be stable.
This is similar to how the stability of a
grasped object can be characterized by
doing the Minkowski sum of the limit
surfaces at the multiple support/finger
contacts (Hong Lee and Cutkosky,
1991; Shi et al., 2015). Unlike the limit
surface which, in combination with
the principle of maximal dissipation,
has been used to reason about sliding
velocities, GIWC does not provide any
information about the relative motion
of the robot and the environment
when the net gravito-inertial wrench
is on the boundary or outside GIWC.
For practical reasons, the locomotion
community has not focused on sliding
behaviors, while the manipulation
community has tried to exploit them.

The limit surface is smooth and convex if the support force distribution
is finite everywhere. Howe and Cutkosky (1996); Xydas and Kao (1999)
showed that an ellipsoidal approximation allows for a simpler representation
of the limit surface geometry. In this work we will assume an ellipsoidal ap-
proximation of the limit surface, which has been shown to be computationally
efficient for simulating and planning pushing motions (Lynch and Mason,
1996; Dogar and Srinivasa, 2011; Shi et al., 2015; Zhou and Mason, 2017).

Let ws = [ fx, fz, my] be the frictional wrench on the object from the sup-
port contact in the support contact frame, FS. A mathematical representation
of the ellipsoidal limit surface is given by:

wT
s Aws = 1 (2.1)

where, for isotropic friction,

A =


1

(µs N)2 0
1

(µs N)2

0 1
(kµs N)2


such that µs is the friction coefficient between the contact and the object, N is
the normal force at the contact and k is an integration constant. For a circular
patch contact with a uniform pressure distribution at the contact, k ≈ 0.6r
where r is the radius of the contact (Xydas and Kao, 1999; Shi et al., 2015).
Note that the geometry of the limit surface is defined by the area and pressure
distribution at the contact and scaled by normal force and friction coefficient
at the contact.

When the object slides on the support contact, the friction wrench (ws)
at the contact intersects the limit surface, as shown in Fig.2.5. The direction
of object twist in the contact frame (vs) is given by the normal to the limit
surface at the intersection point (Goyal, 1989) and can be computed as:

vs ∝
∂

∂ws
(wT

s Aws) ∝ Aws. (2.2)

Conversely, if the object twist at the contact (vs) is known, we can find the
friction wrench as,

ws =
1
λ

A−1vs (2.3)
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Figure 2.5: (Left) Ellipsoidal approxi-
mation of the limit surface at the finger
contact. For a wrench ws on the bound-
ary of the limits surface, the twist at
the contact vs is normal to the limit
surface. (Right) The wrench ws and the
corresponding object motion is shown in
the manipulation scene.

Since ws lies on the ellipsoidal limit surface, from (2.1), we can solve for λ:( 1
λ

A−1vs

)T
A
( 1

λ
A−1vs

)
= 1

vs
T A−T AA−1vs = λ2

vs
T A−Tvs = λ2√

vsT A−Tvs = λ.

Given that A is a diagonal matrix, λ =
√

vs>A−1vs. Rewriting (2.3):

ws =
A−1vs√

vsT A−1vs
=

µsNB−1vs√
vsT B−1vs

= µsNws (2.4)

Here, B = Diag(1, 1, k−2) and ws = [ f x, f z, my]T is the wrench on a
unit limit surface (wT

s Bws = 1) which is scaled by µsN to produce the net
frictional wrench ws.

The force-motion mapping we have discussed so far is in the support
contact frame. From (2.2) and (2.4), the direction of the object twist in the
object frame (vobj) for a given wrench on the limit surface can be computed
as:

vobj ∝ J−1
s Bws (2.5)

where J−1
s maps the object velocity from the support contact frame FS to the

object frame FO.

2.3.2 Generalized Friction Cone

Coulomb’s friction law is the basis for many of the models used to simulate
frictional interaction between two rigid bodies. A Coulomb friction cone
establishes the relationship between the normal force and the maximum
friction force at a point contact.

Erdmann (1994) introduced the concept of the generalized friction cone
(W) as the friction cone of the contact expressed in the reference frame of the
object. The generalized friction cone for a line/patch contact modelled with
multiple point contacts is the convex hull of the generalized friction cones for
each constituent contact (Erdmann, 1993).
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Figure 2.6: (Left) The line pusher con-
tact in this example is modelled with
two point contacts. The pusher contact
frames and the object frame are drawn
in the figure. (Right) The generalized
friction cone of the pusher is the ob-
ject frame representation of the set of
forces the two point contacts can offer
collectively.

We model the friction between the pusher and the object by constructing
the generalized friction cone:

Wpusher = {wpusher = J>p · fp | fp ∈ FCpusher} (2.6)

where, J>p is the Jacobian that maps the contact forces fp from the friction
cone FCpusher at the pusher point contacts to the object frame. Since the
Coulomb friction cone represents the set of feasible forces a point contact
can offer, the generalized friction cone captures the set of feasible wrenches
the pusher can impose on the object. If the contact between the pusher and
the object is maintained (sticking), the pusher can impose any wrench on the
interior of the generalized friction cone. However, if the object slips with
respect to the pusher, the pusher wrench on the object will be on the boundary
of the generalized friction cone.

We model the interaction between support-and-object (limit surface) and
between pusher-and-object (generalized friction cone) differently due to the
different geometries and expected pressure distributions. For the support-
object interaction, the ellipsoidal approximation to the limit surface provides
a compact force-motion relationship at a support contact where we expect
a constant normal force distribution during the manipulation. Whereas, the
generalized friction cone is a better approach for modelling the friction at the
pusher contact where we can have varying normal force distribution for every
instantaneous push.

Now, with the chosen models for frictional contact, we formulate the
mechanics of pushing in a plane.

2.3.3 Mechanics of Pushing

The motion of the pushed object is in accordance with the net wrench acting
on the object. Under the quasi-static assumption, which is appropriate for
slow pushing operations, the inertial forces on the object are negligible and
force balance requires:

wsupport + wpusher + mg = 0 (2.7)
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Here, (2.7) is written in the object frame located at the center of gravity.
wsupport is the friction wrench provided by the support contact, wpusher

is the wrench exerted by the pusher, m is the mass of the object, g is the
gravitational component in the plane of motion. The Jacobian J>s maps the
support contact wrench from the support contact frame (usually located
at the center of pressure) of the support surface to the object frame. So,
wsupport = J>s ·ws and (2.7) becomes:

J>s ·ws + J>p · fp + mg = 0 (2.8)

Equations (2.8), (2.6) and (2.5) define the system of equations to solve to
determine the velocity of the object vobj for any possible vector for pusher
forces fp. Solving the mechanics of pushing refers to solving (2.8) at every
time instant while considering the possibility of sticking/sliding at the
pusher-object and support-object contact interactions. Based on the sticking
or sliding mode at the support and pusher contact, the wrenches at these
contacts will be either inside or on the boundary of the limit surface and
the generalized friction cone respectively, as discussed in Sec. 2.3.1 and
Sec. 2.3.2. We can formulate the hybrid dynamics of pushing as a rigid-
body dynamics problem which will take the form of a complementarity
problem (Chavan-Dafle and Rodriguez, 2020).

Generating a motion plan for a given pushing manipulation task, e.g., mov-
ing an object on a ground or in a grasp, involves building a continuous series
of instantaneous feasible object and pusher motions that satisfy the mechan-
ics of pushing at every instant. In a trajectory optimization framework, this
translates to including the complementarity constraints from the dynamics of
pushing into the optimization problem and optimizing for the series of object-
pusher states. In a sampling-based framework this translates to sampling
instantaneous pusher-object motions that comply with (2.8), (2.6) and (2.5).
Checking their feasibility involves solving the mechanics of pushing and
keeping track of the pusher-object state including the possibility of sliding
between them. Either way, solving the mechanics of pushing to predict the
pusher-object motion and slipping/sticking at contacts is computationally
expensive (Posa et al., 2014; Hogan and Rodriguez, 2016).

A direct action-effect mapping, i.e., the relationship between the pusher
motion and object motion, avoids the burden of solving the hybrid mechan-
ics of pushing. The existence of such a mapping is the key motivation of
this work, described by the motion cone construction that we study in the
following section.

2.4 Motion Cones for Planar Pushing

In this section, we present the general formulation for defining a motion
cone for planar pushing. We discuss the nature of the constraints that define
the motion cone for pushing on a horizontal surface (Fig.2.4 (a)) and for
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more general pushing scenarios (Fig.2.4 (b-d)). We highlight some of the
peculiarities of the case of pushing an object in the gravity plane, which
forms the basis for the computation and application of the motion cones in
the following sections.

The motion cone is the set of instantaneous object velocities that a pusher
can impose on the object using the frictional interaction between them. If the
pusher moves along a twist inside the motion cone, the contact between the
object and the pusher sticks and the object follows the pusher motion. If the
pusher moves along a twist outside the motion cone, there is sliding at the
pusher-object interface and the object moves along a twist on the boundary of
the motion cone. While the pusher has full control to move with any velocity,
it can impose only a set of object velocities defined by the motion cone.

Mathematically, a motion cone is the largest set of object motions for
which the net required wrench for the object motion can be balanced by
a wrench on the interior of the generalized friction cone of the pusher. It
is the set of object velocities for which constraint (2.8) holds true while
fp ∈ FCpusher.

J>s ·ws + J>p · fp + mg = 0 , fp ∈ FCpusher

Using (2.4) and (2.6), we can rewrite the previous equation as:

µsNJ>s ·ws + kwpusher + mg = 0

wpusher ∈Wpusher , k ∈ IR+
(2.9)

where, k is the magnitude of the pusher force and wpusher is a unit pusher
wrench and ws is a unit support wrench. To find the set of instantaneous
object motions that satisfy the above equation, we rearrange it as:

J>s ·ws =
k

−µsN
wpusher +

m
−µsN

g

wpusher ∈Wpusher , k ∈ IR+

(2.10)

Using (2.5) we can map the support contact unit wrench ws to the object
twist vobj. Hence, to find a motion cone, we first find the set of support
contact wrenches (ws) that satisfy (2.10) and then map this wrench-set (Ws)
to the set of object twists using (2.5). We denote this set of object twists, i.e.
the motion cone, by Vobj

2. 2 Mason (1986) defined the motion
cone in terms of pusher twists which
is a linear Jacobian transform of the
motion cone Vobj. However, we will
keep it in the object twist space because
it is a more natural representation for
planning object trajectories.

2.4.1 Motion Cone for Pushing on a Horizontal Surface

The presence of an external force, (such as the gravitational force) other than
the pusher force, in the plane of motion complicates the mechanics and the
structure of the motion cone. To explain this effect in detail, we will first
consider the case of pushing an object on a horizontal surface where there is
no such additional force.
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Figure 2.7: To make a push inside the
gravity-free motion cone also stable in
a scenario with gravity, the unit grasp
wrench can be scaled such that the net
pusher wrench required for the desired
push falls inside/on the generalized
friction cone of the pusher.

For the case of pushing on a horizontal plane, g = 0. For an object on a
flat support surface with uniform pressure distribution on the support (as is
Fig.2.4- case (a) and (b)), the contact frame coincides with the object frame,
Js = I (identity matrix), because the support is infinite and spatially invariant.
Then we can write (2.9) as:

µsNws + kwpusher = 0 , wpusher ∈Wpusher , k ∈ IR+

ws =
−kwpusher

µcN
, wpusher ∈Wpusher (2.11)

The set of valid support contact wrenches that satisfy (2.11) is the negative
of the generalized friction cone of the pusher, i.e, Ws = −Wpusher. By
mapping Ws through (2.5), we get the motion cone Vobj.

Note that for the case of pushing on a horizontal surface, Ws and Vobj are
both convex polyhedral cones like Wpusher. Moreover, they are independent
of the support normal force, i.e, the weight of the object mg, and friction at
the support surface µs.

For more general pushing tasks however, g 6= 0. From (2.10) we can
see that, unlike for horizontal pushing, the system parameter (µs) and force
magnitudes (k and N) influence the direction vectors of the wrench-set Ws

and motion cone Vobj. In the next section we will focus on the case in Fig.2.4-
(c) – pushing an object in a parallel-jaw grasp in the plane of gravity. There
the gravitational force is not zero in the plane of motion and the Jacobians Js

are not always identity matrices since, in general, the support (finger) contact
location changes in the object frame as the object is pushed in the grasp.

Note that the case in Fig.2.4-(b) can be modelled like (c) except the
Jacobian Js = I and only a part of the gravitational force is in the plane of
motion. The case in Fig.2.4-(d) can be modelled like (c) except that only a
fraction of the gravitational force acts in the plane of motion. The results
derived for the case of pushing an object in the gravity plane then extend
naturally to the cases in Fig.2.4-(b) and (d). However, the experimental
validation necessary to certify this claim and to evaluate the accuracy of the
underlying assumptions for cases (a) and (b) is out of scope of this work.
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2.4.2 Motion Cone in the Gravity Plane

For a case similar to Fig.2.4-(c), but in a gravity-free world, we can simplify
equation (2.10) by omitting the gravity term. We can then compute a convex
polyhedral motion cone similar to that in the horizontal pushing case, but
while taking the Jacobian Js into consideration. We will refer to this motion
cone as the gravity-free motion cone in the later discussions. This cone,
similar to that for the case of pushing on the horizontal plane, is invariant
to the friction at the finger contacts, the mass of the object, and the support
normal force, i.e., the grasping force.

By rearranging (2.9), we see that an instantaneous object motion is feasi-
ble if the net wrench required for the object motion falls inside the general-
ized friction cone of the pusher.

−µsNJ>s ·ws −mg ∈Wpusher (2.12)

The gravitational wrench mg on the object can pull the net required wrench
in or out of the generalized friction cone of the pusher. Some of the motions
in the gravity-free motion cone may not be stable pushes in the gravity plane,
while for some object motions outside the gravity-free motion cone, the
gravitational force can make them feasible.

Proposition 1. Any object motion inside the gravity-free motion cone can
also be made feasible in the gravity plane by increasing the grasping force
above a minimum threshold.

Proof. For a motion inside a gravity-free motion cone, the support/grasp
wrench direction lies on the interior the generalized friction cone of
the pusher, i.e., J>s ·ws ∈ Wpusher. Because the gravitational wrench
is of fixed magnitude, we can always scale the support/grasp wrench
direction such that the net wrench (the vector sum of the gravitational
wrench and the support/grasp wrench) is inside the generalized fric-
tion cone of the pusher. Fig.2.7 shows the graphical interpretation.
In general, for a given µs, we can analytically find the bounds on the
normal force N needed to pull the net wrench inside the generalized
friction cone of the pusher. �

A similar argument can be made for determining a minimum friction
threshold at the finger contacts. For a given normal force N, we can an-
alytically find the bounds on µs needed to pull the net wrench inside the
generalized friction cone of the pusher.

Corollary 1.1. With increased grasping force, more motions in the gravity-
free motion cone are feasible in the gravity plane. For infinite grasping force,
the gravity-free motion cone is equal to the motion cone in the gravity plane.

Proof. From (2.12) and Proposition 1, as the grasping force increases,
the net wrench for more twists or velocities from the gravity-free
motion cone fall inside the generalized friction cone of the pusher.
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Figure 2.8: Graphical illustration of the
motion cone construction procedure
applied to two different planar pushing
systems: (top) pushing an object on a
horizontal plane with a point pusher
and (bottom) pushing an object in a
grasp in the gravity plane. From left
to right, the construction steps portray
modelling of the forces involved in
the task (Force Modelling), solving for
the set of force-balance solutions in
wrench-space (Force Resolution), and
finally computing the set of object twists
corresponding to the force-balancing
solutions (Motion Resolution). This set
of object twists is the motion cone.

In the gravity-free case, J>s ·Ws = −Wpusher.
As N → ∞,

−µsNJ>s ·ws −m~g→ −µsNJ>s ·ws.

Then, ∀ J>s ·ws ∈ J>s ·Ws:

−Nµs J>s ·ws −m~g ∈Wpusher.

So, the set of object motions Vobj corresponding to Ws, which is the
gravity-free motion cone, are also stable in the gravity case. �

We see that, in theory, we can make any object motion in the gravity-free
motion cone feasible under gravity by increasing the grasping force. With
increased grasping force, more motions in the gravity-free motion cone
are stable under gravity and become part of the motion cone. In practice,
however, grippers have limited grasping force and often lack online force
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control. Moreover, by limiting to the gravity-free motion cone, we omit
object motions outside the gravity-free motion cone that otherwise would be
feasible when considering the gravitational force on the object. Therefore,
both for practical reasons and for capturing the rich mechanics of prehensile
pushing, we need to find the motion cone under gravity for a given grasping
force.

Note that for the case of pushing the object on a horizontal plane, the
motion cone is invariant to the support normal force. However, for pushing
on a support plane at an angle, as in Fig.2.4 -(b), a component of gravitational
force acts in the manipulation plane and we do not have a freedom to change
the support normal force, so computing the motion cone for a fixed support
normal force is essential for these non-prehensile manipulation cases as well.

2.5 Computation and Experimental Validation of Motion Cone

In this section we present a closed-form computation of the object motion
cone in the gravity case for a given grasping force and friction parameters.
We discuss the graphical intuition for the mechanics and the computation
of the motion cone. A large set of pushing experiments in different object-
pusher configurations demonstrate that the analytically found motion cones
characterize the the set of feasible object motions with an average of 80%+

accuracy.

2.5.1 Analytical Computation

For a known wpusher ∈Wpusher, (2.10) is a set of three linear equalities with
4 unknowns, ws ∈ IR3 and k ∈ IR+. We also know that ws = [ f x, f z, my]T

is a unit wrench that satisfies the ellipsoidal limit surface constraint:

f
2
x

1
+

f
2
z

1
+

m2
y

(rc)2 = 1 (2.13)

Constraints (2.10) and (2.13) can be solved together analytically to find ws

and k. Specifically, after substituting f x, f z, and my from (2.10) into (2.13),
(2.13) becomes a quadratic polynomial equation in k. Solving this quadratic
equation with a constraint k ∈ IR+ gives a unique solution for k. Substituting
this value for k in (2.10) turns it into a set of three linear equalities with
three unknowns [ f x, f z, my] which can be solved for a unique solution. For
prehensile pushing in the gravity plane, the relationship between Ws and
Wpusher is not linear as in the gravity-free case. To find the wrench-set Ws,
we need to sweep wpusher over the boundary of Wpusher and solve (2.10) and
(2.13) iteratively.

Fig.2.8 illustrates the process for solving the constraints (2.10) and (2.13)
together to compute the wrench cone Ws and further map the wrench-set Ws

to the motion cone Vobj, using equation (2.5). Intuitively we can read Fig.2.8
from left to right as follows:
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Figure 2.9: The analytically computed
wrench cone (Ws), motion cone (Vobj),
and polyhedral approximation to the
motion cone (Vobj) for the configuration
in Fig.2.3 and 45 N grasping force. Note
that the surfaces defining the motion
cone (Vobj) are curved.

1. Force Modelling step involves formulating the set of forces present in the
manipulation plane using the contact modelling techniques discussed in
Sec. 2.3.1 and Sec. 2.3.2. The limit surface represents the set of friction
wrenches that the support contacts can offer to prevent the motion between
the object and the support surface. The generalized friction cone of
the pusher is the set of wrenches the pusher can impose on the object.
Together with other external forces in the manipulation plane, e.g., the
gravitational component, it represents the set of external wrenches that act
on the object.

2. Force Resolution refers to solving for the quasi-static force balance
using (2.10) and (2.13). Solving for force balance means finding the subset
Ws of the support limit surface that balances the set of external wrenches.

3. Motion Resolution interprets the set of object twists that corresponds
to the force-balance solution set using (2.5). Graphically, this represents
drawing normals to the subset Ws computed in the earlier step, to get the
corresponding set of object twists Vobj. This set is the motion cone.

Fig.2.8 (top) shows the computation of the motion cone for pushing an
object on a horizontal support plane with a point pusher. As discussed in Sec.
2.4.1, from (2.11), when there is no external wrench other than the pusher
wrench acting on the object, the motion cone computation simplifies and Ws

and Vobj are polyhedral cones. In Fig.2.8 (top) we observe that the motion
cone is a polyhedral cone bounded by two twists v1 and v2.

In more general cases where additional external forces, such as the grav-
itational force, are present in the manipulation plane, Ws and Vobj are not
polyhedral cones as shown in Fig.2.8 (bottom). In a general planar push-
ing task, they can be well characterized as cones defined by low-curvature
surfaces that intersect all in a point and pairwise in lines. Fig.2.9 shows
the wrench cone Ws and motion cone Vobj computed analytically for one
particular grasp-pusher configuration.

2.5.2 Polyhedral Approximation to the Motion Cone

As an object is pushed in a grasp, the position of the finger contacts in the
object frame change, and consequently Js and the motion cone Vobj also
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change. We need to compute the motion cone iteratively as the object moves
in the grasp, which requires computational efficiency.

As the boundary surfaces of the motion cone have low curvatures, we
propose a polyhedral approximation (Vobj) of the motion cone for efficient
computation. Each edge of the polyhedral approximation of the motion cone
is the object motion corresponding to an edge of the generalized friction cone
of the pusher. Fig.2.8 and Fig.2.9 show example polyhedral approximations
of the motion cone.

Procedure to compute polyhedral motion cone:

1. Solve (2.10) and (2.13) simultaneously to get ws for wpusher correspond-
ing to every edge of Wpusher.

2. Define the set of ws computed in step 1 as the generators/edges of the
support/grasp wrench-cone Ws.

3. Map Ws to the object twist space using (2.5) to get the polyhedral approxi-
mation Vobj of the motion cone.

2.5.3 Experimental Validation of the Motion Cone

Fig.2.10 shows our manipulation platform equipped with an industrial robot
arm (ABB IRB120), a parallel-jaw gripper (WEISS WSG32), two geometric
features in the environment that act as pushers, and a Vicon system (Bonita)
for accurate object tracking.

The theory from Sec. 2.4, states that the pusher sticks to the object for the
pusher twists inside the motion cone while the twists outside the motion cone
will result in slipping at the pusher contact. To evaluate the experimental
validity of the polyhedral approximation of the motion cone, we collected
data for the slip observed at the pusher contact for a variety of experimental
settings.

Using the rectangular prism object listed in Table 2.12, we conducted six
experiments across three configurations as shown in the leftmost column of
Table 2.2. The first two configurations use the side pusher and the grasp is off-
set from the center of mass of the object by 0 mm and −10 mm respectively
in the X direction. The third configuration uses a bottom pusher and the grasp
is at the center of mass of the object.
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Experimental Set Up Inside the Cone Outside the Cone
Prediction Accuracy

No Slip Slip

90.2% 77.9%

90.9% 77.6%

82.9% 76.1%

89.1% 73.0%

76.5% 88.0%

73.7% 85.0%

Table 2.2: We experimentally validate the polyhedral approximation of the motion cone across three configurations by characterizing
thousands of random prehensile pushes by the slip observed at the pusher contact. The pushes that did slip are shown in grey, while
those that did not are shown in black. For each configuration, we utilize a grasping force of 35 N (top) and 45 N (bottom). The per-
centages denote how many pushes lie inside the the motion cone that did not slip and how many pushes outside the cone that did
slip.
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Figure 2.10: Experimental setup used
for the data collection for motion cone
validation as well as for the regrasp
examples in Sec. 2.7 and Sec. 2.8.

For each configuration, we conducted two experiments, first with a grasp-
ing force of 35 N and then with 45 N. In Table 2.2, the results are shown on
the top and bottom, respectively, for each configuration. For each experiment
we executed 1000-1500 randomly sampled pushes and labeled each push as
‘slipping’ if the object moved with respect to the pusher/environment by more
than 1.5 millimeters.

Due to kinematic constraints of the robot and the workspace, we limit
the sampled pushes to the space of [0, 10] mm, [−5, 5] mm, [−35, 35]◦

displacements in [X, Z, θY] when using the side pusher and [−10, 10] mm,
[−8, 0] mm, [−35, 35]◦ when using the bottom pusher.

For each experiment, Table 2.2 lists two accuracy percentages. The first
denotes percentage of pushes that lie inside the motion cone that did indeed
stick, as predicted. The second denotes the percentage of pushes that lie
outside the motion cone that did slip, as predicted. The analytically computed
polyhedral approximation to the motion cone classifies the stick/slip at the
pusher contact and characterizes the feasibility of the object motions with an
average accuracy of 80%+ accuracy.

We observe that the mislabeled pushes are close to the boundaries of the
motion cones. There could be a few reasons for these inaccurate predictions.
The variation in the measured friction at the fingers or pusher contacts
and variation in the grasping force can make the predictions close to the
boundaries of the motion cone inaccurate. The motion cone construction
builds upon the approximations of friction models at finger as well as pusher
contacts and rigid-body assumptions. Therefore any unmodeled dynamics
and compliance at the contacts affect its validity, especially close to the
boundary of the motion cone. Sec. 2.8 explores different strategies to make
the predictions more reliable.

2.6 Planning In-Hand Manipulations via
Motion Cones

Motion cones abstract the algebra involved in solving the mechanics of push-
ing and provide direct bounds on the feasible object motions with pushing.
For pusher motions inside the motion cone, the contact between the pusher
and the object remains sticking, and the object follows the pusher. For pusher
motions outside the motion cone, there is slipping at the pusher contact and
the object motion is on the boundary of the motion cone. This mapping be-
tween the motions of the pusher and the object along with sticking/slipping
contact mode resolution can be used for fast and efficient planning of pushing
tasks.

In this section, we demonstrate the application of motion cones for plan-
ning in-hand manipulations with prehensile pushes. Particularly, we will
constrain our planner to build manipulation strategies for which the pusher
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contact sticks to the object. Lynch and Mason (1996) studied pushing mo-
tions for which the pusher sticks to the object when pushing on a horizontal
surface, which they referred to as Stable Pushing. We call the equivalent
prehensile version Stable Prehensile Pushing (Chavan-Dafle and Rodriguez,
2018).

2.6.1 Problem Formulation

An object is grasped in a parallel-jaw gripper and manipulated in the gravity
plane by pushing it against contacts in the environment.

For the problem setup, we assume the following information about the
manipulation system:

· Object geometry and mass.

· Initial and goal grasp of the object, specified by the locations of the finger
contacts.

· Gripping force.

· Set of possible pusher contacts in the environment, specified by their
geometries and locations in the object frame.

· Coefficients of friction of all contacts.

2.6.2 Planner Framework

Our proposed planning framework works at two levels. At the high-level,
a T-RRT∗-based planning architecture samples the configuration space of
different grasps, similar to earlier work in Chavan-Dafle and Rodriguez
(2018). At the low level, the planning tree is grown in the direction of the
sampled grasp poses using the knowledge of locally reachable grasp poses in
the form of motion cones.

For selective exploration, the T-RRT∗ framework relies on a transition
test that filters the sampled configurations to prefer exploration in low
configuration-cost regions (Jaillet et al., 2010; Devaurs et al., 2016). We
define the configuration cost as the distance of the grasp from the goal. The
transition test guides the stochastic exploration towards the goal grasp, while
allowing the flexibility to explore high-cost transitions if they are necessary to
get the object to the goal.

For effective connections, the T-RRT∗ algorithm uses the underlying
RRT∗ (Karaman and Frazzoli, 2011) framework to make and rewire the
connections in the tree at every step such that the local cost of the nodes is
reduced when possible. We define the cost of a node as the sum of the cost of
the parent node and the cost of the push to reach the sampled node from the
parent node. We set the cost of a push to 0.1 if the parent node uses the same
pusher as the child and 1 if there is a pusher switch-over. With our node cost
definition, the planner generates pushing strategies that prefer fewer pusher
switch-overs to push the object to the desired pose.
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Algorithm 1 : In-Hand Manipulation Planner
input : qinit, qgoal

output : tree T
T ← initialize tree(qinit)

generate_motionCones(T , qinit)

while qgoal /∈ T or cost(qgoal) > cost threshold do
qrand ← sample random configuration(C)
qparent ← find nearest neighbor(T , qrand)

qsample ← take unit step(qparent, qrand)

if qsample /∈ T then
if transition test(qparent, qsample, T ) then

qnew ← motionCone_push(qparent, qsample)

if transition test(qparent, qnew, T ) and
grasp maintained(qnew) then

q*parent ← optimEdge(T , qnew, qparent)

add new node(T , qnew)

add new edge(q*parent, qnew)

generate_motionCones(T , qnew)

rewire tree(T , qnew, q*parent)

Let q denote the configuration of the object, i.e., the pose of the object
in the gripper frame, which is fixed in the world. In this work, we consider
planar manipulations in a parallel-jaw grasp, so the configuration space C is
[X, Z, θy] ∈ IR3, i.e., the object can translate in the grasp plane (XZ) and
rotate about a perpendicular (Y) to the grasp plane.

Algorithm 1 describes our in-hand manipulation planner. Let qinit and
qgoal be an initial and desired pose of the object in the gripper frame respec-
tively. The planner initiates a tree T with qinit and generates motion cones at
qinit.

While the desired object pose is not reached within some cost threshold,
a random configuration qrand is sampled. A nearest configuration qparent

to qrand in the tree T is found and an unit-step object pose qsample from it
towards qrand is computed. Using the transition test, the planner evaluates
if moving in the direction of qsample from qparent is beneficial. If it is, the
motionCone_push routine computes an object configuration qnew closest to
qsample that can be reached using the motion cones at qparent. It is further
checked if moving towards qnew is beneficial and if qnew is an object config-
uration at which the grasp on the object is maintained. If both the criteria are
satisfied, qnew is added to the tree such that the local costs of qnew and the
nodes near qnew are reduced. The motion cones are generated online for every
new node added to the tree.

Two important routines in Algorithm 1, particularly for this work, are
generate_motionCones and motionCone_push.

generate_motionCones computes the polyhedral motion cones for a given
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object configuration in the grasp for all possible external pushers using the
procedure listed in Sec. 2.5.2. At every node, we will have the same number
of motion cones as possible pushers and each motion cone represents the set
of object configurations that can be reached from the current configuration
using a specific pusher.

Sampled
Config.

Projected 
Config.

Motion Cone

Figure 2.11: Since the sampled grasp
configuration is outside the motion cone,
it projected on the motion cone. The
projected configuration is selected to
grow the planning tree.

motionCone_push finds an object pose closest to the desired sampled pose
qsample that is feasible to reach with pushing. This computation is done using
the motion cones at the parent node qparent. If the object twist needed from
the parent node pose to the sampled pose is already inside any of the motion
cones at qparent, the sampled pose can be reached. If the required object twist
is outside all the motion cones at qparent, a twist that is closest to the desired
twist and inside one of the motion cones is selected by projecting the sampled
twist on the motion cones as shown in Fig.2.11.

Motion cones define the set of feasible pushes, or in other words the
set of reachable object configurations. Using motion cones as reachability
bounds directly in the configuration space allows us to rapidly explore
the configuration space of different object poses in the grasp and generate
dynamically feasible pushing strategies for the desired in-hand regrasp.

2.7 Regrasp Examples and Experimental Results

We evaluate the performance of our proposed planner with examples of a
parallel-jaw gripper manipulating a variety of objects listed in Table 2.12.
The initial pose of an object in the gripper is treated as [X, Z, θY] = [0, 0, 0].
Table 2.13 lists the goal poses (in [mm, mm, deg.]) for different examples.
While there are no comparable available algorithms that can solve the type of
regrasps we are interested in, we provide comparisons with our own imple-
mentations of the same high-level planner paired with different approaches
to solve the mechanics of prehensile pushing. These include sampling with
rejection by a feasibility check for stable prehensile pushing (Chavan-Dafle
and Rodriguez, 2018), and a more classical complementarity formulation
(MNCP) that allows both sticking and slipping at the pusher contact (Chavan-
Dafle and Rodriguez, 2020). We compare the performance in terms of
planning time and the quality of the solutions. The planning times in Table
2.13 are the median times over 10 trials. All the computations are done in
MATLAB R2017a on a computer with Intel Core i7 2.8 GHz processor.

In all the examples below, we assume three line pushers on the object, one
on each side faces of the object parallel to the Z axis and one under the object
parallel to the X axis. We use high friction line pushers, except in the first
example, where we use low friction line pushers (Fig.2.14).

Shape Material Dim [L, B, H] (mm) Mass (g)
square prism Al 6061 100, 25, 25 202
rect. prism Delrin 80, 25, 38 113
T-shaped ABS 70, 25, 50 62

Table 2.12: Physical properties of the
experimental objects
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Manipulation Goal Motion Stable MNCP
[X, Z, θY] Cone Check

Horz. offset 20, 0, 0 0.45 2.83 592.8
[X, Z, θY] regrasp 15, -13, 45 0.67 2.54 17684
T-shaped 25, 17.5, 0 0.54 0.82 32657

Table 2.13: Planning times (sec.) for
approaches using motion cone, stable
check Chavan-Dafle and Rodriguez
(2018) and MNCP Chavan-Dafle and Ro-
driguez (2020) for unit-step propagation

Figure 2.14: Simulation and experi-
mental run for a pushing strategy to
regrasp the aluminum object with low
friction pushers. In the simulation figure
(top), the finger and pusher contacts
are shown in green and magenta color
respectively.

2.7.1 Regrasping an object offset to the center

In this example, the goal is to regrasp the square prism horizontally 20 mm
offset from the center. We use low friction pushers first. Kolbert et al. (2017)
showed that for a similar setting, if the object is pushed horizontally in the
grasp it slides down as it moves sideways in the grasp. For low-friction
pushers, our planner generates a strategy where the object is first pushed up
using the bottom pusher and then the side pusher is used to virtually keep the
object stationary while the fingers slide up and along the length of the object
as seen in Fig.2.14. This plan is similar to the one found in Chavan-Dafle and
Rodriguez (2020, 2018).

When we replace the pushers with high-friction pushers (pushers with
rubber coating), the planner estimates that the desired horizontal object
motion lies inside the motion cone for the side pusher at the initial and all the
subsequent grasp poses until the goal, i.e, simply pushing from the side is a
valid pushing strategy as shown in Fig.2.15.

2.7.2 Regrasp in [X, Z, θY]

The goal in this example is to regrasp the rectangular prism requiring a net
object motion in all three dimensions [X, Z, θY]. Similar to Chavan-Dafle and
Rodriguez (2018), our planner finds a strategy to achieve the regrasp using
only one pusher. In fact, as we can see in Fig.2.16, the pushing strategy our
planner generates is smoother and seems to avoid unnecessary object motions
seen in the strategy shown in Chavan-Dafle and Rodriguez (2018)-Fig.1.
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Figure 2.15: Simulation and experimen-
tal run for a pushing strategy to regrasp
the aluminum object with high friction
pushers.

2.7.3 Manipulating a non-convex object

In this example, the goal is to regrasp a T-shaped object. The goal pose is
such that a greedy approach to push the object directly towards the goal will
result in losing the grasp on the object. As shown in Fig.2.17, our planner
comes up with a pushing strategy that respects the geometric constraints of
the problem and moves the object to the desired pose without loosing the
grasp.

Figure 2.16: A pushing strategy for
[X, Z, θY] regrasp. In simulation, the
direction of gravity remains constant in
the pusher frame, because in real exper-
iments, the pushers are fixed features in
the environment.



46 LEVERAGING MECHANICS FOR MULTI-STEP ROBOTIC MANIPULATION PLANNING

Figure 2.17: Simulation and experimen-
tal run to manipulate a T-shaped object.
Snapshots of the experimental run are is
shown in Fig.2.2

2.8 Robust In-Hand Manipulations via Motion Cones

Sec. 2.6 and Sec. 2.7 describe an application of motion cones to plan in-hand
manipulations with stable prehensile pushes. In this section, we discuss
constraining the planning tree to propagate through a conservative interior
of motion cones for increased robustness. We show that we can exploit the
structure of motion cones to derive manipulation strategies that are robust
against uncertainties in the friction parameters at the finger and pusher
contacts, grasping force, and mass of the object.

2.8.1 Robustness to friction variation at the pusher-object contact

For a given object mass, given friction at the finger contacts, and given
grasping force, the motion cone is a function of the friction at the pusher. For
a higher friction coefficient, the generalized friction cone is wider and so is
the motion cone. There is a monotonic relationship between the friction at the
pusher and the volume of the motion cone. This relationship can be exploited
to derive pushing strategies robust to uncertainty in the friction at the pusher.

Proposition 2. Any object velocity inside the motion cone for a given pusher
friction coefficient is inside the motion cone for a higher friction coefficient at
the pusher.

Proof. Let Wpusher be the generalized friction cone of a pusher and let
W+

pusher be the the generalized friction cone for the same pusher but
with a higher coefficient of friction. From the definition of the gen-
eralized friction cone in (2.6), it is a linear mapping of the Coulomb
friction cone/s at the constituent contact/s. A Coulomb friction cone
for a given coefficient of friction is a subset of a friction cone with a
higher coefficient of friction. Therefore, the generalized friction cone is
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also the subset of a generalized friction cone for a higher coefficient of
friction:

Wpusher ⊂W+
pusher (2.14)

If an object motion is inside the motion cone, the net required
wrench for the object motion lies inside the generalized friction cone
of the pusher, i.e., repeating (2.12):

−µsNJ>s ·ws −mg ∈Wpusher (2.15)

From (2.14) and (2.15),

−µsNJ>s ·ws −mg ∈W+
pusher (2.16)

Since the net required wrench lies inside the friction cone of the
pusher, the object motion is inside the motion cone. �

If there is uncertainty in the friction coefficient at the pusher, we can
obtain a robust strategy by planning with the lower bound on the coefficient.
The resulting strategy will produce the same net object motion in the grasp
even if the true friction coefficient at the pusher is higher.

This property is also verified by our experiments from Sec. 2.5.3. For our
experiment where we offset the grasp −10 mm in the x-direction from the
center of mass of the object and use a grasping force of 45-N, our estimated
friction coefficient at the pusher is 0.5. Given this coefficient, as stated in
Table 2.2, 89.1% of the pushes within the computed motion cone stick, as
predicted. If we compute our motion cone with a coefficient of 0.25, then
95.6% of the pushes lie within this reduced cone.

2.8.2 Robustness to friction variation at the gripper-object contact

For a given friction coefficient at the pusher, the motion cone is a function
of the object mass and the friction coefficient at the finger contacts, and the
grasping force.

Unlike the monotonic relationship of the motion cone to the friction at
the pusher, the dependence of the motion cone on the friction force at the
fingers is not straight-forward. For increased friction at the fingers, either by
increasing the grasping force or by increasing the coefficient of friction, we
do not necessarily get a wider motion cone. Instead the motion cone shifts
towards the gravity-free motion cone as shown in Fig.2.18 3. Therefore, 3 At infinite friction at the gripper the

motion cone is equal to the the gravity-
free motion cone as shown in Corollary
1.1

some of the object motions inside the motion cone, particularly those that are
feasible by exploiting gravity, may no longer be feasible.

We propose two approaches to address this problem and to achieve robust
pushing strategies under the uncertainty in the friction at the fingers.

Modified Motion Cone. In this approach, we find a subset of a motion
cone such that any object motion inside it will always be feasible with any
friction at the gripper higher than a chosen value.



48 LEVERAGING MECHANICS FOR MULTI-STEP ROBOTIC MANIPULATION PLANNING

Grip Force = 30 N

Motion Cone

Gravity-free
Motion Cone

Motion Cone

Gravity-free
Motion Cone

Grip Force = 100 N

Figure 2.18: The motion cone shifts
towards the gravity-free motion cone
as the friction at the gripper increases
due to the increased grip force. The
intersection of the gravity-free motion
cone and the motion cone is shown by
the dotted region for the two grip forces.
The motions inside the motion cone
that are outside the gravity-free motion
cone are feasible only by exploiting the
gravitational force on the object (in Z
direction). For higher friction at the
gripper than expected, these motions
may no longer be feasible. One of such
motions that is shown in red falls out-
side the motion cone when the grip
force is increased. All the motions inside
the intersection however, will always
be feasible for the higher than expected
friction at the gripper.

Proposition 3. Any motion inside the intersection of the gravity-free motion
cone and the motion cone, for a given friction at the gripper, will always be
inside the motion cone for a higher friction at the fingers or/and a higher
grasping force.

Proof. If an object motion is inside the motion cone, from (2.12), the
net required wrench is inside the generalized friction cone of the
pusher:

−µsNJ>s ws −mg ∈Wpusher. (2.17)

If the object motion is inside the gravity-free motion cone:

−µsNJ>s ws ∈Wpusher

or simply,
−J>s ws ∈Wpusher (2.18)

Let µ+
s be a higher friction coefficient at the fingers and N+ be a

higher grasping force. The net wrench required for the same object
motion under the higher finger friction conditions is:

−µ+
s N+ J>s ws −mg.

Which can be rewritten as:

−kJ>s ws − µsNJ>s ws −mg , k ∈ IR+. (2.19)

From (2.17), (2.18), and (2.19):

−kJ>s ws − µsNJ>s ws −mg ∈Wpusher

Since the net required wrench lies inside the friction cone of the
pusher, the object motion is inside the motion cone. �

In the case of uncertainty in the friction at the gripper, to generate robust
pushing strategies, we can constrain the planner to the intersection motion
cones computed with lower bounds on the friction coefficients and the gasp-
ing force. Such a pushing strategy will produce the same regrasp outcome for
the expected variation in the friction at the gripper.
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Figure 2.19: Simulated motion of the ob-
ject and snapshots of the experimental
run for a pushing strategy to offset the
object in the grasp using low coefficient
pushers.

Gravity-aligned Pusher. Recent work showed that we can generate robust
prehensile pushes in the presence of gravitational force by careful selection of
pusher contact placement Chavan-Dafle and Rodriguez (2018). Specifically,
we demonstrate that by aligning the pusher normal along the gravitational
force on the object, the dynamics of pushing and the motion cone becomes
invariant to all the system parameters except for the friction at the pusher.

Proposition 4. The motion cone for gravity-aligned pushers is invariant to
the object mass, grasping force and friction coefficient at the finger contacts.

Proof. If the pusher is aligned such that the pusher contact normal is
along the direction of gravity, the gravitational force on the object is
entirely balanced by the part of the normal force at the pusher. Then,
for wpusher ∈ Wpusher, the dynamic check for a feasible prehensile
push (2.9) becomes:

−µsNJ>s ·ws −mg = kwpusher

−µsNJ>s ·ws − k2wpusher_n = kwpusher

−µsNJ>s ·ws = kwpusher + k2wpusher_n

where k, k2 ∈ IR+ and wpusher_n is the unit normal wrench at the
pusher contact. Since wpusher_n ∈Wpusher, we can rewrite the previous
constraint as:

−µsNJ>s ·ws = k3wpusher k3 ∈ IR+

where wpusher is different from before, but also in Wpusher. As µs and
N are scalar constants, we further simplify it as:

−J>s ·ws = k4wpusher k4 ∈ IR+ (2.20)

Now, we can write the dynamics condition for a feasible prehensile
pushing with gravity balancing pushers as:

−J>s ·ws ∈Wpusher (2.21)
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Figure 2.20: Simulated motion of the ob-
ject and snapshots of the experimental
run for a general regrasp in [X, Z, θy].

Equations (2.20) and (2.21) show that the dynamics of pushing, and
the consequent motion cone for the gravity-aligned pusher, are invari-
ant to the object mass, grasping force, and the friction coefficient at the
fingers. �
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Figure 2.21: Simulated motion of the ob-
ject and snapshots of the experimental
run for the T-shaped object.

As discussed in Sec. 2.8.1, we can further make the pushing strategies
robust to the uncertainty at the pusher contact by planning with lower bounds
on the expected coefficient of friction at the pusher.

Fig.2.19, Fig.2.20, and Fig.2.21 show the regrasps in Table 2.13 planned
with the constraint of using only the bottom pusher which is aligned along the
direction of gravity.
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Figure 2.22: Displacement of the object
with respect to the environment for the
regrasp action shown in Fig.2.19. As
expected, during pushing, the object
sticks to the environment and moves by
a negligible amount as the fingers slide
on it.

To validate the invariance in the outcome of the regrasp actions planned
when the friction at the fingers is changed, we varied the grasping force
and executed the same pushing strategy. As the grasping force changes,
the friction force at the fingers change. However, as shown in the plots in
Fig.2.22 and Fig.2.23, the variation in the outcome of the pushing strategy for
the three different grasping forces is negligible. This supports the expected
invariance. Moreover, the minimal slip observed at the pusher contacts
confirms that the pushing actions selected by the planner result in stable
prehensile pushes.

It should be noted that using conservative friction values at the pusher as
proposed in Sec. 2.8.1 or modified motion cones as in Sec. 2.8.2 provides
robustness, however, it reduces the volume of the effective motion cones, i.e.,
the dynamically-reachable configuration space. This can adversely affect
planning time, especially for problems with "narrow-corridors". The method
proposed in this section however, does not suffer from such an effect since
the volume of the motion cones in this case does not change significantly. We
observe negligible (fractions of a second) difference in the planning times
for the examples considered in this section compared to those in Sec. 2.7.
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Figure 2.23: Displacement of the object
with respect to the environment for the
regrasp action shown in Fig.2.20.

2.9 Discussion

A motion cone is the maximal set of dynamically feasible velocities that a
pusher can transmit to a pushed object. It also describes the set of motions
of the pusher that yield sticking contact with the object during the push. It
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abstracts away the dynamics of frictional pushing and provides direct bounds
on the reachable space for pushing tasks.

In this work we extend the concept of motion cones to a general set of
planar pushing tasks with external forces such as the gravitational force in
the plane of motion. We show that the motion cone for a general planar push
is defined as a cone with low-curvature facets, and propose a polyhedral
approximation for efficient computation.

We demonstrate the use of motion cones as the propagation step in a
sampling-based planner for in-hand manipulation. Combining a T-RRT∗-
based high level planning framework and a motion cone-based dynamics
propagation, the planner builds in-hand manipulation strategies with se-
quences of continuous prehensile pushes in a fraction of a second. Further-
more, we show that by constraining the planner to propagate the planning
tree through a conservative interior of the motion cones and/or with specific
selection of the pusher alignment, we can generate pushing strategies that are
robust against uncertainty in the physical parameters of the system.

Throughout this chapter, we emphasize the experimental validation of
the theoretical contribution and planning framework. Thousands of pushes
in different object-grasp-pusher configuration corroborate the analytical
computation of motion cones. With a variety of regrasp experiments we show
that the pushing strategies generated by our planner result in motions with
minimal slip at the pusher contact and negligible variation in the outcome of
the regrasp.

The motion cone provides direct knowledge of the set of reachable con-
figurations. It allows us to explore the connectivity of the configuration
space for planning through regions/volumes of the configuration space for
contact-rich manipulations (Brock and Kavraki, 2001; Morales et al., 2007;
Shkolnik et al., 2009; Shkolnik and Tedrake, 2011). Moreover, motion cones,
as bounds on pusher actions or as bounds on the object motions, have an
adequate form to be incorporated into trajectory optimization frameworks
to plan pushing strategies. We believe that the extension and application of
motion cones to more general settings provides new opportunities for fast and
robust manipulation through contact.



3
Robust Planning for Multi-stage Forceful Manipulation

3.1 Introduction

Our goal is to enable robots to plan and execute forceful manipulation
tasks such as cutting a vegetable, opening a push-and-twist childproof
bottle, and twisting a nut. While all tasks that involve contact are technically
forceful, we refer to forceful manipulation tasks as those where the ability to
generate and transmit the necessary forces to objects and their environment
is an active limiting factor which must be reasoned over and planned for.
Respecting these limits might require a planner, for example, to prefer a robot
configuration that can exert more force or a grasp on an object that is more
stable. This research has been published at

ICRA 2021 and IJRR 2023 (Holladay
et al., 2021, 2023).

Forceful operations, as defined by (Chen et al., 2019), are the exertion of
a wrench (generalized force/torque) at a point on an object. These operations
are intended to be quasi-statically stable, i.e. the forces are always in balance
and produce relatively slow motions, and will generally require some form
of fixturing to balance the applied wrenches. For example, to open a push-
and-twist childproof bottle the robot must exert a downward force on the cap
while applying a torque along the axis of the bottle. The robot must be in a
configuration that allows it to apply enough force to accomplish the task, and
also securing the bottle to prevent it from moving during the task.

To accomplish these complex, multi-step forceful manipulation tasks,
robots need to make discrete decisions, such as, for example, whether to
push on the bottle cap with the fingers, the palm or a tool, and whether to
secure the bottle via frictional contact with a surface, with another gripper
or with a vise. The robot must also make continuous decisions such as the
choice of grasp pose, robot configurations and robot trajectories. Critically,
all these decisions interact in relatively complex ways to achieve a valid task
execution.

Fig.3.1 illustrates that there are different strategies for completing the
task of opening a push-and-twist childproof bottle. Each strategy’s viability
depends on the robot’s choices and on the environment. For example, a
strategy that uses the friction from the table to secure the bottle, as shown
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Figure 3.1: Opening a childproof bottle
involves executing a downward-push
and twist on the cap, while fixturing
the bottle. Our system can reason over
a combinatorial number of strategies
to accomplish this forceful manipu-
lation task, including push-twisting
with various parts of its end effector,
push-twisting with a tool (in blue),
fixturing with a vise (in grey), fixturing
against the table, or fixturing against a
high-friction rubber mat (in red).

in the top leftmost corner, would fail if the table can only provide a small
amount of friction. Instead, the robot would need to find a significantly
different strategy, such as securing, or fixturing, the bottle via a vise, as
shown in the top center-left.

Choosing a strategy corresponds to making some of the aforementioned
discrete decisions, e.g. deciding how to fixture the bottle. We define strategies
as sequences of parameterized high-level actions. Each action is implemented
as a controller parameterized by a set of constrained discrete and continuous
values, such as robot configurations, objects, grasp poses, trajectories, etc.
Our goal is to find both a sequence of high-level actions (a strategy) and
parameter values for those actions, all of which satisfy the various constraints
on the robot’s motions.

To produce valid solutions for a wide range of object and environment
configurations, the robot must be able to consider a wide range of strategies.
As discussed above, small changes, such as decreasing a friction coefficient,
may necessitate an entirely new strategy. In a different environment, the
robot may need to first move some blocking object out of the way (Fig.3.5) or
relocate an object in order to achieve a better grasp. Approaches that attempt
to explicitly encode strategies in the form of a policy, e.g. via a finite state
machine or a fixed action sequence, will generally fail to capture the full
range of feasible strategies (Michelman and Allen, 1994; Holladay et al.,
2019). Methods that attempt to learn such a policy will need a very large
number of interactions to explore this rich and highly-constrained solution
space.

We propose addressing forceful manipulation problems by planning over
the combinatorial set of discrete/continuous choices. We use an existing task
and motion planning (TAMP) system, PDDLStream, which reduces this type
of hybrid discrete/continuous planning problem to a sequence of discrete
planning problems via focused sampling of the continuous and discrete
parameters (Garrett et al., 2020b).
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To enable this approach to forceful manipulation, we introduce force-
related constraints: the requirement to fixture objects and the forceful kine-
matic chain. The forceful kinematic chain constraint captures whether the
robotic and frictional joints of the kinematic chain are “strong” enough to
exert the forces and torques to perform forceful operations. These constraints
are integrated into the TAMP framework.

Furthermore, we enable the planner to choose strategies that are robust to
uncertainty by formulating this as cost-sensitive planning, where the cost of
an action is tied to its probability of success in open-loop execution, given
perturbations in parameters for the force-based constraints.

This chapter makes the following contributions:

• Characterize forceful manipulation in terms of constraints on forceful
kinematic chains

• Generate multi-step plans that obey force- and motion-related constraints
using an existing TAMP framework.

• Formulate finding plans that are robust to uncertainty in the physical
parameters of forceful kinematic chains as cost-sensitive planning.

• Demonstrate planning and robust planning for forceful manipulation
in three domains (opening a childproof bottle, twisting a nut on a bolt,
cutting a vegetable)

3.2 Related Work

This chapter focuses on enabling force-based reasoning in planning multi-
step manipulation tasks. In this section we review various strategies for
incorporating force-based reasoning and force-related constraints across
various levels of planning: from single step actions to fixed action sequences
to task and motion planning.

3.2.1 Force-Reasoning in Single Actions

Several papers have considered force requirements for generating specialized
motions. Gao et al. use learning from demonstration to capture “force-
relevant skills”, defined as a desired position and velocity in task space, along
with an interaction wrench and task constraint (Gao et al., 2019). Berenson
et al. incorporated a torque-limiting constraint into a sample-based motion
planning to enable manipulation of a heavy object (Berenson et al., 2009).
These papers consider force constraints when generating individual actions,
while we consider force constraints over a sequence of actions.

One important category of reasoning with respect to force actions is sta-
bilizing, or fixturing an object. The goal of fixturing is to fully constrain an
object or part, while enabling it to be accessible (Asada and By, 1985). Fix-
ture planning often relies on a combination of geometric, force and friction



56 LEVERAGING MECHANICS FOR MULTI-STEP ROBOTIC MANIPULATION PLANNING

analyses (Hong Lee and Cutkosky, 1991). There are various methods of fix-
turing including using clamps (Mitsioni et al., 2019), custom jigs (Levi et al.,
2022) or using another robot to directly grasp or grasp via tongs (Watanabe
et al., 2013; Stückler et al., 2016; Zhang et al., 2019). Additionally some
strategies, such as fixtureless fixturing and shared grasping, rely on fric-
tion and environmental contacts to fixture without additional fixtures or
tools (Chavan-Dafle and Rodriguez, 2018; Hou et al., 2020). In this chapter
we consider fixturing via grasping and environmental contacts.

3.2.2 Force-Reasoning in Sequences of Actions

Several papers have considered reasoning over forces across multi-step
interactions. Chen et al. define “forceful operations” as a 6D wrench f
applied at a pose p with respect to a target object (Chen et al., 2019). In this
chapter, we adopt their definition of forceful operations to characterize the
type of interactions our system plans for. Chen et al. focus on searching over
environmental and robot contacts to stabilize an object while a human applies
a series of forceful operations. In our work, a robot must both stabilize the
object and perform the forceful operation.

Manschitz et al. termed “sequential forceful interaction tasks” as those
characterized by point-to-point motions and an interaction where the robot
must actively apply a wrench (Manschitz et al., 2020). The method first
learns, from demonstrations, a set of movement primitives, which are then
sequenced by learning a mapping from feature vectors to activation of
the primitives. The goal of their work is enable the robot to reproduce the
demonstrations and therefore the sequencing is pre-scripted.

Michelman and Allen formalize opening a childproof bottle via a finite
state machine, where the robot iteratively rotates the cap, while pressing
down, and then attempts to lift it until the cap moves (Michelman and Allen,
1994). If the cap is not yet free, the robot continues to rotate the cap. In their
formulation, the bottle is fixtured and some of the continuous parameters,
such as the grasp, are fixed.

Holladay et al. frames tool use as a constraint satisfaction problem where
the planner must choose grasps, arm paths and tool paths subject to force and
kinematic constraints such as joint torque limits, grasp stability, environment
collisions, etc. (Holladay et al., 2019). The planner outputs a fixed sequence
of actions and thus the force and kinematic constraints do not impact the
sequence of actions, i.e. the choice of strategy. In contrast, in this thesis, we
are interested in searching over various possible strategies.

3.2.3 Multi-step Planning with Constraints

Solving for a sequence of actions parameterized by constrained and continu-
ous values lies at the heart of multi-modal motion planning (MMMP) (Hauser
and Latombe, 2010; Hauser and Ng-Thow-Hing, 2011) and task and motion
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planning (TAMP) (Garrett et al., 2020a). MMMP plans motions that fol-
low kinematic modes, e.g. moving through free space or pushing an object,
and motions that switch between discrete modes, e.g. grasping or breaking
contact, where each mode is a submanifold of configuration space.

TAMP extends MMMP by incorporating non-geometric state variables
and a structured action representation that supports efficient search (Gravot
et al., 2005; Plaku and Hager, 2010; Kaelbling and Lozano-Pérez, 2011;
Srivastava et al., 2014; Toussaint, 2015; Dantam et al., 2016; Garrett et al.,
2017).

Most TAMP algorithms, although not all (Toussaint et al., 2020), have
focused on handling collision and kinematic constraints. This paper focuses
on integrating force-based constraints with an existing TAMP framework,
PDDLStream (Garrett et al., 2020b), which we discuss in Sec. 3.6.

Most similar to our work, Toussaint et al. formulate force-related con-
straints that integrate into a trajectory-optimization framework (LGP) for
manipulation tasks (Toussaint et al., 2020). While LGP can search over strate-
gies, in the aforementioned paper the strategy was provided and fixed. While
Toussaint et al. take a more generic approach to representing interaction
which can capture dynamic manipulation, their use of 3D point-of-attack
(POA) to represent transmitted 6D wrenches, fails short of representing the
frictional constraints of the contact patches.

Levihn and Stilmann present a planner that reasons over which combi-
nation of objects in the environment will yield the appropriate mechanical
advantage for unjamming a door (Levihn and Stilman, 2014). The type of the
door directly specifies which strategy to use (lever or battering ram) and the
planner considers the interdependencies of force-based and geometric-based
decisions for each application. The planer is specific to the domain and does
not provide a general framework for planning with force constraints.

Several other systems consider forces either as a feasibility constraint or as
a cost. In assessing feasibility for assembly plans, Lee and Wang (1993) ac-
count for the amount of force required to connect two pieces in an assembly.
Akbari et al. (2015) focus on incorporating “physics-based reasoning” in a
TAMP system that sequences push and move actions by formulating action
costs with respect to power consumed and forces applied. Again, each of
these planners present a domain-specific approach to considering force.

In this work, we consider generating plans that are robust to state uncer-
tainty, with a particular focus on physical properties of the objects. Several
TAMP frameworks approach uncertainty by planning in belief space, the
space of probability distributions over underlying world states (Kaelbling
and Lozano-Pérez, 2013; Hadfield-Menell et al., 2015; Garrett et al., 2020c).
These planners generate action sequences that can also involve information-
gathering sensing actions. In contrast, our system executes open-loop plans
and focuses on uncertainty that impacts the force-related constraints.
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Figure 3.2: (a) Opening a childproof
bottle involves executing a push-twist
on the cap, while fixturing the bottle. (b)
Twisting a nut requires exerting a torque
about the nut, while fixturing the bolt.
(c) To cut, the robot first press down
vertically and then slices horizontally.
The object being cut must be fixtured.

3.3 Problem Domain

We define forceful manipulation as a class of multi-step manipulation tasks
that involve reasoning over and executing forceful operations. Drawing from
Chen et al. (2019), a forceful operation is a robot action where the robot
exerts a 6D force/torque wrench ([ fx, fy, fz, tx, ty, tz]) on an object or the
environment. In addition to the geometric constraints (such as collision-free
trajectories) that characterize many multi-step manipulation tasks, forceful
manipulation tasks are also characterized by constraints relating to the ability
to exert wrenches.

Specifically, we constrain that the robot, including any grasped object,
must be “strong” or “stable” enough to exert the forceful operation, i.e.
the robotic system must be able to exert the desired wrench of the forceful
operation without experiencing excessive force errors or undesired slip. We
additionally constrain that any object that the forceful operation is acting on
must be secured, or fixtured, in a way that prevents its motion.

Our aim is to perform forceful manipulation tasks in a wide range of en-
vironments, where there is variation in the number, type, poses and physical
parameters, such as masses and friction coefficients, of the objects. We also
characterize robust planning for forceful manipulation tasks as generating
plans whose success is robust to uncertainty in these physical parameters.

To ground our work in concrete problems, we consider three example
tasks within the forceful manipulation domains: (1) opening a childproof bot-
tle (2) twisting a nut on a bolt and (3) cutting a vegetable. For each domain,
we define the forceful operation(s) that represents the task (also called the
task wrench(es)), strategies for exerting those forceful operation(s) and what
object must be fixtured, We then discuss various methods of fixturing objects.

3.3.1 Childproof Bottle Opening

In the first domain, the objective is to open a push-and-twist childproof bottle,
as introduced in Sec. 4.1. We specify the push-twist, required before remov-
ing the cap, as the forceful operation of applying wrench (0, 0,− fz, 0, 0, tz)
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in the frame of the cap (Fig.3.2(a)), where we assume fz and tz are given.
As illustrated in Fig.3.1, the robot can apply this wrench through a variety
of possible contacts: a grasp, fingertips, a palm or a grasped pusher tool. If
using the latter three contacts, the robot can reason over applying additional
downward force. While performing the forceful operation, the robot must
fixture the bottle.

3.3.2 Nut Twisting

Figure 3.3: To twist a nut on the bolt,
the robot can use either its fingers or a
spanner (in blue). While twisting, the
robot must fixture the beam that the
bolt is attached to. Here we show two
fixturing strategies: using another robot
to grasp the beam and weighing down
the beam with a large mass (in green).

In the second domain, the robot twists a nut on a bolt by applying the
wrench (0, 0, 0, 0, 0, tz) in the frame of the nut (Fig.3.2(b)), where we assume
tz is given. As shown in Fig.3.3, the robot can make contact either through a
grasp or through a grasped tool, i.e. a spanner1. When twisting the nut, the 1 To avoid confusion between a wrench

(the tool) and a wrench (a 6D force-
torque) we use the British term “span-
ner” to refer to the tool.

robot must also fixture the beam holding the bolt.
We do not consider the more general task of twisting a nut until it is tight,

which would require a feedback loop.

3.3.3 Vegetable Cutting

Figure 3.4: The robot uses a knife to
cut an object, while fixturing the object.
Here a vise is used to fixture a cucumber
(left) and a banana (right) while they are
being cut with a knife (blue).

In the third domain, the robot uses a knife to cut a vegetable (as shown
in Fig.3.4). Cutting is a complex task that involves fracture, friction and
changing contacts (Jamdagni and Jia, 2019, 2021; Mu and Jia, 2022). There
have been a variety of approaches to tackling this cutting-edge topic such as
learning the task-specific dynamics (Mitsioni et al., 2019; Zhang et al., 2019;
Rezaei-Shoshtari et al., 2020), developing specialized simulators (Heiden
et al., 2021), and proposing adaptive controllers (Zeng and Hemami, 1997a;
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Block
Knife

Gripper

Vise
Vegetable

Figure 3.5: The goal of the robot is to
cut the vegetable, using the knife (in
blue). The vegetable must be fixtured,
which can be achieved using the vise.
However, the robot cannot secure the
vegetable in the vise because a red block
is preventing a collision-free placement.
Our system constructs a plan where the
robot first picks up the red block and
places it on the table, out of the way. The
robot can then pick up the vegetable
and fixture it in the vise. Next, the robot
grasps the knife and uses it to cut the
fixtured vegetable.

Long et al., 2013, 2014). In this work, we adopt a simplified approach to
cutting.

We take inspiration from Mu et al. (2019) and assume that, while being
cut, the object will have negligible deformation and that dynamic effects
are insignificant. Similarly to their proposed cutting process, we formulate
cutting as a two-stage process where the knife first exerts downward force,
followed by a translational slice. Thus, this task has two forceful opera-
tions: the downward force (0, 0,− fz,0, 0, 0, 0) and the translational slice
(− fx, 0, fz,1, 0, 0, 0), as visualized in Fig.3.2(c). We assume that fz,0, fz,1 and
fx are given. While cutting the object, the robot must also fixture it.

3.3.4 Fixturing

While performing any forceful operation, the robot must fixture the object it
is exerting force on to prevent its motion. There are a wide variety of ways to
fixture, which are not unique to any particular domain. In this work, as shown
across Fig.3.1, Fig.3.3, Fig.3.4, we present several different fixturing methods
such as:

• Grasping the object with another robot

• Grasping the object in a vise

• Weighing the object down with a heavy weight

• Exerting additional downward force to secure the object with friction from
a surface

For the second method, in practice we use a table-mounted robot hand as
the vise. For the last method, the frictional surface can either be the table, or
higher-friction rubber mats and the robot can exert this additional downward
force through various contacts: fingertips, a palm or a grasped pusher tool.

3.4 Approach

Forceful manipulation tasks are characterized by constraints related to
exerting force. We view a robotic system, composed of the robot joints,
grasps and other possible frictional contacts, as a forceful kinematic chain.
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For example, in the bottom rightmost example of Fig.3.1, the robot has
constructed a chain of joints composed of the robot’s actual joints, the robot’s
grasp on the tool and the tool’s contact with the cap.

When the robot is performing a forceful operation, we can capture whether
the system is strong enough to exert the task wrench by assessing if the
forceful kinematic chain is maintained, i.e. if each joint is stable under
the imparted wrench. We informally use the word stable to refer to an
equilibrium of the forces and torques at all the joints.

For each class of joint, we describe a mathematical model that character-
izes the set of wrenches that the joint can resist and thus the joint is stable if
the imparted wrench lies within this set. To test the constraint, the planned
task wrench combined with the wrench due to gravity, is propagated through
the joints of the forceful kinematic chain and each of the joints are evaluated
for their stability.

Given our domain description, there are two forceful kinematic chains
when performing a forceful operation: the chain of the system exerting the
task wrench and the chain of the system fixturing the object. Returning to the
bottom rightmost example of Fig.3.1, the exertion chain was described above
and the fixturing chain is one joint: the vise’s grasp on the bottle.

We need a planning framework that generates multi-step manipulation
plans that are flexible to a wide-range of environments and that respect
various force- and motion-related constraints. We opt to cast this as a task
and motion planning (TAMP) problem, where the robot must find a feasible
strategy, or sequence of actions, to complete the task.

Each action is implemented by a parameterized controller and is associ-
ated with constraints relating the discrete and continuous parameter values
that must be satisfied for the controller to achieve its desired effect. The
discrete parameters are values such as objects, regions, robot arms and the
continuous parameters are values such as robot configurations, poses, paths,
wrenches, etc.

Solving a TAMP problem corresponds to finding a valid sequence of
actions and finding the discrete and continuous parameters of those actions
that satisfy the constraints. These two problems are tightly connected, since
the force- and motion-related constraints impact whether it’s possible to find
a valid sequence of actions.

As an illustration of this connection, we return back to the example
mentioned in Sec. 4.1, where the table top does not provide enough friction
to fixture the bottle. This corresponds to a forceful kinematic chain where
it is impossible to find a set of parameters to make it stable. In this case, the
planner searches for a new set of actions, such as picking and placing the
bottle into a vise, in order to create a different, stable forceful kinematic
chain.

As another example, Fig.3.5 shows the robot completing a sequence of
actions in order to cut a vegetable while it is fixtured in a vise. Since the red
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block on the vise prevents the robot from directly placing the vegetable in the
vise, the robot constructs a plan to move the red block out of the way before
fixturing and cutting the vegetable.

Both of these examples illustrate that the interleaved constraint evaluation
and action search in the TAMP framework is critical to enabling the planner
to solve the tasks in a variety of environments.

In order for plans to reliably succeed in a variety of environments, the
robot must also be able to account for uncertainty in the world. In this work,
we focus on uncertainty in the physical parameters of the stability models
used to evaluate the forceful kinematic chain constraint. For example, if
the stability of a grasp used during a forceful operation is dependent on
precise value of a friction coefficient, this choice of grasp is not very robust to
uncertainty.

In order to find plans that are robust, we use cost-sensitive planning,
where the planner searches for a plan whose cost is below a user-defined
cost threshold. We relate the cost of an action to the probability that the
forceful kinematic chain involved in the action is stable under uncertainty in
the physical parameters. This formulation allows the planner to reason over
which strategies and which parameters of those strategies lead to more robust,
reliable execution.

In this work we assume a quasi-static physics model and, as input, are
given geometric models of the robot, the objects and the environment along
with the poses of each object. Estimates of physical parameters, such as
the object’s mass and center of mass, and friction coefficients, are known.
In robust forceful manipulation, we relax the need for exact estimates of
physical parameters, instead using ranges.

3.5 Forceful Kinematic Chain

We have defined a forceful kinematic chain as the series of joints in a system,
including robotic and frictional joints. In forceful manipulation tasks, the
robot aims to exert wrenches through this chain. The forceful kinematic chain
constraint evaluates whether each joint in the system is in equilibrium in the
face of the task wrench and gravity (Fig.3.6). For each joint, we propagate
these wrenches to the frame of the joint and evaluate if that wrench lies in the
set of wrenches that the joint can resist. If every joint in the chain is stable,
the constraint is satisfied.

For joint types, we consider planar frictional joints and robot manipu-
lator joints and define the mathematical models that characterize the set
of wrenches each joint type can resist. While our treatment in this chapter
is limited to these joint types, alternative joints or models could easily be
integrated, such as non-planar frictional joints (Xu et al., 2020).

In defining planar frictional joints we consider an example joint: the
robot’s grasp on the blue pusher tool in Fig.3.6. In the three directions of
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Figure 3.6: Along each joint of the force-
ful kinematic chain, we first project the
expected wrench into the subspace de-
fined by each joint and then verify if the
joint is stable under that wrench. The
figure illustrate the wrench limits for
each joint: For circular patch contacts,
we check the friction force against a
limit surface ellipsoidal model and for
each robot joint we check against the 1D
torque limits.

motion outside the plane of the grasp, the motion of the tool in-hand is
prevented by the geometry of the hand, i.e. we assume the fingers are rigid
such that the tool cannot translate or rotate by penetrating into the hand.
Thus, any wrenches exerted in those directions are resisted kinematically by
non-penetration reaction forces, which we assume are unlimited. In the other
three directions, motion within the plane of the grasp is resisted by frictional
forces. We represent the boundary of the set of possible frictional wrenches
in the three dimensional friction subspace of the plane of contact with a limit
surface (Goyal et al., 1991) 2. We utilize two ways to approximate the limit 2 While these same tools were intro-

duced in Chapter 2, we reintroduce
them here, focusing on their specific
application within the context of the
forceful kinematic chain.

surface, depending on the characteristics of the planar joint (Sec. 3.5.1, Sec.
3.5.2).

For the robot’s joints, the set of wrenches that can be transmitted are
bound by the joint torque limits (Sec. 3.5.3).

3.5.1 Limit Surface for Small Circular Patch Contacts

For small circular patch contacts with uniform pressure distributions, we use
an ellipsoidal approximation of the limit surface (Xydas and Kao, 1999). The
ellipsoid is centered in the contact frame, w = [ fx, fz, τy], and, for isotropic
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friction, is defined by wT Aw = 1 where:

A =


1

(Nµ)2 0
1

(Nµ)2

0 1
(Nkµ)2


where µ is the friction coefficient, N is the normal force and, for a circu-
lar patch contact we approximate k ≈ 0.6r where r is the radius of the
contact (Xydas and Kao, 1999; Shi et al., 2017).

Having transformed the wrench into the contact frame, we check if this
wrench lies in the ellipsoid, which would indicate a stable contact:

f 2
x

(Nµ)2 +
f 2
z

(Nµ)2 +
m2

y

(Nkµ)2 < 1. (3.1)

As an example, in Fig.3.7 we compare two possible grasps on a knife. For
each grasp, we visualize the limit surface and an exerted wrench, transformed
to the contact frame. In this example we consider the first step of vegetable
cutting: exerting the downward force.

For both grasps, the friction coefficient, normal grasping force and radius
of contact (µ, N, r respectively) are the same, so the shape of the ellipsoid is
the same. Each grasp, however, varies the contact frame and grasp plane that
the wrench is transformed into. In addition to impacting the magnitude of the
generated torque, this defines which three directions must be resisted due to
friction forces, as captured by the limit surface.

In both grasps, transforming the downward force of this cutting action into
the contact frame generates a substantial amount of torque that the grasp must
resist.

However, the grasp shown in Fig.3.7-top, which grasps the top of the
handle, largely relies on frictional forces to resist this torque. We can imagine
if the robot were to use this grasp, the knife could pivot in the robot’s hand as
it moved down to cut the vegetable. As illustrated by the projected wrench (in
red) falling outside of the ellipsoid, this grasp is unstable with respect to the
forceful operation.

In contrast, in the grasp shown in Fig.3.7-bottom, which grasps the side
of the handle, the large force and torque are largely resisted kinematically
and the grasp is very stable. Again, looking at the grasp, the geometry of the
fingers, rather than friction, prevents the knife from sliding or pivoting in the
hand.

3.5.2 Limit Surface for More General Patch Contacts

For contacts with more irregular shapes than a circle and with less uniform
pressure distributions, we directly model the contact patch as a set of point
contacts, each with its own normal force (localized pressure) and its own
friction limits. Given a contact patch we model the force it can transmit as
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Figure 3.7: Here we show two possible
grasps on the knife as it cuts a veg-
etable. For each grasp we visualize the
corresponding limit surface with the
propagated task wrench. The top grasp
is not stable, as the wrench lies outside
the boundary of the limit surface. In con-
trast, the bottom grasp, which leverages
kinematics to resist the large torque, is
stable.

the convex hull of generalized friction cones placed at the corners of the
patch. Generalized friction cones, based on the Coulomb friction model,
represent the frictional wrench that a point contact can offer (Erdmann, 1994).
We represent the friction cone, FC, at each point contact with a polyhedral

approximation of generators:

FC = {(µ, 0, 1), (−µ, 0, 1), (0, µ, 1), (0,−µ, 1)} (3.2)

for a friction coefficient, µ (Lynch and Park, 2017). These generators can be
scaled by the applied normal force. Given this approximation, the generalized
friction cone can be written as:

V = {v = JT
f F | F ∈ FC} (3.3)

where JT
f is the Jacobian that maps contact forces f from the contact frame,

where FC is defined, to the object frame. If the exerted wrench, in the refer-
ence frame of the patch contact, lies in the convex hull of V, the frictional
wrench can resist the exerted wrench and the contact is stable.
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As an example, in the nut-twisting domain (Fig.3.3), we use the gener-
alized friction cone to model the contact patch between the table and the
beam holding the bolt, placing friction cones at the four corners of the beam.
In evaluating the stability of fixturing the beam to the table via a heavy
weight, the applied normal force, determined by the mass and location of the
weight, is modeled as a simply supported 1D beam with a partially distributed
uniform load.

3.5.3 Torque Limits

The last type of joint we consider are the joints of the robot, where the limit
of each joint is expressed via its torque limits. We relate the wrenches at
the end effector to robot joint torques through the manipulator Jacobian,
Jm. Specifically, given a joint configuration q and wrench w, the torque τ

experienced at the joints is modeled by τ = JT
m(q)w. The forceful kinematic

chain is stable if the expected vector of torques τ does not exceed the robot’s
torque limits τlim:

JT
m(q)wext < τlim. (3.4)

3.6 PDDLStream

Task and motion planning (TAMP) algorithms solve for a sequence of
parameterized actions for the robot to take, also called the strategy or plan
skeleton, and the hybrid parameters of those actions (Garrett et al., 2020a).
The parameters are discrete and continuous values such as robots, robot
configurations, objects, object poses, grasping poses, regions, robot paths,
wrenches, etc. These parameters are subject to constraints, such as requiring
that all paths are collision-free. The parameters of forceful manipulation tasks
are also subject to the forceful kinematic chain constraints, which evaluates if
each joint in the chain is stable in the face of an exerted wrench.

In order to find sequences of parameterized actions that satisfy a wide-
range of constraints, we use PDDLStream, a publicly available TAMP
framework (Garrett et al., 2020b). It has been demonstrated in a variety
of robotics domains, including pick-and-place in observed and partially-
observed settings (Garrett et al., 2020c).

In this section, we begin with some introduction to PDDL and then discuss
how PDDLStream extends PDDL to enable planning over discrete and
continuous parameters.

3.6.1 PDDL Background

A key challenge in solving TAMP problems is solving for the hybrid (dis-
crete/continuous), constrained parameters. If all of the parameters were
discrete, we could apply domain-independent classic planning algorithms
from AI planning to search for sequences of actions. These planners use
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predicate language, specifically the Planning Domain Definition Language
(PDDL) (McDermott et al., 1998), to define the problem.

PDDL is inspired by STRIPS (Stanford Research Institute Problem
Solver), a problem domain specification language developed for Shakey,
a mobile robot that traveled between rooms and manipulated blocks via
pushing (Nilsson, 1984). We next briefly describe PDDL in the context of a
Shakey example. In the following subsection we will discuss how PDDL can
be augmented to address problems with hybrid parameters.

In PDDL the state of the world is defined by a set of facts. A fact cap-
tures a relationship among state variables. We denote variables with italics
symbols, e.g. d, robot, r. When defining a domain in PDDL, we specify fact
types, such as (Door d), (Room r), (InRoom robot r).

We denote constant variables with bold symbols, e.g. d1, robotshakey, r6.
Hence, the fact (Door d1) captures that in the world, there exists a door d1.
The fact (InRoom robotshakey r6) captures that the robot robotshakey is
in room r6.

(Door d1) is an example of a static fact, which will remain constant
throughout the problem. (InRoom robotshakey r6) is an example of a
dynamic fact, also known as a fluent, whose truth value may change over
time, e.g. as the robot moves between rooms.

The action space is defined via a set of operators. Each operator is com-
posed of a controller, a set of variables, a set of preconditions and a set of
effects. The controller is a policy that issues a sequence of parameterized
robot commands. Preconditions define the requirements for executing the
controller, i.e. the facts, involving the operator variables, which must be true
in the state in order to execute the controller. The effects capture how the
world changes as a result of executing the controller, i.e. what facts have been
added or removed from the state.

As an example, the go_thru operator is parameterized by a robot robot,
a door d, a start room rs and a goal room rg (Nilsson, 1984). The controller
drives the robot by following a set of waypoints, going from the start to the
goal room, moving through the door. Two preconditions are that the robot
is in room rs, i.e. (InRoom robot rs), and that the door d connects the
two rooms, i.e. (Connect d rs rg). The two effects of executing this
operator are that the robot is no longer in the starting room and is instead in
the goal room, i.e. (¬ (InRoom robot rs)) and (InRoom robot rg),
respectively.

An operator is lifted if the variables are unassigned, i.e. go_thru(robot, d, rs, rg).
A ground operator is instantiated with constant values assigned to all vari-
ables, i.e. go_thru(robotshakey, d2, r4, r7) where robotshakey, d2, r4, r7

satisfy the constraints defined by the preconditions. Given a ground opera-
tor, we can ground the controller, in this case mapping each room and door
to fixed locations. The controller plans and executes a path driving to the
discrete locations.
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Figure 3.8: Algorithmic Flow of PDDL-
Stream. The samplers are used to certify
static facts. These facts, together with
the domain, initial facts and goal, serve
as input to a PDDL planner, which
searches for a plan. If a plan cannot be
found, the algorithm generates more
certified facts via the samplers.

Given an set of facts that define the initial state, a set of facts defining
the goal condition and a set of lifted operators, the planner searches for a
sequence of ground operators to achieve the goal. Note that this involves
solving for the sequence of operators and for valid groundings of each
operator, i.e. finding parameter values of each operator that satisfy the
constraints.

PDDL can be used to describe problems in finite domains, hence all
parameter values are discrete. In order to use PDDL for robotics, we need to
extend this language to include continuous values.

3.6.2 Algorithmic Overview

PDDLStream extends PDDL to include continuous domains by allowing
for the sampling of continuous values. To generate these values, PDDL-
Stream introduces streams that sample continuous parameters subject to
constraints. These streams, or samplers, output static facts that the parameters
are certified to satisfy.

For example, a configuration sampler could sample a collision-free joint
configuration q for a robot arm. The static fact output by this stream would
be (Conf q). A grasp sampler could generate a 6D grasp g on an object
o, certifying the fact (Grasp o g). By capturing continuous parameters
and their constraints using PDDL facts, PDDLStream can use discrete classic
planners to plan over a hybrid search space.

To understand how sampling and search are integrated in PDDLStream
it is helpful to draw an analogy to the popular motion planning algorithm
of probabilistic roadmaps (PRMs) (Kavraki et al., 1996). PRMs uses dis-
crete graph search algorithms to solve a motion planning problem in the
continuous space of robot configurations. To do this, PRMs first sample
configurations and represent them as nodes in a graph. The edges of a PRM
represent the one action the robot can make: moving from one configuration
to another. Given an initial state, goal and graph, domain-independent graph
search algorithms can be used to search for a path.

Likewise, PDDLStream first samples parameters by executing streams
to certify facts. Since the parameters often must satisfy a complex set of
constraints, the details of the sampling procedures are often more complex
than in PRMs. The certified facts generated by the samplers are added to
the initial state. Given an initial state, goal and set of lifted operators, a
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Figure 3.9: Pick-and-Place Example. A
set of facts characterize the state. Here
the robot starts at some configuration
q and a graspable pink block o starts at
some pose p on the surface region r.

discrete, domain-independent PDDL planner can be used to search for a plan
composed of ground operator instances.

This algorithmic procedure is illustrated in Fig.3.8. The “Incremental”
PDDLStream algorithm alternates between this process of sampling and
searching until a plan is found, similarly to the way a PRM could continue to
sample additional configurations and search the graph. In practice, we use the
“Focused” PDDLStream algorithm, which more intelligently and efficiently
samples in a lazy fashion, as detailed in Garrett et al. (2020b).

3.6.3 Specifying a Pick-and-Place Domain

In this section we use a pick-and-place domain as an example of specifying
domains using PDDLStream, highlighting how discrete and continuous
parameters are captured. Specifying a domain requires defining a set of fact
types, lifted operators and samplers. Both the facts and actions are specified
in PDDL, while the samplers are implemented in Python.
Facts. Facts can capture relationships over discrete variables, like objects,
and continuous variables, such as robot configurations or grasp poses. Fig.3.9
shows a set of facts that characterize a scene with a robot and pink block
on a surface. The fact (Graspable o) defines that the object o can be
grasped, (Pose o p) defines that p is a pose of object o, (AtConf q)
defines that the robot is at some configuration q, and (On o r) defines
that an object o is on top of some surface region r. Here o and r are discrete
parameters while p and q are continuous.

Facts can also be derived from other facts, e.g. the fact that a robot is
holding an object o, (Holding o), is true if there exists a grasp g such that
the robot is at some grasp, i.e. (AtGrasp o g). These are called derived
facts.
Operators. Operators are parameterized by discrete and continuous val-
ues. As an example, the pick action is parameterized by an object to be
grasped o, the pose of that object p, a grasp on the object g, a configuration
q and a trajectory t. Two preconditions of the action are that the robot isn’t
already holding something, (HandEmpty), and that the object is at the pose
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Input: o, g, p s.t. (Grasp o g) (Pose o p)

inverse-kinematics

Output: q, t s.t. (Conf q) (Traj t) (Kin o p g q t)

Input: t s.t. (Traj t)

check-traj-collision

Output s.t. (UnsafeTraj t)

Output: g s.t.
(Grasp o g)

sample-grasp

Input: o s.t.
(Graspable o)

Output: p s.t. (Pose o p)
(Supported o p r)
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Input: o, r s.t.
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Figure 3.10: Pick-and-Place Example.
Each sampler takes as input some val-
ues such that those values satisfy some
constraint. The samplers (highlighted
in green), output either new parameter
values that are certified to satisfy some
constraint or simply a certification that
the inputs satisfy a constraint. Samplers
can be conditioned upon each other
such that the output of one sampler is
the input to another, as shown by the
dotted line.

(AtPose o p). Two effects of the operator are that the robot’s hand is no
longer empty, (¬ (HandEmpty)) and that the robot is now at the grasp,
(AtGrasp o g). We define the pick controller to be a series of commands:
executing trajectory t to move towards the object, closing the hand, executing
trajectory t in reverse to back up.
Samplers. Samplers are conditional generators that output static facts that
certify that the set of parameters satisfy some set of constraints. Fig.3.10
shows several possible samplers, and how samplers can be conditioned on the
output of other samplers.

For example, sample-grasp takes in an object o that is constrained
to be graspable, and returns a grasp g that is certified to be a grasp of the
object, as represented by the generation of the fact (Grasp o g). Likewise,
sample-pose takes in an object o and region r such that the object can be
stacked on the region, i.e. (Stackable o r). The output of this sampler is
a pose p that is certified to be a valid pose of the object o and that if object o
is at pose p, that object o is supported by region r.

The grasp g and pose p generated by these two samplers, along with
the object o, can be inputs to an inverse-kinematics sampler which
outputs a configuration q and trajectory t. The relationship between the
variables is captured in the static fact (Kin o p g q t): the trajectory t
starting from configuration q grasps object o at pose p with grasp g.

In addition to generative samplers, there are also test samplers which
evaluate to true or false based on whether the input variables satisfy some
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constraint. These samplers do not generate new parameters and instead only
add facts about existing parameters.

As an example, a test stream is used evaluate whether a trajectory t is
collision-free. This is a condition over the entire state, i.e. the trajectory must
be collision-free with respect to all objects in the environment. Evaluating if
a trajectory is collision-free by an universal qualifier (forall) is expensive
for PDDL planners. Therefore, instead we can use negation to evaluate
an existential quantifier (exists). Specifically, we use the test sampler
check-traj-collision to certify the fact (UnsafeTraj t) if there
exists any object o at pose p such that trajectory t is in collision with o at
p3. We can then enforce that trajectories are collision-free by using (not 3 Both o and p are omitted from Fig.3.10

for clarity.(Unsafe t)) as a precondition.

3.6.4 Search Procedure

Given the domain specified in the previous subsection, we consider one step
of the search, visualized in Fig.3.11

The state is defined by all of the facts that are true. At the beginning of the
search, this is the set of initial facts (in blue) and the set of facts certified by
the samplers (in green). In this example pick-and-place domain, Fig.3.9 gives
the initial facts and Fig.3.10 visualizes some of the streams.

As stated above, the facts certified by the samplers are static. As an
example, if a grasp sampler generates a grasp on an object, the fact capturing
this grasp, (Grasp o g), is always true. Thus, in the search, the certified
facts output by the samplers are always a part of the state. The facts from the
initial state may be static facts, such as (Graspable o), or fluents, such
as (AtConf q1). These latter types of facts may be added or removed, as a
result of the operators’ effects, as the robot acts in the environment.

Given the state composed of all of these facts, the planner now conducts
a search for a sequence of actions that can be taken to achieve the goal. For
an action to be valid, all of its preconditions must be met, i.e. all of the
precondition facts must be true in the state. The facts could be true either
because the fact was certified by a sampler, or because it was part of the
initial state or because it was added to the state as the effect of a previous
action.

In Fig.3.11, the move_free action can be taken because all of the
preconditions are satisfied. If the planner elected to take this action, the
effects of the action would update the current state (in brown). The search
continues forward based on this updated state, searching for valid actions.

Following the algorithmic loop in Fig.3.8, if the search is unsuccessful in
finding a sequence of actions to the goal, the algorithm would generate more
certified facts via the samplers and search again.
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(HandEmpty)
(AtConf q1)

(AtPose o1 p1)
(Graspable o1)

(Stackable o1 r1)

move_free(q1, q2, t4)
Pre: (AtConf q1)
(HandEmpty)
(FreeMotion q1 q2 t4)
(¬ (UnsafeTraj t4)) Eff:
(¬ (AtConf q1)) (At-
Conf q2)

(HandEmpty)
(AtPose o1 p1)
(Graspable o1)

(Stackable o1 r1)
(AtConf q2)

pick(o, p1, g2, q2, t2)
Pre: (AtConf q2)
(HandEmpty)
(AtPose o p1)
(Kin o p1 g2 q2 t2)
(¬ (UnsafeTraj t2))
Eff: (AtGrasp o g2)
(¬ (HandEmpty))
(¬ (AtPose o p1))

(Graspable o1)
(Stackable o1 r1)

(AtConf q2)
(AtGrasp o1 g2)

Certified Facts: (Grasp o g1) (Grasp o g2) (Grasp o g3) (Conf q3) (Kin o p1 g1 q3 t1) (Unsafe-
Traj t1) (Kin o p1 g2 q2 t2) (UnsafeTraj t2) (Conf q5) (Kin o p1 g3 q5 t3) (UnsafeTraj t3) (FreeMo-

tion q1 q2 t4) (UnsafeTraj t4) (FreeMotion q1 q3 t5) (UnsafeTraj t5) (FreeMotion q3 q4 t6) (UnsafeTraj t6) ...

Figure 3.11: Pick-and-Place Example.
Expanded view of the PDDLStream
search procedure. The state is composed
of facts from the initial set of facts (in
blue) and the set of certified static facts
generated by the samplers (in green).
An action is feasible if all of the facts of
the preconditions are met. The state is
then updated with the resulting effects
(in brown). In this example, the first
action is to move from configuration q1
to q2. Having taken this action, the next
is to pick up an object o at pose p1 using
grasp g2. The result of the search would
be the sequence of ground operators, i.e.
[move_free(q1, q2, t4), pick(o, p1, g2, q2,
t2)].

3.7 Incoporating Force into Planning

PDDLStream provides a framework for solving TAMP problems. Sec. 3.6.3
showed how to specify the standard pick-and-place domain, highlighting the
fact types, lifted operators and samplers needed to capture the actions and the
domain constraints, which relate to kinematic and geometric feasibility.

In order to leverage PDDLStream for forceful manipulation tasks, and
thus extend PDDLStream’s range of applicability, we encode the the forceful
kinematic chain constraint and the fixturing requirement. We do so by adding
fact types, lifted operators and samplers. Additionally, each domain has
domain-specific elements, although we find that many samplers are reused
across domains. As an illustrative example for how these pieces come
together, in Sec. 3.7.1 we detail the domain specification for the nut-twisting
task. Through this example we also explore what modeling effort is required
to specify a domain.

In addition to finding plans, in Sec. 3.7.2 we discuss how we use cost-
sensitive planning in PDDLStream to find robust plans for forceful manipula-
tion tasks.

3.7.1 PDDLStream for Forceful Manipulation

We use nut-twisting as an example of how the framework of PDDLStream
is used for forceful manipulation tasks. The lifted operators, derived facts
and samplers for this domain are defined in Table 3.1. We first require the
standard pick-and-place operators (along with their related derived facts and
samplers), some of which were already described in Sec. 3.6.3: move_free,
move_holding, pick, place.

We next include the elements (in light grey) common across all of our
forceful manipulation domains, which capture the forceful kinematic chain
constraint and enable fixturing. As discussed in Sec. 3.3.4, there are several
different fixturing strategies so in this domain we focus on two of them
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Operator Preconditions Effects

move_free
(AtConf a q1) ∧ (HandEmpty a) ∧

(FreeMotion a q1 q2 t) ∧ (¬ (TrajUnsafe a t))
(¬ (AtConf a q1))
∧ (AtConf a q2)

move_holding
(AtConf a q1) ∧ (Movable o) ∧ (AtGrasp a o go) ∧

(HoldingMotion a o go q1 q2 t) ∧ (¬ (TrajUnsafe a t))
(¬ (AtConf a q1))
∧ (AtConf a q2)

pick
(AtConf a q) ∧ (HandEmpty a) ∧ ((Movable o) ∧

(AtPose o po) ∧ (Kin a o po go q t) ∧ (¬ (TrajUnsafe a t))

(AtGrasp a o go)
∧ (¬ (AtPose o po))
∧ (¬ (HandEmpty a))

place
(AtConf a q) ∧ (AtGrasp a o go) ∧

(Kin a o po go q t) ∧ (¬ (TrajUnsafe a t))

(AtPose o po)
∧ (HandEmpty a)
∧ (¬ (AtGrasp a o go))

hand_twist

(AtConf a q0) ∧ (HandEmpty a) ∧ (Nut on) ∧ (Bolt ob) ∧
(AtPose on pn) ∧ (On on ob) ∧ (Fixtured ob w) ∧
(StableGrasp on gn w) ∧ (StableJoints a t w) ∧

(NutHandMotion a on pn gn w q0 q1 t)) ∧ (¬ (TrajUnsafe a t))

(Twisted on w)
∧ (¬(AtConf a q0))
∧ (AtConf a q1))

tool_twist

(AtConf a q0) ∧ (Nut on) ∧ (Bolt ob) ∧ (AtPose on pn) ∧ (On on ob) ∧
(Spanner ot) ∧ (AtGrasp a ot gt) ∧ (Fixtured ob w) ∧

(StableGrasp ot gt w) ∧ (StableJoints a t w) ∧
(NutToolMotion a ot on pn gt w q0 q1 t)) ∧ (¬ (TrajUnsafe a t))

(Twisted on w)
∧ (¬(AtConf a q0))
∧ (AtConf a q1))

(a) Operators

Derived Facts Definition

(On o r) ∃po ((Supported o po r) ∧ (AtPose o po))
(Holding o) ∃a, go (AtGrasp a o go)

(TrajUnsafe a1 t1)
(∃o, p ((AtPose o p) ∧ (¬ (ObjCollisionFree a1 t1 o p)))) ∨
(∃a2, q2 ((AtConf a2 q2) ∧ (¬ (ArmCollisionFree a1 t1 a2 q2))))

(HoldingFixtured o w) ∃g, a (AtGrasp a o g) ∧ (StableGrasp o g w))
(WeightFixtured o w) ∃o1, p1 ((Weight o1) ∧ (AtPose o1 p1) ∧ (On o1 o) ∧ (StableWeighDown o1 p1 o w))
(Fixtured o w) ((HoldingFixtured o w) ∨ (WeightFixtured o w))

(b) Derived Facts

Sampler Inputs Outputs Certified Facts

sample-pose o r po (Pose o po) ∧ (Supported o po r)
sample-grasp a o go (Grasp a o go)
inverse-kinematics a o po go q t (Kin a o po go q t) ∧ (Conf q) ∧ (Traj t)
plan-free-motion a q0 q1 t (FreeMotion a q1 q2 t) ∧ (Traj t)
plan-holding-motion a q1 q2 o go t (HoldingMotion a o go q1 q2 t) ∧ (Traj t)
test-arm-collision a1 a2 t1 q2 (ArmCollisionFree a1 a2 t1 q2)
test-obj-collision a1 t1 o p (ObjCollisionFree a1 t1 o p)
test-grasp-stable a o w go (StableGrasp o go w)
test-joints-stable a t w (StableJoints a t w)
test-weight-stable o1 p1 o w (StableWeighDown o1 p1 o w)

plan-nut-hand a on pn gn w q0 q1 t
(NutHandMotion a on pn gn w q0 q1 t) ∧

(Conf q1) ∧ (Conf q2) ∧ (Traj t)

plan-nut-tool a ot on pn gn w q0 q1 t
(NutToolMotion a ot on pn gt w q0 q1 t) ∧

(Conf q1) ∧ (Conf q2) ∧ (Traj t)

(c) Samplers

Table 3.1: The specification of the nut twisting domain via the lifted operators, derived facts and samplers. Elements colored in light
grey are common across all forceful manipulation domains. Elements colored in darker grey are specific to the nut-twisting domain.
Throughout the table we use the symbols: a is a robot arm, o is an object, po is a pose of object o, go is a grasp on object o, qi is a configu-
ration, r is a region, t is a trajectory, w is a wrench. Specific to this domain: on, ob and ot refer to the nut, bolt and spanner, respectively.
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(HoldingFixtured and WeightFixtured), while the rest are detailed
in Appendix B. In all forceful manipulation domains we add the fact type
(Wrench w) where w is a 6D wrench and a coordinate frame.

Finally, we define two domain-specific operators, hand_twist and
tool_twist (and related samplers, all colored in darker grey), which
correspond to the robot twisting the nut with its hand or with a grasped tool,
respectively.
Forceful Kinematic Chain Constraint. To incorporate the forceful kine-
matic chain constraint into the PDDLStream framework, we assess the stabil-
ity of the chain using test samplers. The facts certified by the test samplers
serve as preconditions for the operators that exert forceful operations.

For example, to assess the planar frictional joints formed by the robot’s
grasp, we define fact (StableGrasp o g w) which is true if the grasp
g on object o is stable under the wrench w. This fact is certified by the
test sampler test-grasp-stable, which uses the limit surface model
discussed in Sec. 3.5.1 to evaluate the stability of the joint.

For an operator that applies a forceful operation using a grasped object, we
use (StableGrasp o g w) as a precondition to constrain the grasp to
be stable. In the context of the nut-twisting domain, hand_twist uses this
precondition to evaluate the robot’s grasp on the nut and tool_twist uses
it to evaluate the robot’s grasp on the tool.

We also use the (StableGrasp o g w) fact to derive the (HoldingFixtured
o w) fact, which defines if an object o is fixtured from wrench w using some
grasp g.

As another example, to evaluate if robot joints are stable we define the
fact (StableJoints a t w) which is true if the trajectory t executed
on robot arm a is stable under wrench w. This is certified by the test sampler
test-joints-stable, which evaluates the torques experienced at each
configuration in the trajectory are within the arm’s torque limits.
Fixturing. In addition to the forceful kinematic chain constraint, we require
that while the robot is exerting a forceful operation on an object, the object
must be fixtured. We propose implementing a variety of fixturing meth-
ods through various lifted operators and derived facts, which use forceful
kinematic chain test samplers to evaluate the stability of the fixturing chain.

In the context of the nut-twisting domain, we restrict our focus to
two fixturing methods: fixturing an object by holding it or by weigh-
ing it down with another heavy object. Thus, in this domain, the fact
(Fixtured o w) is satisfied if either (HoldingFixtured o w)
or (WeightFixtured o w) are true. The latter fact is derived from the
fact (StableWeighDown o1 p1 o w), which is certified by the test sam-
pler test-weight-stable. This sampler uses the generalized friction
cone from Sec. 3.5.2 to evaluate stability.

Neither of these two fixturing methods required adding new operators,
since sequences of moves, picks and places can be constructed to either
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stably grasp the fixturing object or have a robot place a weighing-down
object on the fixtured object. However, other fixturing methods (detailed in
Appendix B), such as operating a vise, include adding operators, as well as
test samplers and facts, to the domain.
Domain-Specific Actions. Given the forceful manipulation extensions, we
now detail the domain-specific additions. In the nut-twisting domain the
robot can impart the forceful operation to twist the nut either by making
contact with its fingers or through a grasped spanner. To enable this, we
define two new operators in Table 3.1.

The controller for the hand_twist operator grasps the nut with the
hand, forcefully twists the nut with the hand and the release the nut. Likewise,
the controller for tool_twist makes contact with the nut via the grasped
spanner, forcefully twists the nut with the spanner and then breaks contact
between the nut and the spanner. The trajectory for each operator is generated
by the samplers plan-nut-hand and plan-nut-tool, respectively.
The twisting step of the trajectory involves planning a path that applies the
forceful operation. Across all domains, we use Cartesian impedance control
to exert wrenches, as detailed in Appendix A.1.

As stated in Sec. 3.7.1, the forceful kinematic chain constraint is imple-
mented as preconditions for each operator. When twisting the nut with the
robot hand (hand_twist), the forceful kinematic chain composed of the
robot joints and the robot’s grasp on the nut. Likewise, when twisting with
the spanner (tool_twist), the chain is composed of the robot joints, the
robot’s grasp on the spanner and the spanner’s grasp on the nut. Grasps are
evaluated via (StableGrasp o g w) and robot joints are evaluated via
(StableJoints a t w). The sampler plan-nut-tool evaluates the
stability of the spanner’s grasp on the nut.

We also constrain that the bolt, ob is fixtured, using any of the available
fixturing methods. In Appendix B we describe the domain-specific elements
for the childproof bottle and vegetable cutting domain.
Modeling Effort. We next consider what is required in applying this frame-
work to new settings. We consider two categories of modifications: incor-
porating new assessments of the forceful kinematic chain and fixturing
constraints and incorporating new domain-specific elements.

Sec. 3.5 defines several mathematical models for assessing the stability
of a joint. These models were incorporated as test samplers within PDDL-
Stream. Since the framework is agnostic to the Pythonic implementation of
the sampler, it is straightforward to swap out various stability models.

Adding a new joint type, and its corresponding stability model, requires
adding both the corresponding sampler and the certified fact. Adding a new
fixturing method may require adding operators to utilize the fixturing method
(e.g. incorporating vise fixturing required adding vise actuation actions). It
also requires identifying and integrating the appropriate stability assessment.

Critically, once such additions are made, they can be reused across many
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Algorithm 2 Compute P[success(operator)]

1: Given: Chain c, wrench w, parameters p
2: Initialize: i = 0
3: procedure FOR J=0:N

4: pε ← Perturb p by epsilon
5: if STABILITYCHECK(c, w, pε) then
6: i + = 1
7: return i

n

domains. In our experience, this allows domains to build off of each other,
decreasing the implementation effort with each new domain. For example, to
model the contact patch between the beam and the table in the nut twisting
domain, we incorporated the generalized friction cone. Thus, when imple-
menting the cutting domain, we reused that same abstraction to model the
contact patch between the vegetable and the table.

Solving a new task often involves adding domain-specific operators to
capture a new action space (e.g. for cutting we had to add the slice-cut
operator). We approach adding a new operator by first defining the precondi-
tions and effects that characterize the kinematics and geometry. For example,
if an operator uses a tool (as tool-twist does), then a precondition is that
the robot must be grasping the tool. Next, if the operator is exerting a forceful
operation, the relevant forceful kinematic chains must be stable. This requires
identifying the joints within the chain and the appropriate corresponding
stability models and adding the stability checks as preconditions.

Finally, we must write the sampler that defines the operator’s parame-
terized controller. This step involves combining the existing lower-level
controllers (joint-space position controller, grasp controller, guarded move
controller, cartesian impedance controller, etc.) to create the desired behavior.
We find that even with operator-specific parameterized controllers, there often
is significant overlap across domains with respect to how to combine the
low-level controllers.

3.7.2 Robust Planning

Given the ability to generate plans that satisfy motion- and force-based
constraints, we now aim to produce robust plans. In particular, we focus
on protecting against stability-based failures along the forceful kinematic
chains due to uncertainty in physical parameters. For example, we want to
discourage the system from selecting a grasp where a small change in the
friction coefficient would break the stability of the grasp, leading to the object
slipping.

To generate robust plans, we associate each operator with a probability
of success P[success(operator)]. As given in Algorithm 2, we assess the
probability of an operator’s success via Monte Carlo estimation, i.e. we
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draw sets of parameter values, where each parameter is perturbed by some
uniformly-sampled epsilon, and evaluate the stability of each forceful kine-
matic chain. We perturb, when applicable, parameters such as the friction
coefficient, the planned applied wrench, the contact frame and the effective
size of the contact patches 4. 4 The details of the perturbations used in

the experiments in Sec. 3.8.2 are given in
Appendix A.3

As an example, Fig.3.12 visualizes how sampling various grasp parame-
ters essentially generates a large set of possible limit surfaces. By evaluating
the stability with respect to all of them, we capture how the grasp stability is
impacted by uncertainty.

τy

fx

fz

Figure 3.12: By sampling over the fric-
tion coefficient, µ, radius of contact
r and task wrench, we can assess if a
contact is stable in face of uncertainty in
those parameters.

We define the cost of an operator as:

cost(operator) = − log(P[success(operator)]). (3.5)

The cost of a plan is then the sum over the cost of all the operators in the plan.
Minimizing this cost is equivalent to maximizing the plan success likelihood.

To generate robust plans, we use PDDLStream’s cost-sensitive planning
where, given non-negative, additive operator costs that are functions of the
operators’s parameters, the planner searches for a plan that is below a user-
provided cost threshold. Cost functions are specified in the domain by adding
that the effect of an operator is increasing the total cost of the plan by the
value computed by the operator’s cost function.

With this cost definition, the cost threshold corresponds to the probability
of succeeding during open-loop execution given uncertainty in the physical
parameters.

3.8 Empirical Evaluation

Using the childproof bottle domain, we demonstrate how the planner finds a
wide variety of solutions and how the feasibility of these solutions depends
on the environment. In each of the three domains, we show how accounting
for uncertainty by planning robustly leads to the robot making different
choices, both with respect to the strategy and with respect to the continuous
choices.

Simulation and real robot videos showing a variety of strategies in each of
the three domains are available online5. 5 https://www.youtube.com/watch?v=r1L-

gxufFuY

3.8.1 Exploring Strategies

We demonstrate the range of the plans that the planner generates by consid-
ering two settings in the childproof bottle domain (Table 3.13). The robot
can fixture the bottle using a variety of possible strategies including stably
grasping with another robot, using a vise or using frictional contact with the
surface, where the surface is either the table or a high-friction rubber mat 6. 6 In this domain we do not consider the

fixturing method of weighing down the
bottle, since this is not geometrically
feasible.

The robot can apply the push-twist operation through a variety of contacts: a
grasp, fingertips, a palm or a grasped pusher tool.

https://www.youtube.com/watch?v=r1L-gxufFuY
https://www.youtube.com/watch?v=r1L-gxufFuY
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Fixturing Ablation

Fixturing Method # Steps Planning Time (SE)
Surface(Table) * 4 177 (51)
Robot Grasp 6 60 (9.4)
Surface(Mat)** 8 142 (73)
Vise grasp** 9 95 (35)

Push-Twisting Ablation

Pushtwist Method # Steps Planning Time (SE)

Grasp 4 37 (1.8)
Palm 4 25 (3.1)
Fingertip* 4 63 (35)
Pusher Tool** 8 40 (5.1)

Table 3.13: For each setting, we provide
the number of steps for each strategy
and the average planning time in sec-
onds (and standard error) over five runs.
*: Utilized a higher friction coefficient
µ to increase feasibility **: Invalidated
shorter strategies to force to planner to
find these longer strategies.

In the first setting, we search over several possible fixturing strategies,
fixing the push-twisting strategy to use a grasp contact. In this setting the
bottle starts at a random location on the table. In the second setting, we
search over all possible push-twisting strategies. In this setting the bottle
starts on a high-friction rubber mat in order to leverage the friction of the
surface for fixturing.

Because the underlying search over strategies in PDDLStream biases
towards plans with the fewest actions, we incrementally invalidate the
shorter strategies once found by the planner in order to force exploration
of the alternative, longer strategies. For example, in the fixturing setting we
invalidate fixturing via a robot grasp as a feasible strategy by removing the
second arm from the environment.
Fixturing Setting. We first consider searching over various fixturing strate-
gies. Looking first for the strategy with the fewest number of actions, the
planner first tries to fixture the bottle against the table surface by applying
additional downward force. However, the friction coefficient between the
table and bottle is small enough that this is not a viable strategy: even when
applying maximum downward force the robot cannot fixture the bottle. So
instead, the planner fixtures using the second robot to grasp the bottle.

Removing the second arm from the environment forces the planner to
discover new strategies. One strategy employed is to use a pick-and-place
operation to move the bottle to a high-friction rubber mat, where it is possible
to sample enough additional downward force such that the bottle is fixtured.
Another strategy is to use a pick-and-place operation to move the bottle into
the vise, where it can be fixtured.
Push-Twisting Setting. We next consider searching over various push-
twisting strategies. Three of the twisting strategies, contacting via a grasp, the
fingertips or the palm, are of equivalent length, and are therefore equally at-
tempted when searching over strategies. We can view the viability of finding
successful parameters to these actions, and thus probability of employing that
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Figure 3.14: In opening the childproof
bottle, the robot can fixture against the
low-friction table ( ), a medium-friction
mat ( ) or a high-friction mat ( ). For
each cost threshold we run the planner
ten times, noting which surface is used.
As the cost threshold decreases, the
robot is forced to more frequently use
higher friction surfaces that are more
robust to uncertainty.

Cost Threshold Planning Time (SE)

∞ 6.9 (0.1)
0.5 41 (14)
0.4 69 (17)
0.3 77 (10)
0.2 94 (18)
0.1 127 (29)

Table 3.15: We evaluate how decreas-
ing the cost threshold impacts what
fixturing surface the planner uses in the
childproof bottled domain (Fig.3.14).
As the cost threshold decreases, the
planning time increases.

strategy, as how easy it to sample satisfying values.
For example, twisting the cap by pushing down with the palm is only

stable if, given the values of the radius of the palm and the friction coefficient,
the system can exert enough additional downward force. Decreasing either
the radius or the friction coefficient narrows the space of feasible downward
forces. Since the fingertips have a smaller radius, as compared to the palm, it
is harder to sample a set of satisfying values for the fingertips.

In each of these settings, we demonstrate that the planner finds a variety of
different strategies and that the choice of strategy adapts to what is feasible
in the environment. This adaptability allows the planner to generalize over a
wide range of environments.

3.8.2 Generating Robust Plans

We next examine how leveraging cost-sensitive planning enables the robot to
generate more robust plans.
Childproof Bottle Domain. In the childproof bottle domain, we explore
how accounting for robustness impacts what surface the robot uses to fixture
against. As visualized in Fig.3.14(left), the robot can choose between fixtur-
ing on three surfaces: the low-friction table, the medium-friction blue mat or
the high-friction red mat. For all planning instances we start the bottle on the
table and set the friction coefficient between the table and the bottle to be just
high enough to make fixturing feasible. At each cost threshold, we run the
planner ten times.

If the planner does not account for robustness, the robot fixtures with
the table every time. This is because doing so is feasible and results in the
shortest plan.
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Figure 3.16: In the nut-twisting domain
we consider the trade-off between the
grasp cost and the fixturing cost. On
the left, at each weight value, we ran-
domly sample, 100 times, the pose of the
weight along the beam and the grasp on
the weight. Since, at the extremes, some
costs evaluate to infinity, we plot the
median and a 95% confidence interval.
We then demonstrate how the trade
off impacts the choices made by the
planner by considering an environment
in which there are three possible masses,
as shown in the center. The robot can
fixture using the 2.6kg mass ( ), the
3.5kg mass ( ) or the 4.4kg mass ( ).
Without accounting for robustness, the
robot chooses any of the masses. When
planning robustly, the robot more often
picks the medium weight, which bal-
ances the trade-off in costs. In both cases
we run the planner ten times, noting
which weight is used.

When considering robustness, the planner evaluates that fixturing using
the table produces a feasible but brittle plan, resulting in a high cost plan that
is unlikely to succeed. To avoid this, the planner completes a pick-and-place
action to relocate the bottle to one of the two mats that have a higher friction
coefficient and thus offers a more robust fixturing surface. As we decrease the
cost threshold, the planner is forced to use exclusively the high-friction red
mat.

Table 3.15 shows how decreasing the cost threshold increases the planning
time. The choice of the cost threshold can therefore be viewed as trading off
between the probability of the plan’s success and the time to find the plan.
Nut Twisting Domain. In the nut-twisting domain we explore robustness by
considering a scenario where the robot must choose between several weights,
of varying mass, to fixture the beam with.

First, for a given mass, we sample 100 placement locations along the beam
holding the bolt and evaluate two robustness metrics: how robustly the weight
fixtures the beam and how robustly the robot is able to grasp (and therefore
move) the weight to this placement. Fig.3.16-left shows the trade-off: a
heavier weight more easily fixtures the beam but is harder to grasp robustly.
In finding a robust plan, and hence a low-cost plan, the planner is incentivized
to act like Goldilocks and pick the weight that best balances this trade-off.

We can see this in action when running the planner in a setting with three
weights of various masses (2.6, 3.5, 4.4 kg), shown in Fig.3.16-center, where
a darker color corresponds to a larger mass. Fig.3.16-right shows that when
the planner does not account for robustness, the three weights are selected
equally, since all can be used to produce feasible plans. However, when
accounting for robustness the planner more often selects the medium weight,
which balances the trade off between the cost functions. In both instances, the
planner was run ten times.
Vegetable Cutting Domain. In the vegetable cutting domain, we explore
how planning robustly impacts the continuous choice of the grasp on the
knife. While our grasp set defines grasps along every face of the rectangular
handle, for clarity of example, we restrict the planner to top grasps along the
length of the tool, such as the grasp shown in Fig.3.7(top).

We return to the two possible grasps on the knife shown in Fig.3.7. The
side grasp, shown on the bottom, relies on normal reaction forces to resist
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Figure 3.17: In the vegetable cutting
domain, we show how robust planning
leads the planner to select grasps that
are closer to the blade of the knife, be-
cause doing so creates a smaller torque
that the grasp needs to resist. For each
cost threshold, the planner is run 10
times and the grasping offset is plotted.
An offset of 0 corresponds to a grasp at
the butt of the knife.

the torque experienced while exerting the downward force, the first half of
the cutting action. As such, the grasp is very stable and robust, regardless of
the location of the grasp along the length of the handle (the annotated x-axis).
In contrast, the top grasp (shown in Fig.3.7(top)) relies on frictional forces
to resist the exerted torque. The stability of the top grasp varies based on its
location along the handle and by evaluating the robustness of these grasps, we
can empower the planner to make a more informed choice.

To demonstrate this, we restrict our grasp set to only those that grasp the
knife from the top (i.e. like Fig.3.7(top)). Additionally, we consider cutting a
softer object, reducing the magnitude of the downward force ( fz,0) such that
it is feasible to find a stable grasp. Specifically, by default we set fz,0 = 5N,
while for the soft object we use fz,0 = 3N.We refer to this as the high force
setting and low force setting, respectively.

Across several cost thresholds, considering only the cost with respect to
the grasp stability during the downward cut, we plot the location of the grasp
along the handle in Fig.3.17. For each cost threshold, the planner was run
ten times. When the planner does not account for robustness, shown at the
top of Fig.3.17, the robot selects any grasp along the handle. Accounting for
robustness, as the cost threshold decreases, the planner selects grasps that are
closer to the blade and thus create a smaller lever arm, decreasing the amount
of torque the grasp must be stable with respect to.

We next evaluate how this choice impacts the robot’s ability to success-
fully slice, by testing on three different foods of varying hardness: cucumbers,
bananas with the peel and bananas without the peel. From the continuous
grasp set, we use three representative grasps, shown in Table 3.18: grasping
the side of the handle (side_grasp), grasping from the top of the handle
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close to the blade (top_grasp_close) and grasping from the top of the
handle cloes to the butt of the knife (top_grasp_far).

For each grasp and each food we execute the same downward force-
motion, without evaluating stability or robustness. For the cucumber and
the banana with the peel we repeat this fifteen times. For the banana without
the peel we repeat this ten times. Table 3.18 classifies the results into three
categories: success (fully slicing through the object), partial success (slicing
through at least half of the object) and failure (not significantly slicing the
object).

While we cannot precisely know the required downward force ( fz,0) for
each food, we qualitatively assess the results. From our experience, the
banana with the peel requires a force slightly higher than the low force
setting, as considered in Fig.3.17. As stated previously, a planner that
does not account for robustness would consider top_grasp_close and
top_grasp_far equally while a robust planner would prefer top_grasp_close.
The top_grasp_far cannot slice through the banana with the peel (all
fifteen attempts are failures) while the top_grasp_close is able to cut
through, at least partly, the majority of the time. In contrast, the banana
without the peel corresponds to a soft enough object such that all grasps can
successfully slice through.

Finally, we estimate that the cucumber requires the high force setting. As
predicted in Fig.3.7, the side_grasp is sufficiently stable to slice through
the object. However neither top_grasp_close nor top_grasp_far
succeed because for both, the forceful kinematic chain breaks (the knife
moves considerably within the robot’s end effector). While the robust planner,
considering only grasps from the top, evaluates the top_grasp_close to
be robust enough with respect to the low force setting, this is is inadequate for
the cucumber, whose true required force is significantly larger.

As a final note, one might wonder why we do not fix the planner to always
use side_grasp, since Table 3.18 demonstrates it to be the most robust
grasp.

First, we currently use a generic uninformed grasp sampler that is com-
mon across all of the handled tools (the pusher tool in the childproof bottle
domain, spanner in the nut twisting domain and knife in cutting domain).
Prescribing a preferred grasp for each tool and task, via an informed grasp
sampler, would both increase the modeling effort and decrease the general-
ization. Instead, with an uninformed sampler, we allow the planner to reason
over the best grasp for the specific scenario. As shown in Table 3.15, this is at
some computational cost.

Second, while the side grasp may seem to be the best grasp with respect
to this constraint, in the context of a multi-step manipulation problem, there
are many, often competing, constraints. While for simplicity we have focused
on evaluating the grasp with respect to the downward force, the grasp must
also be stable with respect to the translational slice. Additionally, as shown in
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6/9/0 7/6/2 10/0/0

0/0/15 3/8/4 10/0/0

0/0/15 0/0/15 9/1/0

Table 3.18: We evaluating slicing success
for three grasps (from top to bottom:
side_grasp, top_grasp_close and
top_grasp_far) across three foods.
For the cucumbers and bananas with
peel we perform 15 iterations, for the
banana without the peel we perform 10.
We classify each interaction as a success
/ partial success / failure.

Fig.3.4, Fig.3.5 and Fig.3.7, due to the geometry of the robot’s end effector,
side_grasp is only collision-free if the object is significantly raised. For
foods where such a grasp is not strictly necessary, the planner can select a
more reachable grasp. This flexibility is critical to enabling the planner to
adapt to a variety of different environments.

3.9 Discussion

This chapter proposes a planning framework for solving forceful manipula-
tion tasks. We define forceful manipulation as a class of multi-step manip-
ulation tasks that involve reasoning over and executing forceful operations,
where forceful operations are defined as the robot applying a wrench at a
pose.

3.9.1 Summary of Contributions

Solving forceful manipulation tasks requires planning over a hybrid space
of discrete and continuous choices that are coupled by force and motion
constraints. We frame the primary force-related constraint as the system’s
ability to stably exert the desired task wrench. To capture this, we propose
the forceful kinematic chain constraint which evaluates if every joint in the
chain is stable under the application of the imparted wrench and gravity. For
each class of joint in the chain, which may be robot joints, grasps or frictional
contacts, we discuss a model for evaluating its stability.

In addition to the forceful kinematic chain constraint, the planner must
reason over other force-related constraints, such as the requirement to fix-
ture objects, and over motion constraints, such as the requirement to find
collision-free paths. To plan multi-step sequences that respect these con-
straints, we augment an existing task and motion planning framework,
PDDLStream (Garrett et al., 2020b). We illustrate our system in three exam-
ple domains: opening a push-and-twist childproof bottle, twisting a nut on a
bolt and cutting a vegetable.
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While PDDLStream finds a satisficing plan, the plan may not be robust to
uncertainty. To find robust plans, we propose using cost-sensitive planning
to select actions that are robust to perturbations. We specifically focus on
uncertainty in the physical parameters that determine the stability of the
forceful kinematics chains. Our demonstrations show how cost-sensitive
planning enables the robot to make more robust choices, both with respect to
the strategy, such as what fixturing method to use, and the continuous choices,
such as which grasp to pick.

3.9.2 Future Directions

In this work we assume that the planner has access to many different pa-
rameters, such as the magnitude and form of the forceful operation, object
models and object poses. We also assume the domain is given in the form
of the fact types and lifted operators, with their preconditions, effects and
controllers. Techniques from machine learning, combined with this planning
framework, could be used to relax these assumptions and enable wider gener-
alizations (Konidaris et al., 2018; Wang et al., 2021; Silver et al., 2021; Liang
et al., 2022).



4
Briefly-Dynamic Manipulation with Uncertainty and
Dead Ends

4.1 Introduction

We want to enable robots to leverage dynamic, non-prehensile manipulation
actions, like shoving or toppling. As an example, Fig.4.1 shows how giving
the object a quick shove allows the robot to efficiently relocate the block
to the edge of the table, which is outside of the robot’s reach. In general,
expanding a robot’s repertoire to include these actions empowers it to ma-
nipulate objects that are just out of reach, to manipulate objects that are too
heavy or otherwise difficult to grasp, to reorient an object as a pregrasp ma-
nipulation maneuver (King et al., 2013) and, as shown, to extend the robot’s
reach.

Generating plans that sequence such dynamic actions presents two chal-
lenges. First, there is significant uncertainty in the outcome of these actions.
Fig.4.1 shows that shoving could result in the block sliding a short distance
before stopping, toppling over or even sliding off the table.

While this uncertainty results from various sources of partial information
(i.e. uncertainty on the table-block friction coefficient, uncertainty in the
block’s center of mass), we choose to model this as action uncertainty, i.e.
uncertainty in the resulting outcome of the action1. Additionally, while any 1 Note that this has also been referred

to as future state uncertainty (Kaelbling
and Lozano-Pérez, 2013).

action has a degree of uncertainty (Mason, 2018), we focus on the dynamic
non-prehensile actions as cases where the uncertainty must be reasoned over
and planned for.

The second challenge is that executing these dynamic actions may result
in outcomes that make it impossible to achieve the goal. Returning to Fig.4.1,
if, in trying to move the block to the table’s edge, the block slides off of the
table, the fixed-based manipulator would not be able to retrieve it. In a more
cluttered environment, the wrong action could lead to an object being stuck or
wedged in a corner.

While we use manipulation with dynamic actions as an illustrative in-
stance, the problem of planning uncertainty with irrecoverable outcomes
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Figure 4.1: The robot gives a quick
shove in order to push the green block
across the table. As shown, there are
many possible outcomes as a result of
this action, including the object toppling
over or teetering on the edge of the
table. In this work we focus on enabling
robots to leverage dynamic actions like
this while accounting for uncertainty
and irrecoverable outcomes, or dead
ends.

appears in many contexts. Critical to each of these methods is identifying
and then avoiding both the areas of state space from which it is impossible to
reach the goal, referred to as dead ends (Little and Thiebaux, 2007), and the
areas that lead to these dead ends, sometimes referred to as traps (Lipovetzky
et al., 2016).

Within trajectory generation this can be framed as avoiding areas of in-
evitable collisions (Fraichard and Asama, 2004). In the context of dynamical
systems, Hamilton-Jacobi reachability analysis can be applied to guarantee
avoidance of uundesirable states (Bansal et al., 2017). Techniques in classi-
cal planning often focus on identifying dead-end and trap formulas, in the
context of a discrete, factored domain (Kolobov et al., 2010, 2012a) Policy
generation methods for MDPs (Markov Decision Processes), also operating
on discrete states, are augmented with an iterative or pre-processing step to
identify and remove dead-end states (Kolobov et al., 2011, 2012b).

Drawing inspiration from motion planning, we propose a sample-based
manipulation planner, GUARD (Guiding Uncertainty Accounting for Risk
and Dynamics) for acting in the presence of uncertainty and dead ends. In
face of these dual challenges, rather than search for an optimal strategy, the
planner adopts a cautious approach, focusing ensuring that, even in the face
of uncertainty, the robot does not take a risky action which could lead to a
dead end.

We coarsely model the transition function of the action by learning out-
come volumes, which define the space of possible resultant configurations.
Given this model, we compute danger zones as continuous areas of configura-
tion space that capture both dead ends and traps, where the latter of which are
computed by taking the preimage of the former. By constraining the sample-
based planner to avoid danger zones, we ensure that the robot never takes
an action that leads to a dead end. With this guard, we interleave planning
and execution: generating and executing an action, resensing the world and
repeating until the goal is reached.

To validate GUARD, we explore a series of rearrangement tasks, where
the goal is move a target object in to a goal region amongst possible clutter.
We focus on environments where dead ends exist but are avoidable (Kolobov
et al., 2012b). We present preliminary experimental results in simulation that
show that GUARD is able to generate plans that evade the dead ends and
successfully reach the goal state.
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4.2 Related Work

This work focuses on planning under uncertainty in situations where there are
irrecoverable outcomes, i.e. areas of state space from which it is impossible
to achieve the goal. In this section we review several thrusts within planning
and control that have focused on a similar domains.

4.2.1 Inevitable Collision States

Fraichard and Asama introduce the idea of inevitable collision states (ICS)
as states where, regardless of the future controls, a robot will collide with the
environment (Fraichard and Asama, 2004). For example, if a robot is driving
towards a wall, there is a point at which it is too late for the robot to slow
to a stop or change direction, thus resulting in a collision. Within air traffic
control literature, these are also known as danger zones (Teo and Tomlin,
2003).

ICS have been extended to consider dynamic obstacles (Petti and Fraichard,
2005), uncertainty in obstacle locations (Bautin et al., 2010) and sets of ICS,
for improved computational efficiency. (Althoff et al., 2011). ICS assume a
continuous dynamics function and focus on collision as the only source of
dead ends.

4.2.2 Backwards Reachable Tubes in Dynamical Systems

In context of dynamical systems, Hamilton-Jacobi (HJ) reachability anal-
ysis is a verification method for providing safety and performance guaran-
tees (Bansal et al., 2017). One use case of this is verifying that a robot avoids
a given, target set of undesirable states.

Avoiding the target set requires the system to also avoid the Backwards
Reachable Tube (BRT), the set of states such that trajectories that start from
this set can reach some target set. Solving for this, and the safe set of controls,
is often framed as a two-player differential game, sometimes called a reach-
avoid game (Zhou et al., 2012; Fisac et al., 2015), in which one player,
representing the robot, is attempting to steer away from the target set and the
other player, representing disturbances from the world, is attempting to steer
into the target set. This game is resolved by solving an associated Hamilton-
Jacobi-Isaacs (HJI) equation (Evans and Souganidis, 1984). While often
restricted to continuous dynamics, HJ reachability analysis for computing
BRTs has recently been extended for hybrid systems with controlled and
forced transitions (Borquez et al., 2024). There are several parallels between
BRTs and our danger zones, which are discussed further in Sec. 4.6.



88 LEVERAGING MECHANICS FOR MULTI-STEP ROBOTIC MANIPULATION PLANNING

4.2.3 Dead-End Detection

In a factored, discrete state space, where the state is given as a conjunction of
literals, it is possible to detect or learn the set of dead-end states.

A dead-end formula is a formula that is true only in states where no goal
state is reachable (Lipovetzky et al., 2016). We refer to these states as dead-
end states. Lipovetzky et al. (2016) introduces the idea of trap formula as a
formula such that if a state satisfies the formula, all states reachable from that
state also satisfy the formula. If the trap is mutually exclusive with the goal,
then it is a dead-end trap formula, i.e. it is only true in dead-end states (Chrpa
et al., 2017).

SixthSense proposes characterizing dead-end states by learning a com-
pact set of literals, nogoods, whose truth implies that the goal is no reach-
able (Kolobov et al., 2010, 2012a). Dead ends have also been detected by
using critical-path heuristics (Steinmetz and Hoffmann, 2016), by detecting
action reversability (Morak et al., 2020) and by framing detection as a binary
classification problem (Ståhlberg et al., 2021). Steinmetz and Hoffmann
(2017) expands existing dead-end detectors to additionally detect traps online.
While we draw inspiration from the terminology of dead ends and traps, we
cannot directly apply these dead-end detection methods in our continuous,
geometric state space.

4.2.4 Dead Ends in MDPs

Several MDP formulations and policy-generation algorithms have been
proposed to address environments with dead ends. The Stochastic Shortest
Path (SSP) problem is an MDP that generalizes the classic deterministic
shortest path problem (Bertsekas, 1996). However, SSPs cannot capture
environments with dead ends since they assume that there exists at least
one proper policy, i.e. a policy that reaches a goal state from any state with
probability 1. This does not hold for dead-end states, which cannot reach the
goal state. As a consequence, without discounting, solvers like value iteration
will not converge in environments with dead ends (Kolobov et al., 2012b).

To address this, Kolobov et al. (2011) proposed the Generalized Stochastic
Shortest Path (GSSP) problem, whose MDP-defining tuple includes an initial
state. The aforementioned assumption is relaxed to the condition that there
exists a proper policy starting from the initial state, rather than from all states,
thus allowing for dead ends.

To find a partial policy rooted at the start state, Kolobov et al. (2011)
proposes FRET (Find, Revise, Eliminate Traps). FRET iterates between
FR: using the Find-and-Revise (Bonet and Geffner, 2003) framework as a
heuristic search to update the value function and ET: first using using Tarjan’s
algorithm (Tarjan, 1972) on the reachability graph of the value function to
identify trap states and then modifying the value function of those states to
discourage further exploration. This finds a reward-maximizing policy, within
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the set of proper policies.
This framing and algorithmic strategy is similar to Koenig and Liu (2002),

who focus on finding a plan that that maximizes expected total reward among
all plans that achieve the goal. The proposed algorithm identifies traps in a
similar style to FRET and eliminates those states but remove them from state
space.

Kolobov et al. (2012b) proposed three classes of MDPs whose formula-
tion frames reaching a dead-end state as a cost for the policy the pay. The
dead ends are framed as being avoidable (SSPADE), unavoidable and incur-
ring a finite cost (SSPUDE) and unavoidable and incurring an infinite cost
(iSSPUDE). To formally balance dead end avoidance with cost, Teichteil-
Königsbuch (2012) proposed Safest and Stochastic Shortest Path Problems
(S3P) MDPs. S3P MDPs aim to find a policy that minimizes a goal-cost
criteria from among policies that maximize a goal-probability criteria.

Finally, GSSPs enable the formulation of MAXPROB MDPs, where the
objective is to maximize the probability of reaching the goal, rather that
hitting a dead end (Kolobov et al., 2011).

Two drawbacks of the MDP approaches are, in the context of our do-
main, hat they require an a priori discretization of the state space and that
computing a policy, even a partial policy, is very computationally expen-
sive. In contrast, our sample-based search algorithm allows for an adaptive
discretization.

4.3 Problem Domain

We consider a rearrangement problem, where the robot’s goal is to manip-
ulation a target object into a goal region. The environment is a horizontal
surface, which may have obstacles and other objects. The robot’s action
space is a discrete set of non-prehensile dynamic actions with a high degree
of action uncertainty. We capture this uncertainty by approximating the set
of feasible successor states of an action using learned outcome volumes. To
introduce the domain, we next detail the environment setup and the robot’s
action space.

4.3.1 Environment

We consider a robot R operating on a finite surface, T that has a boundary
b(T). If an object is moved outside the boundary of the surface, the object
is unreachable and cannot be acted on. For example, if the surface is a table
top, once the object falls off the edge of the table, we would consider it
unreachable to the robot.

We consider three types of objects on the surface: the target object, obsta-
cles and non-interactables. There is one, movable target object oT that the
robot aims to move into the goal region. Obstacles, o ∈ Oob, are fixed objects
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on the surface. Non-interactables, o ∈ Oni are objects that the robot and
target object cannot contact, similar to the interaction constraint defined in
Saleem and Likhachev (2020). As an example, we could imagine disallowing
interaction with fragile objects, such as a glass vase. By contrast, the robot
and target object can contact, but not penetrate, obstacles.

First, we approximate the geometry of the target object to be a rectangular
prism 2. For the rectangular prism we define three sets of planar, rectangular 2 We use Trimesh (Dawson-Haggerty et

al.) to compute a bounding box, given
an STL model. We assume we have
models for all of the target objects.

faces f ∈ Frp. We additionally discretize the planar orientation of the target
object. Through these assumption, the configuration of the target object is
defined as:

qoT = ( f j, θk, p) (4.1)

where f j ∈ Frp is the face of the object in contact with the surface, θk ∈ Θ is
the discretized planar orientation, and p = (x, y) ∈ R2 is the planar position.
We define moT = ( f j, θk) to be the object mode. Hence, given a fixed mode,
the configuration space of the object is R2.

Finally, the goal region, G is defined as polygonal region on the surface.

Figure 4.2: The lefthand side show an
example environment viewed from the
side. The environment includes with
a robot, surface (the grey table top),
a target object (the blue rectangular
prism), an obstacle (in black), a glass
vase serving as a non-interactable (in
purple) and a goal region (highlighted
in green). The center shows this same
environment from an overhead view.
The righthand side shows the factored
2D representation of our 3D environ-
ments. Each of the colors correspond
to the lefthand side, but the robot is
omitted. This shows one mode, for a
fixed choice of target object orientation
and face.

Fig.4.2-(left) shows an example environment where the goal area is
highlighted in green, the target object is the blue rectangular prism, the
black walls serve as obstacles and the purple cylinder is a glass vase that is a
non-interactable. We abstract the 3D world into a 2D planar representation
where all obstacles and non-interactables are represented by planar polygons
corresponding to their projection onto the surface. Fig.4.2-(right) shows the
corresponding 2D abstraction for the aforementioned example environment.
Here, fixing the orientation, we show three of the modes corresponding to the
different faces of the target object.

Fig.4.3 shows three environments that serve as the experimental domains
in Sec. 4.9. The first environment (left), corner has no objects on the table
top other than the target object. The goal region is in the far corner edge of
the table and thus the robot must manipulate the object without letting it
fall over the edge. The second environment (middle), slipperyslope
presents a goal at the start of a long hallway that ends at the edge of the table.
Here if the robot overshoots the goal region, the hallway is not wide enough
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Figure 4.3: We consider three exper-
imental domains: corner (left),
slipperyslope (middle) and
glasswall (right). The target object,
at its starting configuration, is blue, the
goal is the highlighted green region, ob-
stacles are black and non-interactables
are purple.

for the robot to bring the target object back. In the third environment (right),
glasswall, the robot must manipulate the object without cracking the
right-side of a wall, which is covered in glass (shown in purple), which is
marked as a non-interactable. Each of these domains present avoidable dead
ends (Kolobov et al., 2012b), where it is feasible to reach the goal while
entirely avoiding dead ends.

4.3.2 Actions

The focus of this work is planning with actions where it is necessary to
reason over the uncertainty in the outcome. As representative examples, we
consider the dynamic and non-prehensile action of fast-push.

In the action fast-push, shown in Fig.4.1, the robot dynamically
pushes an target object (Agboh and Dogar, 2020). This phase, where the
object is sliding, and possibly toppling, is bounded and we only only execute
one action at the end of the previous action’s horizon, i.e. after all objects
have come to rest. Thus, we are planning and executing briefly-dynamic
manipulation, i.e. manipulation with dynamic phases that have finite time
horizon (Mason, 2001).

This action is parameterized by the approach direction φ, specified by
an angle in the world frame. We define a discrete set of angles Φ and so the
action set is a discrete set of ground actions: A = {fast-push(φ) for φ ∈
Φ}.

To capture the action uncertainty, for each ground action a, we learn an
outcome volume Vρ(a, f j, θk) that defines possible region(s) of subsequent
configurations as a result of taking ground action a for object in mode moT =

( f j, θk). Vρ(a, moT ) is the nominal outcome volume that is independent of the
planar position p thus does not account for obstacles. Vρ(a, ( f j, θk, p)) =

Vρ(a, qoT ) is a grounded outcome volume, i.e. the outcome volume at a
particular planar position p. The ground outcome volume is computed
accounting for obstacles in the environment, with the simplifying assumption
that if the target object contacts an object, the object halts. Hence we do
not model more complex dynamics, such as the object bouncing off of an
obstacle or rotating after partial contact. As an action may cause the object to
transition in multiple, different modes, the outcome volume is defined as a set
of regions over these modes.

The nominal outcome volume is learned from data collected on the real
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robot and, more specifically, Vρ(a, f j, θk) captures the convex hull of ρ% of
the data3 Thus, a higher ρ corresponds to a more conservative estimation 3 There may be multiple possible convex

hulls that satisfy this condition; we em-
ploy the simple following strategy. We
construt a circle of radius r at the cen-
troid of the set of points. We iteratively
increase r until ρ% of the points are con-
tained within the circle. We then return
the convex hull of this set of points.

of the outcomes. Note that outcome volumes define the space of possible
resultant configurations and do not capture a probability distribution.

Currently we are using relatively few samples to construct the outcome
volumes and so our estimates are quite unreliable. In principle, this could be
improved by acquiring more training samples or adjusting the estimates to be
more or less conservative.

In between each fast-push action, we plan a move action which is
used to relocate the robot to the start of the next action. We assume the move
action has negligible uncertainty.

4.4 GUARD: Algorithmic Overview

Given the dynamic actions and the outcome volumes that approximate their
dynamics, the goal is to plan a sequence of actions the goal, which is defined
as manipulating the target object to within the goal region. One strategy for
handling this high degree of action uncertainty is adopt a reactive planning
strategy where the robot generates a plan, executes the first action, senses the
new state of the world and repeats, continuing this process until the goal is
reached.

This strategy, however, relies on on the idea that no action is catastrophic
and there are no dead ends (Little and Thiebaux, 2007). Stated another way,
this assumes that the robot will always have the ability to try again and replan
and that there is never an action that, once taken, make it impossible for
achieve the goal. Essentially, straight-forward reactive planning does not
empower the robot to act cautiously in the face of danger.

Given the possibility of dead ends, we want to encourage the robot to not
take irrecoverable actions, actions from which it cannot replan and try again.
To enable this, we propose first offline characterizing danger zones, areas of
configuration space where it is either impossible or unlikely to achieve the
goal. Danger zones can be viewed as capturing dead-end states, but in the
continuous configuration space. With this, we can constrain the sample-based
graph planners to explore configuration space while avoiding danger zones.
Online we then employ a reactive replanning strategy, but with safety guards
to discourage the planner from taking an action that would make it impossible
to achieve the goal.

In the following sections we present our algorithm GUARD: Guiding
Uncertainty Accounting for Risk and Dynamics. It first constructs two core
data structures: ActionRegions and DangerZones. ActionRegions
define where, in the target object’s configuration space, each ground actions
is feasible. An action is feasible to execute if the target object is collision-
free and stably supported and if the swept volume of the robot’s execution
motion in the robot’s collision-free, reachable workspace. ActionRegions
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capture whether the preconditions of executing an action are satisfied.
From this, we next compute DangerZones, which are also defined in

the target object’s configuration space. We construct zone 0, z0, as the areas
of configuration space where it is not feasible to reach the goal, either be-
cause there are no feasible actions (as characterized by the ActionRegions) or
because the area is disconnected, in configuration space, from the goal. By
computing preimages, we define zi defines the union of the set of all config-
urations from which all actions reach zi−1. Note that due to the formulation
of the ρ-outcome volumes, we only capture the possibility of transitioning,
not the probability, and a higher ρ-value will lead to a more conservative
approximation. Summarizing, DangerZones thus characterize, at varying
levels, areas of configuration space the robot wants to avoid.

Given these two data structures, we propose two sample-based graph
planners that interleave search and execution: GUARD-G and GUARD-T.
Both algorithms build graphs in the object’s configuration space, with the
constraint of avoiding DangerZones, thus ensuring that the robot never
takes an action that leads to a dead end. Online, the algorithms augment the
graph to find a sequence of actions. Following the reactive planning strategy,
we execute the first action in the sequence, resense the environment and
repeat until the goal is achieved. We can view generating the sequence of
actions at each step as justification for taking the first action.

We detail the computation of ActionRegions and DangerZones in
Sec. 4.5 and Sec. 4.6, respectively. We briefly discuss theoretical guarantees
(Sec. 4.7) that are used to inspire the search algorithms presented in Sec. 4.8.

4.5 GUARD: Action Regions

ActionRegions provide a continuous mapping, in the object’s configu-
ration space, of the set of feasible actions. A ground action is feasible at a
configuration if the object and robot are not in collision with the environment,
the object is stably supported by the surface and the action is within the
robot’s reachable workspace 4. 4 For example, for a mobile robot we

compute the reachable workspace as the
set of configurations where the robot is
entirely supported by the surface. For
a fixed-based robot, we assume access
to a precomputed, possibly simplified,
computation of its workspace

We compute an action region mapping within each mode, moT We start by
computing, for each mode and action, where the action is infeasible. We take
the complement of the union of these areas, thus computing the areas where
each action is feasible. Within a mode, we combine these areas for each
action (via a shattering algorithm, Fig.4.4) to produce the ActionRegions
mapping.

Returning to the first step, for each mode moT and each ground action a
we compute the following infeasible areas by taking Minkowski differences.
Given the factored representation of the object’s configuration, we compute
these areas in R2, making this computation efficient.

• We define the object as not being stable supported by the surface if the
center of mass of the object is outside the boundary of the surface. Hence
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Figure 4.4: (Left) In the
slipperyslope environment, for one
mode, we overlay the FeasibleArea
for four actions. (Right) The result of the
shattering algorithm is to compute all
possible intersections of the subsets of
FeasibleAreas such that the space
is partitioned into regions where each
region has a specifed set of actions, thus
defining the ActionRegions. Given
this representation, we can query a
specific point in configuration space
(shown as the black dot) to retrieve the
set of feasible actions.

this allows the object to extend or overhang from the surface, as long as
it is stably supported. For each boundary b ∈ b(T), support(oT , b)
computes, in the object frame, the subset of the object that must be within
the boundary in order for the object to be stably supported 5. The set of 5 We assume a uniform mass distribu-

tion and a given center of mass.configurations where the object is not stably supported is:

Bo = {b	 support(oT , b) | ∀b ∈ b(T)} (4.2)

• Let (oT , R(a)) be, in the object frame, the combined polygon of the target
object oT and the swept volume of the robot R executing action a. The set
of configurations where either the robot or the object would be in collision
with an obstacle o ∈ Oob is:

Bob = {o	 (oT , R(a)) | ∀o ∈ Oob} (4.3)

• Likewise, we can compute the set of configurations where either the robot
or the object would be in collision with a non-interactable object o ∈ Oni

in the same fashion:

Bni = {o	 (oT , R(a)) | ∀o ∈ Oni} (4.4)

Finally, we require the swept volume of the robot R executing action a to
be within the robot’s reachable workspace. The set of configurations outside
the reachable workspace is:

BR = {q | q /∈ reachableWorkspace(R, a)} (4.5)

We can then compute the areas where each action is feasible by taking the
complement of the union of these areas:

FeasibleArea(a) = ¬(Bo ∪ Bob ∪ Bni ∪ BR) (4.6)
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For each mode, we next combine the feasible areas for each action to
provide a continuous mapping of action feasibility, hence constructing the
ActionRegions.

For each possible combination of actions (e.g. {a0}, {a1, a3}, {a0, a1},
etc.) we intersect the corresponding feasible areas to define the region where
that combination of actions is feasible. Visualized in Fig.4.4, we refer to this
as the shattering process and it can be thought of taking the Venn diagram of
all of the feasible areas and splitting up the various subsets.

Having constructed the ActionRegions, a simple lookup function can
be used to define the function AF(qoT ) = {a1, a2...}, which outputs the
discrete list of ground actions that are feasible in configuration qoT .

4.6 GUARD: Danger Zones

DangerZones capture the dead-end areas of the object’s configuration
space, i.e. areas where it is impossible to reach the goal z0, and areas that
might unavoidably lead to these dead-end areas, zi.

4.6.1 Zone 0

We define zone 0, z0 as areas in object’s configuration space where it is
impossible to reach the goal. We construct this in two steps.

First, z0 includes the regions where there are no feasible actions, as
computed by the region generation process detailed in Sec. 4.5. Second, z0

also includes regions where, based on a region-based reachability graph, it is
impossible to reach the goal.

Each action region is a vertex in region-based reachability graph. A
directed edge exists between two vertices (ar0, ar1) if there exists an action a
such that a is feasible in region ar0 and, by taking action a within region ar0

it is feasible to transition to ar1, accounting for obstacles. This reachability
is computed by taking Minkowski sum of region ar0 and the ρ-outcome
volume Vρ(a, mar0) where ρ = 1 and mar0 is the mode of region ar0. Given
this graph, we define ARde(G) as the set of action regions where the action
region’s corresponding vertex does not have a path in the graph to any vertex
for a goal action region, for a goal G.

Summarizing:

z0(G) = {q | |AF(q)| = 0} ∪ ARde(G) (4.7)

As a slight abuse of notation, we omit the G and thus z0 defines a continuous
set of dead-end states — if the target object enters z0, it is impossible to reach
the goal G.
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4.6.2 Preimages and Subsequent Zones

For z0, we define the preimage of z0 under an action a as:

preimagea(z0, ρ) = {q | Vρ(a, q) ∩ z0 6= 0} (4.8)

Hence preimagea(z0, ρ) is the set of configurations where ρ-outcome
volume overlaps with z0. Stated another way, some portion of ρ% of the
outcomes of taking action a from configuration q for s ∈ preimagea(z0, ρ)

will result a configuration within z0. We can compute this preimage by
again taking the Minkowski sum of zone 0 and the ρ-outcome volume, while
accounting for obstacles in the environment.

From this we define subsequent zones zi, for i > 0, as:

zi,ρ = {q | q ∈ preimagea(zj<i, ρ) ∀a ∈ AF(q)} ∪ zi−1,ρ (4.9)

First, we compute the set of configurations for which every feasible action,
that configuration is in the preimage of previous zones. Therefore, every
possible action results in some portion of the ρ% outcomes within zj<i To
define zi,ρ, we union this set with all previous zones, thus nesting zones.

The result of this is that we cannot guarantee that any of the actions are
safe in the sense that they not transition the object into a subsequent zones.
However, this also does not guarantee that every action will necessarily
transition the object into subsequent zones. In this context, higher ρ values
correspond to more conservative approximations and it may not even be
likely that such an action transitions the object into subsequent zones (the
condition is only that it is possible).

Generalizing (4.8) to zi:

preimagea(zi, ρ) = {q | Vρ(a, q) ∩ zi 6= 0}. (4.10)

Hence, if z0 defines the dead-end area of configuration space, the sub-
sequent zi represent the slippery slope to this dead end. As an illustrative
example, Fig.4.5 shows the zones for the slipperyslope environment.
The darkest red corresponds to z0 and two subsequent zones are colored in
increasing brighter reds. Unsurprisingly, the riskiest areas are near the edges
of the surface and in the narrow hallway, where the constrained space limits
available actions.

Figure 4.5: DangerZones in the
slipperyslope domain. Here we
show the zones across six modes, cap-
turing the three object faces and two
orientations. The obstacles (and configu-
ration space obstacles) are given in black
(and grey). We color z0 in dark red and
show z1 and z2 in brighter shades.

The formulation of the subsequent zones (i.e. zi for i > 0) mirror, in
varying degrees, the definitions of ICS, BRTs and traps, as described in Sec.
4.2. zi captures the area of configuration space where all feasible actions
could transition the object into a dead-end state, but are not guaranteed
to. This is a weaker condition than ICS and traps, where entering into an
inevitable collision state or trap ensures that that a collision or dead end,
respectively, are going to occur. BRTs capture where the system cannot
guarantee that the undesirable target set will be avoided, which is closer to
the DangerZones formulation.
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4.7 Theoretical Guarantees

We next show how leveraging of DangerZones empowers the robot to
choose actions that avoid dead ends. Recall from Sec. 4.6 that z0 defines the
set of dead ends and zi defines the union of the set of all configurations from
which all actions reach zi−1. Following in the definition of zi, at the limit, we
define z∞.

We start by assuming that the learned ρ-outcome volumes perfectly
capture the ρ% of outcomes, i.e. that there is at most a (1− ρ) probability of
the outcome not being within the learned volume. We conservatively assume
that all of the unmodeled outcomes lead to a danger zone, zi Given this, for
a plan of length n that never enters z∞, with probability (1− (1− ρ))n, the
robot can execute the entire plan without entering z∞.

Likewise, following the same assumptions, for a plan of length n that
never enters zn, with probability (1− (1− ρ))n, the robot can execute the
entire plan without entering z0.

We now set ρ = 1, hence all outcomes are modeled by the learned volume.
Under this assumption, we show that:

Proposition 5. If the robot only takes actions that avoid z∞, the robot will
never reach a dead-end state.

Proof. Assume for the sake of contradiction that the robot reaches
a dead-end state. Therefore, there exists a step k in which the robot
transitioned into z0. By the construction of the DangerZones, this
implies that at step k − 1 the robot was in z1. Backtracking further,
this implies that at step 0 the robot was in zk+1. By definition, zk+1 ⊂
z∞. However, since we assumed the robot never entered z∞, this is
a contradiction. Therefore, the robot will never reach a dead-end
state. �

In practice, we do not compute to z∞ and we cannot guarantee that
the learned volumes perfectly capture the dynamics. Even still, these
ideas motivate our search algorithms: by selecting actions outside of the
DangerZones, the robot can avoid dead ends and continue to act. This
enables the robot, in the face of uncertainty, to continue replanning and trying
again. Here we focus on certifying against reaching a dead end, which is a
weaker condition that guaranteeing the robot achieves the goal.

Finally, we note that ρ and n, the maximum zone computed, act as knobs
that control the conservatism of the planner. While the planner we present
in this work treats them as fixed parameters, an alternative strategy could
initialize them to high values, and iteratively decrease them until a plan is
found, in an attempt to find the safest plan possible.
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4.8 GUARD: Search

We propose two sample-based manipulation search algorithms, GUARD-
G and GUARD-T, to generate actions. Taking inspiration from the re-
sults in Sec. 4.7, we constrain the search algorithm’s exploration to avoid
DangerZones in order to ensure that the robot never takes an action that
leads to a dead end.

Both search algorithms construct graphs where a vertex vi corresponds
to a configuration qi of the target object. Two vertices are connected by a
directed edge, annotated with an action, if the configuration of the child
vertex is contained within the ρ-outcome volume of that action taken from the
configuration of the parent vertex. This captures that, through this action, it is
possible to reach the child vertex from the parent vertex.

For a fixed n, we constrain the graph such that the robot can only take
actions that avoid entering zn. Doing so requires imposing two guard criteria.
First, we only sample configurations qi that are outside of zn. Second, for
each qi we compute the feasible action set, AF(qi). Let AG(qi) ⊆ AF(qi) be
the guarded action set, the set of actions where Vρ(a, qi) has no intersection
with the preimage of zn, hence Vρ(a, qi) does not intersect with zn+1. This
insures that, for any outcome, any subsequent configuration, within the ρ-
outcome volume, there exists a feasible action that satisfies the first criteria,
an action that is not in zn. If AG(qi) is non-empty, i.e. there exist guarded
actions, configuration qi can be added to the graph as vertex vi.

At each step, we augment the graph, respecting the above condition, and
search for a plan, i.e. a path from the current configuration to a configuration
within the goal region. This path corresponds to a sequence of actions 6. 6 Given a plan, we lazily (Bohlin and

Kavraki, 2000) evaluate if there exists
a feasible path for the robot to execute
this action sequence. If there does not,
we invalidate the plan and continuing
searching.

Following in the framework of reactive planning, the robot executes the
first action in the plan, observes the resulting configuration and repeats this
process until it reaches the goal.

The nature of the graph augmentation differs between the two search
algorithms. GUARD-G builds a graph prior to any execution and continues
to augment it in a multi-query fashion, inspired by Probabilistic Roadmaps
(PRM) (Kavraki et al., 1996). GUARD-T constructs a new tree at each step,
in a single-query fashion inspired by Rapidly-Exploring Random Trees
(RRT) (LaValle and Kuffner, 2001a). As explained below, they differ both in
their reuse of computation and in the perspective their edge set captures with
respect to determinization.

4.8.1 GUARD-G

GUARD-G computes a graph in an offline stage before searching and expand-
ing the graph online. We construct a multi-edge directed graph G = (V, E).
To generate vertices, we rejection sample target object configurations, based
on the vertex guard criteria. Some k% of the time, we explicitly sample target



BRIEFLY-DYNAMIC MANIPULATION WITH UNCERTAINTY AND DEAD ENDS 99

Algorithm 3 GUARD-T(qs)

1: T.Init(qs)
2: while T IMEREMAINING() do
3: qrand = RANDOMCONFIG()
4: qnear = NEARESTNEIGHBOR(T, qrand)
5: a = COMPUTEBESTCONTROL(qnear, qrand)
6: qnew = DETERMINIZEOUTCOME(qnear, a)
7: if ISSAFENODE(qnew) then
8: T.AddNode(qnew)
9: T.AddEdge(qnear, qnew, a)

10: if INGOAL(qnew) then
11: p = EXTRACTPATH(T, qs, qnew)
12: return GETF IRSTACTION(p)

object configurations from the goal region. We add all possible edges and
thus, for a vertex vi representing configuration qi, the edge set is:

E = {(vi, vj, a) | a ∈ AG(qi) ∧ qj ∈ Vρ(a, qi)} (4.11)

Depending on the density of the graph, a vertex could have multiple edges
with the same action a, corresponding to various possible outcomes as a
result of executing that action. Hence, we can view the edge set of the graph
can offering a many-outcomes determinization, rather than a single-outcome
and all-outcomes determinization (Yoon et al., 2007). While the robot, in
executing the action, cannot control the outcome, given the guard conditions,
we are know that whichever outcome occurs, will not lead to a dead end.

Having constructed the graph, online we interleave search, graph expan-
sion and execution. At each step, we add the current configuration as a vertex
in the graph, along with its corresponding edges. We search for a path to the
goal 7. If no path exists, we expand the graph by sampling more vertices and 7 As a minor optimization, to discourage

the planner from alternating between a
variety of possible routes, we attempt
to reuse previously found plans. To
do so, we cache the action sequence
found at the first step and, if action se-
quence is still feasible from the resulting
configuration and still reaches for the
goal, we continue to use this sequence
rather than searching for a new one. If
the sequence has become infeasible, we
search anew. Additionally, in searching
for paths, we select the shortest one
(with respect to the number of actions).
Hence while we make no guarantees
with respect to overall path length, we
do still bias towards shorter paths.

adding the corresponding edges. If after a fixed number of expansions, we are
still unable to find a plan, we declare a no-path failure.

Given a plan, we execute the first action and repeat until the target object
has reached the goal region.

4.8.2 GUARD-T

GUARD-T constructs a search tree from scratch at each step. The tree
construction method (Algorithm 3) is a variant of the standard RRT algo-
rithm (LaValle and Kuffner, 2001a). At each step, we sample an target object
configuration, qrand, sampling from the goal region k% of the time (Line 3).
Since this configuration is only used to encourage expansion, we do not apply
the vertex guard criteria. We next compute qnear, the closest node in T to
qrand

8. 8 Given the factored configuration
representation, the distance function is a
weighted combination of the euclidean
distance between the planar positions,
the distance between the discretized
orientations and an indicator function
over the faces.

We select an action a ∈ AG(qnear) that most moves in the direction of
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qrand. Specifically, we compute which action’s ρ-outcome volumes minimize
the distance to qrand.

To generate a new object configuration qnew we randomly sample from the
ρ-outcome volumes associated action a (Line 6). If qnew satisfies the vertex
guard criteria, we add edge (vnear, vnew, a) to the tree, where vi represents to
configuration qi. We terminate once a plan to the goal is found or a maximum
exploration time limit is reached. Like GUARD-G, we execute the first action
in the plan, observe and repeat until the goal is reached.

We highlight two particular ways that GUARD-T differs from GUARD-G.
First, GUARD-T constructs a new tree at each step, forcing it to repeatedly
re-explore the configuration space. Experimentally we’ll see how this,
unsurprisingly, slows the algorithm down. Second, the edge expansion
technique of sampling an outcome more closely aligns with a single-outcome
determinization strategy which also, in some ways, limits the exploration9. 9 We could alternatively consider both a

version of GUARD-G which constructs a
new graph at each step and a version of
GUARD-T that saves the tree structure,
building off of it at each step rather than
starting anew

4.9 Experiments

We present a preliminary evaluation of GUARD across the three envi-
ronments shown in Fig.4.3. First, we describe the three baselines that
we compare against, each of which perform a search not informed by
DangerZones. We next describe the experimental setup and reporting
procedure before finally describing the experimental results.

4.9.1 Algorithms

We compare against three baselines: GUARD-GB, GUARD-TB and DDR.
GUARD-GB and GUARD-TB are ablations of GUARD-G and GUARD-T
(respectively) where DangerZones are not computed and graph creation is
not constrained by the criteria described in Sec. 4.8.

The final baseline, DDR (Discrete Determinize-and-Replan), operates in
a discrete configure space. We discretize the surface into a series of equally-
sized grid blocks. The action set of each block is composed only of actions
that are feasible for every region that overlaps with the block, hence ensuring
that an action is only deemed feasible in a block if it is feasible at every
location within the block. We also explicitly construct a transition function by
computing the set of reachable blocks 10. 10 For each block b, for each feasible

action a of that block, we compute the
reachable area by taking the Minkowski
sum of the block at the ρ-outcome vol-
ume Vρ(a, mb) where ρ = 1 and mb is the
mode of the block b, while accounting
for obstacles. As a simplification, we
assign a uniform transition probability
for any block b′ that intersects with this
reachable area. Unsurprisingly, this is
the most computationally-expensive
step of the preprocessing.

Given this discretization, DDR interleaves search and execution. At each
step, we use Dijkstra algorithm to search for a path, leveraging the same
distance function as GUARD-T and adopting a single-outcome discretiza-
tion that selects the outcome, corresponding to a block, randomly11. Like

11 It would be equally valid, and an
interesting comparison, to consider an
all-outcome discretization as well as
a stronger baseline that accounts for
DangerZones and respects the guard
criteria.

GUARD, given a path, we execute the first step in the path and repeat until
the target object has reached the goal region. In contrast to the GUARD algo-
rithms, which achieve adaptive discretization through sampling, DDR adopts
a fixed, uniform discretization of the state space.
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Environment Algorithm
Results Time

# Steps (SE)
S MS NP NA Offline (SE) Online (SE)

Corner

GUARD-G 10 0 0 0 22.5 (0.32) 19.3 (4.9) 23.2 (3.4)

GUARD-T 8 2 0 0 14.3 (0.0) 246 (53) 27.4 (4.6)

GUARD-GB 7 1 0 2 3.01 (0.03) 6.77 (3.1) 26.6 (3.6)

GUARD-TB 0 0 5 5 2.08 (0.0) 29.2 (5.1) 8.4 (2.3)

DDR (0.05, 0.05) 4 0 2 4 4280 (0.0) 810 (120) 22.5 (2.8)

SlipperySlope

GUARD-G 7 0 3 0 48.3 (0.36) 21.3 (7.8) 15.5 (2.5)

GUARD-T 4 2 4 0 59.0 (0.0) 255 (39) 29.3 (4.2)

GUARD-GB 8 0 2 0 6.9 (0.033) 11.9 (7.6) 8.1 (1.0)

GUARD-TB 4 0 3 3 4.42 (0.0) 22.1 (8.0) 7.3 (0.97)

DDR (0.05, 0.05) 2 0 6 2 1950 (0.0) 49.3 (11) 5.2 (1.1)

GlassWall

GUARD-G 9 0 1 0 133 (1.7) 69.9 (16) 17.4 (3.2)

GUARD-T 10 0 0 0 132 (0.0) 97.0 (14) 17.5 (1.7)

GUARD-GB 1 0 7 2 14.9 (0.12) 39.9 (4.8) 16.4 (4.8)

GUARD-TB 0 0 7 3 10.8 (0.0) 120 (15) 8.3 (1.3)

DDR (0.05, 0.05) 1 0 3 6 3220 (0.0) 277 (64) 8.5 (2.2)

Table 4.1: We evaluate the two proposed
algorithms and three baselines across
the three experimental domains visual-
ized in Fig.4.3. We report the outcomes,
for ten iterations, provide the computa-
tion time, in seconds, and the number of
steps. For DDRthe spatial discretization
is provided. All parameters were kept
constant except for slipperyslope
where GUARD-T and GUARD-TB used
a longer max time.

4.9.2 Experimental Setup

For each environment, each algorithm is evaluated across 10 trials. We
classify the output of each iteration into four categories:

Success (S) The target object was successfully moved into the goal region.

Max Steps (MS) As a practical matter, we set an upper limit on the
number of actions the planner can execute before terminating. This failure
mode does not necessarily mean that is is impossible to reach the goal,
only that the robot did not reach it within the step limit.

No Path (NP) The planner was unable to find a path from the current
configuration to the goal region. Again, this does not necessarily mean
that it is impossible to reach the goal. Instead, it could correspond to
the graph not being large enough, i.e. that more graph augmentations
would be needed for GUARD-G or GUARD-GB or that a larger time limit
is needed for GUARD-T and GUARD-TB. For DDR, the randomized
determinization choice could leave no path to the goal.

No Actions (NA) The planner has reached a configuration where there are
no feasible actions. This corresponds to a dead end.

We also record the computation time, which we split into the offline
time and offline time. For GUARD-T the offline time is computation of the
ActionRegions and DangerZones. For GUARD-G this additionally
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includes the initial graph construction. The offline time for GUARD-TB and
GUARD-GB is analogous, excluding the computation of DangerZones.
The offline time for DDRis the instantiation of the MDP. Finally, while we
are not optimizing with respect to path length, we also include the average
number of steps in the execution iteration.

For all algorithms, we use a conservative ρ = 0.99.

4.9.3 Results

Table 4.1 presents the results of each of the algorithms across the three
domains. GUARD is able to generate action sequences that avoid dead ends,
with zero No Action (NA) results, in contrast to the three baselines. While
GUARD-G and GUARD-T have several No Path (NP) results, as stated above
this is, in our experience, a consequence of limiting the computation time of
the planner. In the case of GUARD-G, we use a random, uninformed vertex
sampling strategy, when more focused sampling could reduce computation
time. Further experiments would be needed to confirm both hypotheses.

Unsurprisingly, while the offline time for GUARD-G is slightly longer
compared to GUARD-T due to the graph construction step, GUARD-T
has a significantly longer online computation time. As mentioned in Sec.
4.8, this is largely because GUARD-T constructs a new tree from scratch
each time, hampering it from reusing computation in the way GUARD-G
does. Additionally, as compared to the baselines, the additional offline time
required for both GUARDalgorithms is dominated by the construction of the
region-based reachability graph.

With respect to computation time, DDR requires a large amount of of-
fline computation time in order to construct the discrete state space and, in
particularly, to explicitly construct the transition function. We are exploring
lazily constructing the transition function as well as decreasing the online
computation time.

Finally, we note that these results are preliminary and a more rigorous
evaluation of GUARD is needed to validate its properties.

4.10 Discussion

We present GUARD, a sample-based planning algorithm that addresses
manipulation under uncertainty while accounting for dead ends. In a
world where some actions can make it impossible to achieve the goal,
GUARD adopts a cautious approach. We construct danger zones that capture
where certain actions may lead to dead ends, and then constrain the search
algorithms to avoid these zones, thus ensuring the robot can always continue
acting in its pursuit of the goal. We show some initial experiment results to
verify our method in comparison to a few baselines that do not explicitly
account for dead ends.
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In addition to the discrete action space, GUARD’s representations pose
several limitations. By planning in a 2D space, abstracting the target object
to a template shape and only considering sticking contact in object-obstacle
interactions, we simplify the dynamics of the dynamic actions.

The work presented here is preliminary and we are interested in several
immediate future steps. First, a more rigorous experimental evaluation is
needed to fully validate GUARD. In addition to more environments and
iterations, as discussed in Sec. 4.8, there are a number of additional ablations
and baselines that would further illuminate important algorithmic choices.
We focused on a relatively small action space (four fast-push action) and
thus it would be interesting to incorporate other dynamic actions such as
toppling or flipping. Finally, GUARD is a very cautious algorithm, operating
on the assumption that dead ends are entirely avoidable. A natural extension
would be to allow GUARD to modulate its level of caution, even allowing for
tradeoffs in the case of unavoidable dead ends.





5
Conclusion

This thesis focuses on enabling robots to robustly perform complex, multi-
step manipulation tasks, like chopping vegetables or wielding a wrench.
These tasks require the robot to solve for both the sequences of actions and
the discrete and continuous parameters of those actions, subject to constraints
relating to both geometry and physics. To tackle this, we adopt a model-based
approach wherein we equip the robot with composable models of the world
and develop planning frameworks that use the models to sequence complex
behaviors. We propose both models and algorithms that enable robots to
make choices that are robust to uncertainty. We consider three manipulation
domains: in-hand manipulation, forceful manipulation and briefly-dynamic
manipulation.

First we focus on enabling robots to regrasp objects by repeatedly pushing
against features in the environment, thus reorienting the object in-hand
(Chapter 2). To enable this, we propose both a compact model that defines
how the pushed object will move in-hand and a planning algorithm that
propagates the model forward in order to generate a sequence of many
reorienting pushes. Our model extends the notion and construction of the
motion cone, thus abstracting away the complex physics that govern how a
grasped object can move when it is pushed against the environment. This
abstraction defines the set of reachable object motions, which enables the
planner to find strategies an order of magnitude faster than previous methods.
Additionally, we show how operating within a subset of this mapping enables
robust pushing.

Next, we define forceful manipulation tasks as those where the ability
to generate and transmit the necessary force to objects is an active limiting
factor that constrains the robot’s choices (Chapter 3). Opening a childproof-
bottle, twisting a nut on a bolt and chopping vegetables serve as three illus-
trative instances of forceful manipulation tasks. We introduce force-related
constraints that explicitly consider torque and frictional limits and integrate
these, alongside motion constraints, into an existing state-of-the-art task and
motion planning (TAMP) framework. We propose using cost-sensitive plan-
ning to find strategies that are robust to bounded uncertainty in the physical
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parameters of the force-related constraints.
Finally, we consider briefly-dynamic manipulation, where action with

bounded periods of dynamics, like shoving or toppling, are sequenced to-
gether (Chapter 4). While utilizing dynamic actions enables robots to expand
their dexterity, such actions are also characterized by the fact that their out-
comes are non-deterministic and can lead to dead-ends. We propose learning
a coarse model of the outcome dynamics which captures this uncertainty.
We contribute a sample-based planning framework, GUARD, that uses this
model to continuously characterize the dead-end areas of configuration space
and then search for plans that avoid these areas.

Below we briefly describe avenues of future research as well as a few
concluding remarks.

5.1 Future Directions

While there are many possible future direction, we highlight expanding the
role of reactivity and feedback.

Throughout this thesis, we consider several different paradigms with
respect to open-loop versus closed-loop execution. Our in-hand manipulation
planner executes a series of open-loop quasistatic pushes in an open-loop
fashion (open-open). Our forceful manipulation TAMP framework executes a
closed-loop series of actions in an open-loop fashion (closed-open). Finally,
our briefly-dynamic manipulation planner executes a series of open-loop
dynamic pushes in a closed-loop fashion (open-closed) 1. 1 We admit that the thesis is therefore

missing an instance of closed-closed,
which would complete the quadrant.

In a sense, this captures our belief that future manipulation systems
should include combinations of closed and open-loop planning and control.
However, the thesis does not investigate two core research questions with
respect to this structure: (1) what are the sources of feedback? and, perhaps
more connected to the core of this thesis, (2) how is that feedback integrated
into our decision-making frameworks? Investigating both of these questions
exciting opportunities to develop more reactive frameworks that can handle
richer sources of uncertainty, unexpected outcomes and disturbances.

For example, as an initial step in this direction, we proposed using the
robot’s proprioception as a source of feedback in the context of manipulating
objects with unknown force requirements and integrated simple strategies
for error-handling and replanning in a TAMP framework2. In this context, 2 Project led by Rachel Lu. See

https://www.youtube.com/watch?v=TMkYot4rAbo
for details

the feedback updated the robot’s model of the force required to open a heavy
drawer.

More broadly, information-gathering actions could be leveraged alongside
robust planning to refine estimates of uncertain quantities and update our
models of the world, enabling the robot to improve with experience.

https://www.youtube.com/watch?v=TMkYot4rAbo
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5.2 Concluding Remarks

The vision of this thesis is to take a step towards a world in which robots are
cooking dinner at home, packing supplies in hospitals and cleaning up messy
classrooms. We argue that fundamental to solving these tasks is enabling
robots to reason over geometry and physics, such that they can tackle the
marvelous messiness of manipulation. We take a model-based approach,
contributing models and algorithms, because this places the onus on the robot
to reason over how to solve the hybrid, combinatorial constraint satisfaction
problem induced by these manipulation missions. We believe this is critical
to enabling the ultimate goal – robot behavior that generalizes across a wide
array of tasks and environments.
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Appendix

This appendix provides supplementary material to Chapter 3, describing
additional implementation details and experimental domains.

A Implementation Details

In the context of Chapter 3, we provide some implementation details with
respect to the controller used to exert wrenches, the specific motion planning
and grasping tools used in the kinematic samplers and the parameters of the
robust planning experiments.

A.1 Controller for Exerting Wrenches
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Figure 1: Across varying stiffnesses with
Cartesian impedance control, we plot
the experimental relation between the
offset in the commanded offset in the z
direction and the exerted force in z, as
measured by an external force-torque
sensor. For each stiffness we plot all five
experimental runs, bolding the aver-
age. The result shows that the relation
between the offset and force exerted is
nearly linear.

Each of the operators that apply the forceful operation, e.g. hand_twist
and tool_twist in the nut twisting domain, are associated with a con-
troller that must exert a wrench. While there are several control methods
for exerting wrenches explicitly, such as force control (Zeng and Hemami,
1997b) or hybrid position-force control (Mason, 1981; De Schutter and
Van Brussel, 1988; Hou and Mason, 2019), we opt to use a Cartesian
impedance controller. Cartesian impedance control regulates the relation-
ship between force and motion by treating the interplay of interaction forces
and motion derivatives as a mass-spring-damper system (Hogan, 1985;
Albu-Schaffer et al., 2003; Ott, 2008).

We can exert a wrench by offsetting the target Cartesian pose to be below
the point of contact and adjusting the impedance parameters (Kresse and
Beetz, 2012). Intuitively this exerts a wrench by compressing the spring
rendered by the robot. We chose to only vary the stiffness matrix, Kp, and set
the damping matrix, Kd, to be approximately critically damped, i.e. Kd =

2
√

Kp. As shown in Fig.1 we can experimental characterize the relationship
between the exerted wrench, the pose offset and the stiffness. The planner
uses this experimental relation to select, given the stiffest possible setting,
the desired pose offset. Thus, each of the samplers that generate Cartesian
impedance paths must generate the series of setpoints in SE(3), accounting
for the pose offset, and the stiffnesses.



120 LEVERAGING MECHANICS FOR MULTI-STEP ROBOTIC MANIPULATION PLANNING

A.2 Motion Planning and Grasping

Collision-free motion planning, such as what is used in samplers plan-free-motion
and plan-holding-motion, can be implemented with any choice of
motion planner. We use a python implementation of bidirectional RRT
(BiRRT) (LaValle and Kuffner, 2001b). In these settings, a considerable frac-
tion of the overall PDDLStream planning time is spent performing motion
planning. A more efficient implementation or algorithm would significantly
speed up the reported results.

Any grasp generation method could be used to generate grasps for sam-
plers such as sample-grasp. For each graspable object we define the
grasp set using Task Space Regions (TSRs), which are a compact method for
describing pose constraints that allows for random sampling (Berenson et al.,
2011).

A.3 Robust Planning Experimental Parameters

As detailed in Sec. 3.7.2, to generate robust plans we assess the probability of
a forceful kinematic chain being stable via Monte Carlo estimation. Here we
briefly describe how each parameter was perturbed for the experiments in Sec.
3.8.2.

The friction coefficient is additively perturbed by a value uniformly sam-
pled between [−0.1, 0.1]. The applied wrench is multiplicatively perturbed
by a value uniformly sampled between [0.5, 1.5]. The contact frame is addi-
tively perturbed by a value uniformly sampled between [−5mm, 5mm] if the
frictional joint is formed by a robot grasp and [−10mm, 10mm] otherwise.
The contact patch size (r, in the context of the ellipsoidal limit surface) is
recomputed.

B Further Domain Specification

In Sec. 3.7 we detailed the lifted operators, fact types and samplers used for
the nut-twisting domain. The domain was composed of elements from the
pick-and-place domain, the forceful manipulation additions and domain-
specific additions. In this section we first detail more forceful manipulation
additions before providing the domain-specific elements for the childproof
bottle and vegetable cutting domains.

B.1 Forceful Manipulation Additions

In Sec. 3.7.1 and Sec. 3.7.1 we detailed the augmentations needed to en-
able forceful manipulation in the PDDLStream framework. In that ex-
ample we discussed how the forceful kinematic chain constraint was in-
tegrated into the domain and discussed two possible fixturing methods:
(HoldingFixtured o w), which uses a second robot to grasp the object
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to be fixtured, and (WeightFixtured o w), which fixtures by weighing
down the object with a heavy mass.

Table 1 lists the lifted operators, derived facts and samplers that are used
to enable the other fixturing strategies that can be used across forceful ma-
nipulation domains: (ViseFixtured o w) and (SurfaceFixtured
o w)

One way to fixture an object is to place it in a vise: (ViseFixtured
o w). This fact is verified by the test sampler test-vise-grasp-stable,
which uses the limit surface models to evaluate the stability of the grasp. To
use a vise we add the lifted operators open_vise and close_vise along
with their sampler plan-vise-motion. These operators actuate the vise
(implemented here as a table-mounted robotic hand) and have as a precondi-
tion that the object to be fixtured is already in the vise, which can be achieved
through a pick-and-place motion.

Another way to fixture is to create a frictional grasp by exerting a down-
ward force on the object through a contact, thus sandwiching the object
between the contact and the surface (SurfaceFixtured o w). The ex-
erted downward force can be thought of as the grasping force of the frictional
grasp. This creates two joints: the joint between the force-exerting contact
and the object (evaluated by test-contact-stable) and the joint be-
tween the object and the surface (evaluated by test-surface-stable).
For both joints we use the limit surface models to evaluate stability.

We also introduce operators to make and break contact with either
a grasped tool or an end effector contact of the robot (fingers or palm):
pushin_tool, pushout_tool, pushin_rcontact, pushout_rcontact
(with samplers plan-tool-contact and plan-rcontact-contact).
The operators that make contact (pushin_tool and pushin_rcontact)
make contact by exert a downward force on the object, leveraging Cartesian
Impedance control, described in Sec. A.1.

In each domain we define a derived fact (Fixtured o w) to define
which fixturing methods are valid to use.

B.2 Childproof Bottle Domain

Table 2 lists the lifted operators, derived facts and samplers that are specific
to the childproof bottle domain. The robot can impart the forceful operation
to push-twist the cap through a variety of possible contacts: a grasp, finger-
tips, a palm or a grasped pusher tool. Correspondingly, we have a lifted op-
erator for each of these contact types: grasp_twist, contact_twist,
tool_twist. The operator contact_twist is parameterized by what
end effector contact the robot is using, which we define as being either the
fingertips or a palm.

The controller for the grasp_twist operator grasps the cap with the
hand, forcefully pushes down while twisting the cap with the hand and then



122 LEVERAGING MECHANICS FOR MULTI-STEP ROBOTIC MANIPULATION PLANNING

releases the cap. The controller for the contact_twist operator performs
the same sequence only instead of grasping the cap, frictional planar contact
is made. Likewise the controller for the tool_twist operator is the same
sequence, but where a grasped tool is making and breaking contact with the
cap. The trajectories are generated by the samplers plan-grasp-twist,
plan-contact-twist and plan-tool-twist respectively. Un-
surprisingly, the implementation of the three samplers has a tremendous
amount of overlap with small, parameterized differences. We use a Cartesian
Impedance controller, detailed in Sec. A.1 to exert the forceful push and twist
wrench for all three operators.

While the task requires that the robot exert a wrench w = (0, 0,− fz, 0, 0, tz),
we allow contact_twist and tool_twist to sample a wrench we that
exerts additional downward force, i.e. we = (0, 0,− fz++, 0, 0, tz) where
fz++ is a sampled value such that fz++ > fz. If the bottle is being fixtured
via (SurfaceFixtured o w) this additional force increase the stability
of the frictional contacts.

Like in the nut twisting domain, any operator that applies a forceful
operation has preconditions that check the forceful kinematic chain constraint.
Note that for the operators where the robot is exerting we the stability is
evaluated with respect to this wrench.

For each of these operators, the bottle must be fixtured, which can either
be achieved by using a second arm to grasp the bottle ((HoldingFixtured
o w)), using the frictional contact with the surface ((SurfaceFixtured
o w)) or using a vise ((ViseFixtured o w)). Likewise if the operator
is exerting we the fixturing is evaluated with respect to this. In this domain we
slightly modify the formulation of (SurfaceFixtured o w) to account
for the fact that the additional force is made in conjuction with the push-twist
operations.

We additionally add a lifted operator that removes the cap from the bottle,
remove_cap, which is only feasible after we have used one of the push-
twist operators. The controller for this operator grasps the cap with the hand
and lifts the cap up.

B.3 Vegetable Cutting Domain

Table 3 lists the lifted operator, derived fact and sampler that are specific to
the vegetable cutting domain. The robot imparts the forceful operation to cut
the vegetable by using a grasped knife.

We define one new operator: slice_cut. The controller for this opera-
tor makes contact with the vegetable via the grasped knife, exerts a downward
force with the knife and then exerts a translational slice with the knife. These
trajectories are generated by sampler plan-slice-motion and, like in
the other domains, we use Cartesian Impedance control to exert the wrenches.

Since this operator involves two wrenches, the wrench of the downward
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force w0 and the wrench of the translation slice w1, the forceful kinematic
chains must be stable with respect to both wrenches. Hence the preconditions
evaluate the stability of the vegetable’s fixturing and the stability of the grasp
on the knife for w0 and w1.

In this domain the vegetable must be fixtured, which can be achieved
either by using a second arm to grasp the vegetable ((HoldingFixtured
o w), using the frictional contact with the surface ((SurfaceFixtured
o w)) or using a vise ((ViseFixtured o w).
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Action Preconditions Effects

open_vise
(ViseHand v) (¬ (Movable o)) ∧ (AtPose o po) ∧

(AtGrasp v o go) ∧ (ViseMotion v o po go w t)
(Movable o)

(¬ (AtGrasp v o go))

close_vise
(ViseHand v) ∧ (Movable o) ∧ (AtPose o po) ∧

(On o v) ∧ (ViseMotion v o po go w t)
(AtGrasp v o go)
(¬ (Movable o))

pushin_tool

(AtConf a q0) ∧ (AtPose o po) ∧ (Pusher op) ∧
(AtGrasp a op gp) ∧ (StableGrasp op gp w) ∧

(SampleWrench w o) ∧
(ContactToolMotion a op gp o po poc w q0 q1 t) ∧

(¬ (TrajUnsafe a t))

(InContact o op c poc w)
(¬ (AtConf a q0))

(AtConf a q1)

pushout_tool

(AtConf a q0) ∧ (AtPose o po) ∧ (Pusher op) ∧
(AtGrasp a op gp) ∧ (InContact o op c poc w) ∧

(ContactToolMotion a op gp o po poc w q0 q1 t) ∧
(¬ (TrajUnsafe a t))

(¬ (InContact o op c poc w))
(¬ (AtConf a q0))

(AtConf a q1)

pushin_rcontact

(AtConf a q0) ∧ (AtPose o po) ∧
(RContact c) ∧ (SampleWrench w o) ∧

(ContactMotion a c o po poc w q0 q1 t) ∧
(¬ (TrajUnsafe a t))

(InContact o op c poc w)
(¬ (AtConf a q0))

(AtConf a q1)

pushout_rcontact

(AtConf a q0) ∧ (AtPose o po) ∧
(RContact c) ∧ (InContact o op c poc w)
(ContactMotion a c o po poc w q0 q1 t) ∧

(¬ (TrajUnsafe a t)) ∧

(¬ (InContact o op c poc w))
(¬ (AtConf a q0))

(AtConf a q1)

(a) Actions

Derived Fact Definition

(ViseFixtured o w) ∃ v go (ViseHand v) ∧ (AtGrasp v o go) ∧ (StableViseGrasp o go w)

(SurfaceFixtured o w)
∃ po c poc r (AtPose o po) ∧ (On o r) ∧ (InContact o c poc we) ∧

(StableObjContact c poc o we w) ∧ (StableSurfaceContact o po r we w)

(b) Derived Facts

Sampler Inputs Outputs Certified Facts

sample-push-wrench o w (SampleWrench w o) ∧ (Wrench w)

plan-vise-motion v o po go w t (ViseMotion v o po go w t) ∧ (Traj t)

plan-tool-contact a op gp o po poc w q0 q1 t
(ContactToolMotion a op gp o po poc w q0 q1 t) ∧

(Conf q0) (Conf q1) (Traj t)

plan-rcontact-contact a c o po poc w q0 q1 t
(ContactMotion a c o po poc w q0 q1 t) ∧

(Conf q0) ∧ (Conf q1) ∧ (Traj t)

test-vise-grasp-stable v o go w (StableViseGrasp o g w)

test-contact-stable c poc o we w (StableObjContact c poc o we w)

test-surface-stable o po r we w (StableSurfaceContact o po r we w)

(c) Samplers

Table 1: The lifted operators, derived facts and samplers common across forceful manipulation domains. Throughout the table we use
the symbols: a is a robot arm, c is a robot contact (fingertips or palm), o is an object, po is a pose of object o, go is a grasp on object o, pij is
a relative pose between two objects i and j, qi is a configuration, r is a region, t is a trajectory, w is a wrench, v is a vise.
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Action Preconditions Effects

grasp_twist

(AtConf a q0) ∧ (HandEmpty a) ∧ (Cap oc) ∧ (Bottle ob) ∧
(AtPose oc pc) ∧ (AtPose ob pb) ∧ (Fixtured ob w) ∧

(StableGrasp oc gc w) ∧ (StableJoints a t w) ∧
(GraspPushMotion a oc ob pc pb gc w q0 q1 t) ∧

(¬ (TrajUnsafe a t))

(Twisted oc w) ∧
(¬ (AtConf a q0)) ∧

(AtConf a q1)

contact_twist

(AtConf a q0) ∧ (HandEmpty a) ∧ (Cap oc) ∧ (Bottle ob) ∧ (RContact n) ∧
(AtPose oc pc) ∧ (AtPose ob pb) ∧ (ExtraWrench w we) ∧

(Fixtured ob we) ∧ (StableJoints a t w) ∧
(ContactPushMotion a n oc ob pc pb we q0 q1 t) ∧

(¬ (TrajUnsafe a t))

(Twisted oc w) ∧
(¬ (AtConf a q0)) ∧

(AtConf a q1)

tool_twist

(AtConf a q0) ∧ (Cap oc) ∧ (Bottle ob) ∧ (PushTool ot) ∧
(AtPose oc pc) ∧ (AtPose ob pb) ∧ (AtGrasp a ot gt) ∧

(ExtraWrench w we) ∧ (Fixtured ob we) ∧
(StableGrasp ot gt we) ∧ (StableJoints a t w) ∧

(ToolPushMotion a ot oc ob pc pb gt we q0 q1 t) ∧
(¬ (TrajUnsafe a t))

(Twisted oc w) ∧
(¬ (AtConf a q0)) ∧

(AtConf a q1)

remove_cap

(AtConf a q) ∧ (HandEmpty a) ∧ (Cap oc) ∧ (Bottle ob) ∧
(AtPose ob pb) ∧ (AtPose oc pc) ∧ (Twisted oc w) ∧

(UncapMotion a oc ob pb g q t) ∧
(¬ (TrajUnsafe a t))

(AtGrasp a oc g) ∧
(¬ (AtPose oc pc)) ∧

(¬ (HandEmpty a)) ∧
(Uncapped oc ob)

(a) Actions

Derived Fact Definition

(Fixtured o w) ((HoldingFixtured o w) ∨ (SurfaceFixtured o w) ∨ (ViseFixtured o w))

(b) Derived Facts

Sampler Inputs Outputs Certified Facts

sample-wrench w1 w2 (ExtraWrench w1 w2) ∧ (Wrench w2)

plan-uncap-motion a oc ob pb gc q t (UncapMotion a oc ob pb gc q t) ∧ (Conf q) ∧ (Traj t)

plan-grasp-twist a oc ob pc pb gc w q0 q1 t
(GraspPushMotion a oc ob pc pb gc w q0 q1 t) ∧

(Conf q0) ∧ (Conf q1) ∧ (Traj t)

plan-contact-twist a n oc ob pc pb w q0 q1 t
(ContactPushMotion a n oc ob pc pb w q0 q1 t) ∧

(Conf q0) ∧ (Conf q1) ∧ (Traj t)

plan-tool-twist a ot oc ob gt pc pb w q0 q1 t
(ToolPushMotion a ot oc ob pc pb gt w q0 q1 t) ∧

(Conf q0) ∧ (Conf q1) ∧ (Traj t)

(c) Samplers

Table 2: The domain-specific lifted operators, derived facts and samplers for the childproof bottle domain. Throughout the table we
use the symbols: a is a robot arm, o is an object, po is a pose of object o, go is a grasp on object o, qi is a configuration, r is a region, t is a
trajectory, w is a wrench. Specific to this domain: n, ob, oc and ot refer to the robot contact, bottle, cap and pusher tool, respectively.
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Action Preconditions Effects

slice_cut

(AtConf a q0) ∧ (Cuttable ov) ∧ (AtPose ov pv) ∧ (Knife ok) ∧
(AtGrasp a ok gk) ∧ (Fixtured ov w0) ∧ (Fixtured ov w1) ∧

(StableGrasp ok gk w0) ∧ (StableGrasp ok gk w1) ∧
(StableJoints a t w0) ∧ (StableJoints a t w1) ∧
(SliceCutMotion a ok ov gk pc w1 w2 q0 q1 t)∧

(¬ (TrajUnsafe a t))

(Sliced ov) ∧
(¬ (AtConf a q0)) ∧

(AtConf a q1)

(a) Actions

Derived Fact Definition

(Fixtured o w) ((HoldingFixtured o w) ∨ (SurfaceFixtured o w) ∨ (ViseFixtured o w))

(b) Derived Facts

Sampler Inputs Outputs Certified Facts

plan-slice-motion a ok ov gk pv w1 w2 q0 q1 t
(SliceCutMotion a ok ov gk pv w1 w2 q0 q1 t) ∧

(Conf q0) ∧ (Conf q1) ∧ (Traj t)

(c) Samplers

Table 3: The domain-specific lifted operators, derived facts and samplers for the vegetable cutting domain. Throughout the table we
use the symbols: a is a robot arm, o is an object, po is a pose of object o, go is a grasp on object o, qi is a configuration, r is a region, t is a
trajectory, w is a wrench. Specific to this domain: ok and ov refer to the knife and the vegetable, respectively.
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