

Leveraging Mechanics for Multi-Step Robotic Manipulation Planning

Rachel Holladay

Doctoral Defense 16 August 2024

https://people.csail.mit.edu/rholladay/

- chop vegetables
- saute vegetables
- make sauce sauce
- mix vegetables and sauce

Action Sequence

Action Sequence

[grasp knife] [move knife to cucumber] [slice cucumber]

Action Sequence

[grasp knife] [move knife to cucumber] [slice cucumber]

Action Sequence

[grasp knife] [move knife to cucumber] [slice cucumber] Action Parameters

knife grasp arm position grasp trajectory object pose

A

. . .

Action Sequence

[grasp knife] [move knife to cucumber] [slice cucumber] Action Parameters

forces object pose arm position slicing trajectory

A

• • •

Action Sequence

[grasp knife] [move knife to cucumber] [slice cucumber] Action Parameters

knife grasp arm position grasp trajectory forces object pose arm position slicing trajectory

A

 $\{g_0, g_1, g_2, g_3, \dots\}$ $\{\xi_0, \xi_1, \xi_2, \dots\}$ $\{q_0, q_1, q_2 \dots\}$

Action Sequence

[grasp knife] [move knife to cucumber] [slice cucumber]

Success?

Action Parameters

knife grasp arm position grasp trajectory forces object pose arm position slicing trajectory

• • •

A

Action Sequence

[grasp knife] [move knife to cucumber] [slice cucumber] Action Parameters

knife grasp arm position grasp trajectory forces object pose arm position slicing trajectory

• • •

A

Action Sequence

[grasp knife] [move knife to cucumber] [slice cucumber]

Action Parameters

knife grasp arm position grasp trajectory forces object pose arm position slicing trajectory

• • •

A

Action Sequence

[grasp knife] [move knife to cucumber] [slice cucumber]

Action Sequence

[grasp knife] [move knife to cucumber] [slice cucumber]

Action Sequence

[grasp cucumber] [place cucumber in vise] [close vise] [grasp knife] [move knife to cucumber] [slice cucumber]

Action Sequence

[grasp cucumber] [place cucumber in vise] [close vise] [grasp knife] [move knife to cucumber] [slice cucumber]

Action Parameters

cucumber grasp move trajectory pose in vise knife grasp grasp trajectory forces

. . .

Action Sequence

[grasp cucumber] [place cucumber in vise] [close vise] [grasp knife] [move knife to cucumber] [slice cucumber]

Success?

Action Parameters

cucumber grasp move trajectory pose in vise knife grasp grasp trajectory forces

Action Sequence

[grasp cucumber] [place cucumber in vise] [close vise] [grasp knife] [move knife to cucumber] [slice cucumber]

cucumber grasp move trajectory pose in vise knife grasp grasp trajectory forces . . . Blocking Object

A

Action Parameters

Action Sequence

[grasp cucumber] [place cucumber in vise] [close vise] [grasp knife] [move knife to cucumber] [slice cucumber]

Action Sequence

[grasp red block] [place red block somewhere] [grasp cucumber] [place cucumber in vise] [close vise] [grasp knife] [move knife to cucumber] [slice cucumber]

Action Sequence

[grasp red block] [place red block somewhere] [grasp cucumber] [place cucumber in vise] [close vise] [grasp knife] [move knife to cucumber] [slice cucumber]

Success?

Action Sequence

Action Sequence

Action Parameters

A

Generalization

Action Sequence

Action Parameters

A

Generalization

Model-based Approach

Task and Motion Planning (TAMP)

Survey Paper: Garrett, Caelan Reed, Rohan Chitnis, <u>Rachel Holladay</u>, Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. "Integrated task and motion planning." Annual review of control, robotics, and autonomous systems, 2021.

Gravot, et al. (2005)

Plaku, Hager (2010)

Kaelbling, Lozano-Perez (2013)

Srivastava et al. (2014)

Dantam et al. (2016)

Garrett, et al. (2020)

Toussaint, et al. (2020)*

Silver, et al. (2021)

Reasoning over Geometry

Is a motion collision-free?

Is that placement free?

Reasoning over Geometry

Is the grasp available?

Is an object reachable?
(only) Reasoning over Geometry

(only) Reasoning over Geometry

Reasoning over Geometry and Physics

Reasoning over Geometry and Physics

Models and Algorithms that Enable Reasoning over Geometry and Physics to Accomplish Multi-Step Manipulation Tasks Forceful Manipulation

Models and Algorithms that Enable Reasoning over Geometry *and* Physics to Accomplish Multi-Step Manipulation Tasks

In-Hand Manipulation

Forceful Manipulation

Models and Algorithms that Enable Reasoning over Geometry *and* Physics to Accomplish Multi-Step Manipulation Tasks

In-Hand Manipulation

Forceful Manipulation

Robust Decision Making

Models and Algorithms that Enable Reasoning over Geometry and Physics to Accomplish Multi-Step Manipulation Tasks

In-Hand Manipulation

Guarded Planning

Robust Decision Making

Models and Algorithms that Enable Reasoning over Geometry and Physics to Accomplish Multi-Step Manipulation Tasks

Guarded Planning

Modeling Force?

Planning sequences of actions?

"Planning for Multi-stage Forceful Manipulation" <u>R Holladay</u>, T Lozano-Pérez, A Rodriguez. *ICRA*, 2021. "Robust Planning for Multi-stage Forceful Manipulation" <u>R Holladay</u>, T Lozano-Pérez, A Rodriguez. *IJRR*, 2023.

- Push down on the cap

- Push down on the cap
- Twist the cap

- Push down on the cap
- Twist the cap

$$(0, 0, -f_z, 0, 0, t_z)$$

A

Fixturing

Fixturing

Strong Enough

Kinematic Chain

Kinematic Chain

Forceful Kinematic Chain

Kinematics: Non-Penetration Limits

Kinematics: Non-Penetration Limits

Kinematics: Non-Penetration Limits

╋

Friction:

+

Friction: Limit Surface

Friction: Limit Surface

╋

Ellipsoidal Approximation Generalized Friction Cone A

S. Goyal, A. Ruina, and J. Papadopoulos, "Planar sliding with dry friction part 1. limit surface and moment function," Wear, 1991 N. Xydas and I. Kao, "Modeling of contact mechanics and friction limit surfaces for soft fingers in robotics, with experimental results," IJRR, 1999. Erdmann, Michael. "On a representation of friction in configuration space." *IJRR*, 1994.

Friction: Limit Surface

╋

Ellipsoidal Approximation Generalized Friction Cone A

S. Goyal, A. Ruina, and J. Papadopoulos, "Planar sliding with dry friction part 1. limit surface and moment function," Wear, 1991 N. Xydas and I. Kao, "Modeling of contact mechanics and friction limit surfaces for soft fingers in robotics, with experimental results," IJRR, 1999. Erdmann, Michael. "On a representation of friction in configuration space." *IJRR*, 1994.

+

Friction: Limit Surface

+

Friction: Limit Surface

Limit Surface

$$w = (f_x, f_z, t_y)$$

Limit Surface

$$w = (f_x, f_z, t_y)$$

$$w^T A w = 1$$

Limit Surface

$$w = (f_x, f_z, t_y)$$

$$w^T A w = 1$$

$$A = \begin{bmatrix} \frac{1}{(N\mu)^2} & 0 \\ & \frac{1}{(N\mu)^2} \\ 0 & \frac{1}{(N\mu)^2(rc)^2} \end{bmatrix}$$

+

Friction: Limit Surface

Forceful Kinematic Chain

Forces impact on Planning? Constraint on Decision-Making

Modeling Force? Forceful Kinematic Chain

"Planning for Multi-stage Forceful Manipulation" <u>R Holladay</u>, T Lozano-Pérez, A Rodriguez. *ICRA*, 2021. "Robust Planning for Multi-stage Forceful Manipulation" <u>R Holladay</u>, T Lozano-Pérez, A Rodriguez. *IJRR*, 2023. Forces impact on Planning? Constraint on Decision-Making

Modeling Force? Forceful Kinematic Chain

Planning sequences of actions? TAMP Framework

"Planning for Multi-stage Forceful Manipulation" <u>R Holladay</u>, T Lozano-Pérez, A Rodriguez. *ICRA*, 2021. "Robust Planning for Multi-stage Forceful Manipulation" <u>R Holladay</u>, T Lozano-Pérez, A Rodriguez. *IJRR*, 2023.

Controller

Controller Preconditions Effects

Controller Preconditions Effects

Controller Preconditions Effects

Controller Preconditions Effects

Controller Preconditions Effects place

Controller Preconditions Effects

Controller Preconditions Effects

Find a sequence of actions and the parameters of those actions, subject to constraints

Find a sequence of actions and the parameters of those actions, subject to constraints

Find a sequence of actions and the parameters of those actions, subject to constraints

TAMP Framework: PDDLStream

TAMP Framework: PDDLStream

plan_motion(arm, q_{start}, q_{goal})
TAMP Framework: PDDLStream Streams Domain

TAMP Framework: PDDLStream

TAMP Framework: PDDLStream

TAMP Framework: PDDLStream

 $move(a_0, q_0, q_1, \xi_0, ...)$ pick(a, tool, ...) $move(a_0, q_1, q_2, \xi_2)$ pushtwist-tool(a, bottle, cap, tool, ...) move(a_0 , q_3 , q_4 , ξ_4) place(a_0 , q_4 , q_5 , ξ_5) $move(a_0, q_5, q_6, \xi_6)$ $pick(a_0, lid, q_6, q_7, \xi_7)$

10x

1

Nut Twisting

Forces impact on Planning? Constraint on Decision-Making

Modeling Force? Forceful Kinematic Chain

Planning sequences of actions? TAMP Framework

"Planning for Multi-stage Forceful Manipulation" <u>R Holladay</u>, T Lozano-Pérez, A Rodriguez. *ICRA*, 2021. "Robust Planning for Multi-stage Forceful Manipulation" <u>R Holladay</u>, T Lozano-Pérez, A Rodriguez. *IJRR*, 2023.

plan_motion(arm, q_{start}, q_{goal})

[Tournassoud, Lozano-Pérez, Mazer 1987]

[Vina, Karayiannidis, Smith Kragic, 2016]

[A. Holladay, Paolini, Mason 2015]

[Chen, Xu, Agrawal 2022]

[Shi, Woodruff, Lynch 2015]

[OpenAI 2020]

[Hou, Jia, Johnson, Mason 2020]

[Cruciani, Hang, Smith, Kragic 2019]

Final Grasp

Output: Sequence of Continuous Pushes

Feasible Motions?

the set of feasible motions that a rigid body can follow under the action of a frictional push

"Mechanics and Planning of Manipulator Pushing Operations". Matthew Mason. IJRR, 1986.

the set of feasible motions that a rigid body can follow under the action of a frictional push

"Mechanics and Planning of Manipulator Pushing Operations". Matthew Mason. IJRR, 1986.

the set of feasible motions that a rigid body can follow under the action of a frictional push

Extending the <u>Motion Cone</u> the set of feasible motions that a rigid body can follow under the action of a frictional push

Erdmann (1994). Goyal, Ruina, and Papadopoulos (1991). Xydas and Kao (1999)

Extended Motion Cone for broader set of Planar Tasks

"In-Hand Manipulation via Motion Cones" N Chavan Dafle, <u>R Holladay</u>, A Rodriguez. *RSS*, 2018. *Best Student Paper Award*.

"Planar In-Hand Manipulation via Motion Cones" N Chavan-Dafle, <u>R Holladay</u>, A Rodriguez. IJRR, 2020

Extended Motion Cone for broader set of Planar Tasks

Applied Motion Cones for Planning In-Hand Manipulation

"In-Hand Manipulation via Motion Cones" N Chavan Dafle, <u>R Holladay</u>, A Rodriguez. *RSS*, 2018. Best Student Paper Award.

"Planar In-Hand Manipulation via Motion Cones" N Chavan-Dafle, <u>R Holladay</u>, A Rodriguez. *IJRR*, 2020

Extended Motion Cone for broader set of Planar Tasks

Applied Motion Cones for Planning In-Hand • Manipulation regrasp(object, grasp_{start}, grasp_{end}...)

"In-Hand Manipulation via Motion Cones" N Chavan Dafle, <u>R Holladay</u>, A Rodriguez. *RSS*, 2018. Best Student Paper Award.

"Planar In-Hand Manipulation via Motion Cones" N Chavan-Dafle, <u>R Holladay</u>, A Rodriguez. *IJRR*, 2020

Robust Decision Making

Models and Algorithms that Enable Reasoning over Geometry and Physics to Accomplish Multi-Step Manipulation Tasks

In-Hand Manipulation

Forceful

Guarded Planning

Robust Decision Making

Models and Algorithms that Enable Reasoning over Geometry and Physics to Accomplish Multi-Step Manipulation Tasks

In-Hand Manipulation

Guarded Planning

Robust Decision Making

Models and Algorithms that Enable Reasoning over Geometry and Physics to Accomplish Multi-Step Manipulation Tasks

Guarded Planning

Cucumber

Best?

Balancing Constraints and Robustness?

Robust to Variations in the Physical Parameters

Robust to Variations in the Physical Parameters

Pr[success(action)]

Robust to Variations in the Physical Parameters via Cost-Sensitive Planning

cost(action) = -log(Pr[success(action)])

Robust to Variations in the Physical Parameters via Cost-Sensitive Planning

cost(action) = -log(Pr[success(action)])

$cost(plan) = \Sigma cost(action)$

Robust to Variations in the Physical Parameters via Cost-Sensitive Planning

cost(action) = -log(Pr[success(action)])

$c_{max} \stackrel{:}{>} cost(plan) = \Sigma cost(action)$

Enable Reasoning Over Robust Choices in the Context of Competing Constraints

"Robust Planning for Multi-stage Forceful Manipulation" <u>R Holladay</u>, T Lozano-Pérez, A Rodriguez. IJRR, 2023.

Robust Decision Making

Models and Algorithms that Enable Reasoning over Geometry and Physics to Accomplish Multi-Step Manipulation Tasks

In-Hand Manipulation

Guarded Planning

Action Space

move (
$$q_s$$
, q_g , ...)

place(obj,
$$p_0$$
, ...)

regrasp(obj,
$$g_s$$
, g_g , ...)

Special Thanks to Xiaolin Fang

Action Space

move (
$$q_s$$
, q_g , ...)

place(obj,
$$p_0$$
, ...)

regrasp(obj,
$$g_s$$
, g_g , ...)

Action Space

move (
$$q_s$$
, q_g , ...)

place(obj,
$$p_0$$
, ..)

regrasp(obj,
$$g_s$$
, g_g , ...)

•

Outcome Volumes

 $V(a,\ldots)$

 $V(a, \ldots)$

Assumption: Positionally Independent

0

Generate Action Sequence

<u>Dead End</u>: a state from which reaching the goal is impossible

A

Iain Little, Sylvie Thiebaux. "Probabilistic planning vs. replanning." ICAPS Workshop on IPC: Past, Present and Future. 2007.

A

dnp_move(obj, p_s , P_q , ...):

[Fraichard, Asama 2004, Bautin, Martinez-Gomez, Fraichard, 2010]

[Bansal et al 2017, Borquez et al 2024] Hamilton Jacobi Reachability

Dead-Ends in Classical Planning

Exploding Blocksworld

Objects: Table and blocks. Actions: Pick up and put down blocks. Goal: Make a predetermined stack. Noise: First put down may trigger explosion, irretrievably destroying object it was placed on. Casts: Goal, may become unreachable. Notes: Must plan ahead to avoid dead end. Problem: 11 blocks. Policy: Use "sacrificial" blocks to preserve stack.

R = 0.5

Dead-Ends in Markov Decision Processes (MDPs)

[Lipovetzky et al., 2016, Kolobov et al., 2010] [Kolobov et al., 2011 Kolobov et al., 2012, Teichteil-Königsbuch 2012]

Leverage outcome volumes to (continuously) characterize dead-end areas

Be GUARD(ed)

Be GUARD(ed) Guiding Uncertainty Accounting for Risk and Dynamics

Be GUARD(ed) Guiding Uncertainty Accounting for Risk and Dynamics

Environment

Algorithm

Results

Environment

Environment

Environment

Be GUARD(ed) Guiding Uncertainty Accounting for Risk and Dynamics

Environment

Algorithm

Results

Danger Zones

Search

Guiding Uncertainty Accounting for Risk and Dynamics

Danger Zones

Danger Zones

Search

Object is Collision-Free and Stably Supported
Action in Robot's Collision-Free Reachable Workspace

Danger Zones

Search

Object is Collision-Free and Stably Supported
Action in Robot's Collision-Free Reachable Workspace

Danger Zones

Search

z_0 : Dead Ends!

Danger Zones

Search

z_0 : Dead Ends!

Danger Zones

Search

 z_0 : Dead Ends!

<u>Compute:</u> Preimage of z_0 under action a

Danger Zones

Search

z₀ : Dead Ends!

- z_1 : Lead to z_0
- z_2 : Lead to z_1

 z_i : Lead to $z_{j \le i}$

Danger Zones

Be GUARD(ed) Guiding Uncertainty Accounting for Risk and Dynamics

Environment

Algorithm

Results

Environment

Corner

SlipperySlope

GlassWall

Environment	Algorithm
Corner	GUARD
Corner	Baseline
SlipperySlope	GUARD
	Baseline
GlassWall	GUARD
	Baseline

Fnvironmont	Algorithm	Results		
Emvironment		S	ТО	DE
Corner	GUARD			
	Baseline			
SlipperySlope	GUARD			
	Baseline			
ClassWall	GUARD			
G1255 VV 211	Baseline			

Environment	Algorithm	Results		
	Aigorithiin	\mathbf{S}	ТО	DE
Corner	GUARD	10	0	0
Corner	Baseline	7	1	2
SlipperySlope	GUARD	7	3	0
	Baseline	8	2	0
GlassWall	GUARD	9	1	0
	Baseline	1	7	2

Environment	Algorithm	Results			Time		
Environment		\mathbf{S}	ТО	DE	Offline (SE)	Online (SE)	
Corner	GUARD	10	0	0	22.5(0.32)	19.3 (4.9)	
	Baseline	7	1	2	$3.01 \ (0.03)$	6.77(3.1)	
SlipperySlope	GUARD	7	3	0	48.3(0.36)	21.3(7.8)	
	Baseline	8	2	0	6.9(0.03)	11.9(7.6)	
GlassWall	GUARD	9	1	0	133 (1.70)	69.9(16)	
	Baseline	1	7	2	14.9(0.12)	39.9(4.8)	

Characterize briefly-dynamic manipulation as planning under uncertainty with dead-ends

Characterize briefly-dynamic manipulation as planning under uncertainty with dead-ends

Propose GUARD

Accomplish Long-Horizon Manipulation Tasks

https://people.csail.mit.edu/rholladay/

Enable Reasoning over Geometry and Physics to Accomplish Long-Horizon Manipulation Tasks

https://people.csail.mit.edu/rholladay/

Models and Algorithms that Enable Reasoning over Geometry and Physics to Accomplish Long-Horizon Manipulation Tasks

https://people.csail.mit.edu/rholladay/

Acknowledgements

Thank you

- Thanks to all my group members, especially Jing-Jin Song
- Thanks to my friends and family

Thank you Sunny

The LIS Group

1

The MCube Lab

N O S

-

1

1

Alter week

Teaching + Learning Lab

"Damn the torpedoes, full speed ahead!" - Admiral David Farragut, Battle of Mobile Bay (1864) [apocryphal]

