
Speci�cation and Analysis of Real-Time Systems with PARAGON

Oleg Sokolsky, Insup Lee

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104, U.S.A.

sokolsky@saul.cis.upenn.edu

Hanêne Ben-Abdallah

D�epartement d'Informatique

FSEG

Universit�e de Sfax

B.P. 1088

3018 Sfax, Tunisia

Abstract

This paper describes a methodology for the speci�cation and analysis of distributed real-time systems

using the toolset called PARAGON. PARAGON is based on the Communicating Shared Resources paradigm,

which allows a real-time system to be modeled as a set of communicating processes that compete for shared

resources. PARAGON supports both visual and textual languages for describing real-time systems. It o�ers

automatic analysis based on state space exploration as well as user-directed simulation. Our experience

with using PARAGON in several case studies resulted in a methodology that includes design patterns and

abstraction heuristics, as well as an overall process. This paper briey overviews the communicating shared

resource paradigm and its toolset PARAGON, including the textual and visual speci�cation languages. The

paper then describes our methodology with special emphasis on heuristics that can be used in PARAGON

to reduce the state space. To illustrate the methodology, we use examples from a real-life system case study.

ii

, 1

1 INTRODUCTION

As software systems become more complex and safety-critical, it is vitally important to ensure relia-

bility properties of these systems. Most complex safety-critical systems are distributed and must function in

real-time. Formal methods have been proposed to aid in development of safety-critical systems. They allow

users to specify systems precisely and reason about them in mathematical terms. A variety of methods for

dealing with hardware and software systems aimed at distributed and real-time systems have been developed.

They include state machines, Petri nets, logics, temporal logics, process algebras and timed automata; the

summary of existing approaches and directions for future research can be found in [Clarke and Wing 1996;

Cleaveland and Smolka 1996]. As formal methods become more mature and their bene�ts for development

of large systems can be clearly demonstrated, they are being increasingly accepted by the industry.

Most industrial designs yield speci�cations with very large state spaces. Therefore, tools for mechan-

ical analysis of large speci�cations are essential for successful application of formal methods in industry.

A number of tools based on formal methods have been put forward in the last several years in an e�ort

to increase the usability of formal methods especially within the industrial community. Among the tools

that are most widely available are the Concurrency Workbench [Cleaveland et al. 1993], Spin [Holzmann

1991], SMV [McMillan 1993]. Analysis of real-time systems is supported by COSPAN [Hardin et al. 1996],

Kronos [Daws et al. 1995], and Uppaal [Bengtsson et al. 1995], to name just a few.

Even with tool support, most speci�cations of real-life systems are too large to be analyzed by brute

force. Analysis of large systems is impossible without abstractions and simpli�cations that serve to reduce

an in�nite, or �nite but unmanageable, state space of the system's speci�cation. Users of each formalism and

supporting tools employ a number of abstraction heuristics that help in creating manageable speci�cations

of large-scale systems. Some of the used heuristics are speci�c to the formalism or the tool, while others are

applicable to several related methods. Often when case studies are described, such heuristics are left out or

mentioned only briey. We think it is worth while to make these heuristics explicit for the bene�t of future

users of formal method tools.

This paper describes a methodology for the speci�cation and analysis of distributed real-time systems

using a toolset PARAGON. We describe the process of constructing a formal speci�cation from an informal

description of the system, and some of the speci�cation patterns often observed in this process. In addition,

we summarize heuristics commonly employed by PARAGON that are aimed at reducing the state space of

speci�cations.

PARAGON is based on the process algebra ACSR [Lee et al. 1994] and related formalisms. Process

algebras, such as CCS [Milner 1989], CSP [Hoare 1985] and ACP [Bergstra and Klop 1985], have been devel-

2 ,

oped to describe and analyze communicating, concurrently executing systems. A process algebra consists of

a concise language, a precisely de�ned operational semantics, and a notion of equivalence. The language is

based on a small set of operators and a few syntactic rules for constructing a complex process from simpler

components. The operational semantics describes the possible execution steps that a process can take, i.e.,

a process speci�cation can be executed, and serves as the basis for various analysis algorithms.

The notion of equivalence captures when two processes behave identically, i.e., they have the same

execution steps. To verify a system using a process algebra, one writes a requirements speci�cation as an

abstract process and a design speci�cation as a detailed process. The correctness can then be established

by showing that the two processes are equivalent. The most salient aspect of process algebras is that they

support the modular speci�cation and veri�cation of a system. This is due to the algebraic laws that form a

compositional proof system, and thus it is possible to verify the whole system by reasoning about its parts.

Process algebras without the notion of time are now used widely in specifying and verifying concurrent

systems.

To expand the usefulness to real-time systems, several real-time process algebras have been developed

by adding the notion of time and including a set of timing operators to process algebras. In particular,

these real-time process algebras provide constructs to express delays and timeouts, which are two essential

concepts to specify temporal constraints in real-time systems.

Algebra of Communicating Shared Resource (ACSR) introduced by [Lee et al. 1994], is a timed

process algebra which can be regarded as an extension of CCS. It enriches the set of operators, introducing

constructs to capture common real-time design notions such as resource sharing, exception and interrupt

handling. ACSR supports the notions of resources, priorities, interrupt, timeout, and process structure. The

notion of real time in ACSR is quantitative and discrete, and is accommodated using the concept of timed

actions. The execution of a timed action takes one time unit and consumes a set of resources de�ned in the

timed action during that one time unit period. The execution of a timed action is subject to the availability

of resources it uses. The contention for resources is arbitrated according to the priorities of competing

actions. To ensure the uniform progression of time, processes execute timed actions synchronously.

ACSR is an extension of another real-time process algebra CCSR [Gerber and Lee 1994], which shares

many aspects of ACSR. In particular, CCSR was the �rst process algebra to support the notions of both

resources and priorities. CCSR, however, lacks instantaneous synchronization since all actions take exactly

one time unit. ACSR extends CCSR with the notion of instantaneous events and synchronization, and

includes a set of laws complete for �nite state processes [Br�emond-Gr�egoire et al. 1997]. To promote the use

of ACSR in the speci�cation and analysis of real-time systems, we have implemented a tool VERSA [Clarke

et al. 1995]. PARAGON is a toolset that extends the capability of VERSA by a providing graphical user

, 3

interface, graphical speci�cation language and visual simulation.

The paper is organized as follows. Section 2 presents the paradigm of Communicating Shared Re-

sources, which forms the basis for analysis in PARAGON. Section 3 gives an overview of the PARAGON

toolset. Section 4 describes the speci�cation and analysis methodology of PARAGON using a real-life ex-

ample. It also details heuristics that enabled us to successfully analyze this example. Section 5 gives an

overview of related work. We conclude in Section 6 with a summary of our results and directions for future

research.

2 OVERVIEW OF THE FORMALISM

The speci�cation paradigm of Communicating Shared Resources (CSR) [Gerber 1991] is the basis for

several process-algebraic formalisms. Among these formalisms are the real-time process algebra ACSR (the

Algebra of Communicating Shared Resources) [Lee et al. 1994; Br�emond-Gr�egoire et al. 1997] and the

visual speci�cation language GCSR (the Graphical CSR) [Ben-Abdallah 1996; Ben-Abdallah et al. 1995].

The two languages have compatible semantics and can be intermixed in a large speci�cation.

The CSR paradigm is based on the view that a real-time system consists of a set of communicating

components called processes. Processes compete for access to a �nite set of serially shared resources and

synchronize with one another through communication channels. Further, parameterized speci�cations allow

users to represent data manipulation and value passing between processes.

The use of shared resources by processes is represented by timed actions, and synchronization is

supported via instantaneous events. The execution of an action is assumed to utilize a set of resources

during a nonzero amount of time, measured by an implicit global clock. The execution of an action is

subject to availability of resources it uses, and contention for resources is arbitrated according to priorities of

competing actions. In addition, to ensure uniform progress of time, processes execute actions synchronously.

Time can be either dense or discrete; in this paper, we consider only discrete time semantics, which is

implemented in PARAGON. With discrete time, duration of an action is one tick of the global clock. Each

action is represented by a set of resources needed for the action, each with an access priority. Example of

an action is f(cpu; 2); (sensor; 1)g, which is executed only if resources cpu and sensor are not in use by a

higher-priority process. Note that if some resource required by an action is unavailable, the process trying

to execute the action will deadlock, unless the speci�cation provides for an alternative behavior.

Unlike an action, the execution of an event is instantaneous and does not require any resources.

Processes execute events asynchronously except when two processes synchronize through matching event

names, i.e., channels. Two events match if one is an input and the other is an output on the same-name

4 ,

channel. Matching pairs of events are denoted a and �a in ACSR, respectively, and a? and a! in GCSR.

Contention for channels is also resolved according to priorities of events. An input event on a channel a with

priority 1 is denoted as (a; 1). As is common with CCS-like process algebras, a special event � denotes an

internal activity of the process and cannot synchronize with any other event.

The semantic de�nition of ACSR and GCSR includes a preemption relation between events and

actions based on their priorities. After the transitions of a process have been computed according to the

semantic rules, the preemption relation is applied to remove transitions with lower priorities.

Formal semantics for ACSR and GCSR in the form of structured operational semantics (SOS) rules

may be found in [Lee et al. 1994] and [Ben-Abdallah et al. 1997], respectively. In this paper, we present an

informal overview of the languages and illustrate their use with an example. This allows us to introduce the

most commonly used constructs of the languages and compare their utility in crafting speci�cations. The

example represents a �xed-priority scheduler and is an extended version of the one presented in [Br�emond-

Gr�egoire et al. 1997]. The system consists of a scheduler and three periodic tasks with two parameters:

the computation time ci and the period pi. The deadline for each task is assumed to be the same as its

period. The example can easily be extended to a larger number of tasks and more complex scheduling

policies (see [Ben-Abdallah et al. 1996]).

Both ACSR and GCSR provide for parameterization of a process speci�cation by an index set, to

support e�cient representation families of similarly de�ned processes. There are two kinds of variables in

speci�cations, process variables and index variables. Process variables represent terms of the algebra, and

index variables range over elements of some index set and are used in parameterized speci�cations. Process

variables, as well as event and resource names have �xed arities associated with them. We will always assume

that the speci�cations are type correct. That is, whenever an n-tuple is used in parameterization of a name,

the name has arity n.

2.1 ACSR

ACSR provides a set of operators that are similar to the common set of operators found in other process

algebras: pre�x for sequencing of actions and events; choice for choosing between alternatives; parallel for

composing two processes to run in parallel; restriction and hiding for abstracting communication details or

resource names; and recursion for describing in�nite processes. As a real-time formalism, ACSR supports

a variety of operators that deal with time. They allow one to delay execution for t time units, to timeout

while waiting for some actions to occur, and to bound the time it takes to execute a sequence of actions.

In addition, ACSR provides two operators, interrupt and exception, that are extremely useful in modeling

, 5

System = [(Dispatch k �i2f1::3g Task[i]) n fstart[i]; i 2 f1::3gg]fcpug

Dispatch = �i2f1::3g Start[i]

Start[i] = (start[i]; i):D[i; 0]; i 2 f1::3g

D[i; j] = if j < pi then fg : D[i; j + 1]

else Start[i]; i 2 f1::3g; j 2 f1::pig

Task[i] = (start[i]; 1):T [i; 0] + fg : Task[i]; i 2 f1::3g

T [i; j] = fg : T [i; j] + if j < ci then f(cpu; i)g : T [i; j + 1]

else Task[i]; i 2 f1::3g; j 2 f1::cig

Figure 1: A �xed-priority scheduler

real-time systems but are not present in other real-time process algebras. The interrupt operator makes it

easy to specify reaction to asynchronous actions or events. The exception operator allows an exception to

be raised any place inside a process and handled by an exception handling process.

The ACSR speci�cation of the scheduling system is presented in Figure 1. The top-level speci�cation,

System, consists of the scheduler process Dispatch and a set of three periodic tasks. The operator k repre-

sents the parallel composition of Dispatch and the set of three tasks. The generalized parallel composition

operator �v allows one to express parallel composition of all processes generated by index variables v. In

this example, it is used to represent the set of concurrent tasks. The tasks and the scheduler communicate

by means of events start[i], used by the scheduler to initiate task i. These events are restricted by means of

the hiding operator n, making the start[i] events local to System. All tasks are run on the same processor,

represented by the resource cpu. No other processes can use the same processor, which is captured by the

resource closure operator [�]fcpug.

The scheduler is capable of independently dispatching each task, hence the process Dispatch is a

parallel composition of a set of processes Start[i]. Each process Start[i] begins by sending an event start[i]

to task i at priority level i and then proceeds as D[i; 0]. By sending events start[i] to Task[i] with di�erent

priorities, the scheduler e�ectively serializes the events according to their priorities. The process D[i; j] idles

until it is time to start Task[i] again. Idling is represented as an empty action fg, which takes one unit

of time without consuming any resources. Parameter j captures the amount of time elapsed since the last

invocation of task i. At the end of the period, D[i; pi] proceeds as Start[i].

The process Task[i] captures the behavior of task i. Higher-numbered tasks have higher priorities.

Each Task[i] begins by receiving the start[i] event from the scheduler. After a task is started, it behaves

like process T [i; j], where parameter j captures the amount of time spent in execution on the processor.

6 ,

When the processor is busy with a higher-priority task, T [i; j] idles. When the processor is available, T [i; j]

executes on the processor for another time unit. Such alternative behaviors are represented by the \+"

operator. When ci time units of processing are accumulated, task i becomes ready to be started again. Note

that, if the deadline of the task arrives before it completes its computation, it will not be able to synchronize,

via an event start[i], with the scheduler and the system will deadlock. This approach to speci�cation of

periodic processes is the basis of the ACSR-based schedulability analysis [Ben-Abdallah et al. 1996].

2.2 GCSR

A GCSR speci�cation represents a system as a hierarchical collection of nodes. Edges connect the

nodes that belong to the same process. Intuitively, the execution of a GCSR process proceeds from node

to node along edges. A compound node may contain subprocesses within itself. Subprocesses execute

concurrently and are visually delineated by means of separators. Edges cannot cross boundaries of compound

nodes or separators, which enhances modularity of speci�cations. When execution enters a compound

node, processes within the node are activated and execution proceeds in each process separately, subject to

synchronization rules between processes. Compound nodes also provide for restriction of synchronization

events and resource closure by means of attributes Restrict and Close, respectively.

All transitions between nodes are instantaneous and therefore can be labeled only with events or

with conditions on index variables. Time can pass only within nodes of certain types. A time-consuming

node, represented as an oval labeled with an action, denotes resource consumption by a sequential process.

Such node can have only one outgoing edge labeled by the duration of the action. Time can also pass in a

compound node, which requires all of its subprocesses to pass time as well. There is no special construct

in GCSR to express alternative behaviors (similar to the choice operator of ACSR), but whenever a node

has several outgoing edges, execution can proceed through any of them, thus achieving the same e�ect. The

choice between a set of parameterized processes can be expressed by means of a special initial marker.

One node in each process has to be marked as initial. This is the node that execution �rst enters when

the process is activated. An initial markers is also used to assign a name to a process and give the ranges

of index variables. Di�erent shapes of initial markers distinguish between sequential processes, generalized

composition and generalized choice.

We illustrate GCSR constructs by showing the GCSR speci�cation of the scheduling system described

earlier. The speci�cation is presented in Figure 2. The structure of the graphical speci�cation closely follows

that of the ACSR speci�cation in Section 2.1. The top-level description is given by the process GSystem,

which is a parallel composition of the scheduler process GDispatch and three tasks GTask[i]. The dashed

, 7

boxes are reference nodes, allowing us to refer to a process by its name. As before, events start[i] are local

to the scheduling system, and the resource cpu is used exclusively.

{i,1,3}

������

��
��
��
��

����

GSystem

GTask[i]GDispatch

Restrict{start[1],start[2],start[3]}
Close{cpu}

{i,1,3}

GTask

GT[i,0]

(start[i]?,1)

(restart?,0)Wait

p[i]

GDispatch

{i,1,3}

{}
(start[i]!,1)

GT

{i,1,3;j,1,c[i]}

j=c[i] (restart!,i)

j<c[i] 1
GT[i,j+1]{(cpu,i)}Wait

{}

Wait

1

Figure 2: Graphical speci�cation of the scheduling system

The process GDispatch is, in turn, a parallel composition of three parameterized processes, each of

which �rst sends a start[i] event and then idles for pi time units before repeating itself. The process GTask,

parameterized by index i, represents the set of concurrent tasks. Each task initially waits (i.e., repeatedly

idles) to be started by the scheduler, ready to accept the start event. After it receives the event, the task

behaves as process GT until GT relinquishes control by sending the event restart. At this stage, GTask

returns to its initial state. It is important to notice that GTask uses the event restart to synchronize not

with a concurrent process, but with a subprocess of itself. We use a special type of edge to denote this

situation. The typical use of this construct is to catch exceptions thrown by a subprocess, and therefore we

call it an exception edge.

The process GT , parameterized with i, the task number and j, the amount of computation performed

by the task, idles until it either reaches the completion of computation (j = ci) or can continue its com-

putation for one more time unit (j < ci and the resource cpu is not used by a higher-priority process). In

the latter case, GT [i; j] becomes GT [i; j + 1]. The process Wait, used by the processes GTask and GT ,

represents idling and is equivalent to the ACSR process X = fg : X .

Note that although the ACSR and GCSR speci�cations are very close, one is not a translation of the

other. In particular, the graphical speci�cation uses an exception (restart), while the textual one does not.

We demonstrate in Section 3 that the ACSR and the GCSR speci�cations are equivalent.

8 ,

����
����
����
����
����

����
����
����
����
����

�����������
�����������
�����������
�����������

Visual

Simulator

diagnostics

Tools

Analysis

Graphical
& Textual

Editor

specifications

Figure 3: Structure of PARAGON toolset.

2.3 Relationship Between ACSR and GCSR

The operational semantics for ACSR and GCSR give rise to the same model for both languages. This

allows one to mix ACSR and GCSR expressions together in the same speci�cation. The semantic rules form

the basis for translations from ACSR to GCSR and vice versa. Although it is not di�cult to see the essence

of these translations from the above example, we refer the reader to [Ben-Abdallah 1996; Ben-Abdallah

et al. 1995] for the details of translations. It is shown there that an unparameterized ACSR speci�cation,

translated into GCSR and back, is strongly equivalent to the original one. The translation can be extended

to parameterized speci�cations in a straightforward way.

3 THE PARAGON TOOLSET

To facilitate speci�cation and veri�cation via the ACSR and GCSR formalisms, we have developed

the PARAGON toolset. Figure 3 shows the overall structure of the toolset, which consists of three main

tools: the graphical/textual editor, the visual simulator, and the back-end analysis tool.

Speci�cations are constructed via the editor, and may be veri�ed using the analysis tool or simulated

using the simulator. The back-end analyzer performs analysis and presents the user with the outcome. If

veri�cation fails, the veri�cation tool produces diagnostic information that is used to �nd the problem. The

diagnostic information takes the form of a trace that can be used to drive the simulator, thus helping to

locate the problem.

PARAGON allows the user to intermix graphical GCSR expressions with textual ACSR ones within

the same speci�cation. Since both speci�cation languages have compatible formal semantics, one can use the

two languages in a large speci�cation as appropriate. It is known that a high-level description of a system

can easily be represented graphically, which allows the user to see the overall interconnections between

, 9

State
Space

Exploration

Term
Rewriting

Equivalence
Testing

Interactive
Execution

GCSR-to-ACSR

ACSR-to-GCSR GCSR Interface

GCSR
Simulation

ACSR Interface

Figure 4: The functionality of PARAGON

components at a single glance. On the other hand, lower-level speci�cations can be very cumbersome in a

graphical form. In that case, a textual speci�cation may be preferable, both in terms of readability and the

time it takes to construct the speci�cation. Moreover, di�erent users may have di�erent personal preferences

between graphical and textual speci�cations.

Figure 6: Tools menu

Figure 5 shows the GCSR editor displaying a part

of the scheduler speci�cation. The user interface of the

editor consists of a drawing area and a number of but-

tons that allow the user to draw graphical objects and

perform the standard editing operations. Menus at the

top of the editor window provide capabilities to load

and save speci�cations, open new editor windows, etc.

In particular, the Tools menu, shown at right, o�ers

to check consistency of the speci�cation, translate the

graphical speci�cation into ACSR, and provides the con-

nection to the back-end analysis tool. Other items in this menu allow the user to perform re�nement of GCSR

speci�cations. Details of GCSR re�nement are given in [Ben-Abdallah 1996] and are beyond the scope of

this presentation.

PARAGON uses XVERSA [D.Clarke et al. 1996] as the back-end analysis tool. XVERSA, which is an

X windows interface to VERSA [Clarke et al. 1995], has been designed for analysis of ACSR speci�cations.

GCSR speci�cations are exported into XVERSA by translating them into ACSR. Analysis functionality

added by XVERSA is illustrated in Figure 4. State-space exploration routines allow users to perform

reachability analysis and deadlock detection of PARAGON speci�cations. Equivalence checking performs

comparison of two speci�cations using a variety of behavioral equivalences, including prioritized strong and

weak bisimulations [Lee et al. 1994]. The term rewriting module is a simple theorem-proving environment

10 ,

Figure 5: The GCSR Editor

, 11

Figure 7: Veri�cation tool XVERSA

for carrying out algebraic proofs about the speci�cations. Visual simulation of GCSR speci�cations and

interactive execution of ACSR speci�cations provide for step-by-step manual exploration of the state space

of a speci�cation. In addition, the GCSR simulator provides a number of advanced simulation features such

as the automatic simulation mode that allows users to set breakpoints.

Continuing the scheduler example, we demonstrate equivalence of the speci�cation of Figure 1 with

that of Figure 2. To do the comparison, the GCSR speci�cation has been translated into ACSR. Figure 7

shows the user interface of XVERSA with both speci�cations loaded. The process window shows the trans-

lation of the GCSR process GSystem. In the list of process names (the Bindings window on the right),

processes System and GSystem are selected for comparison. The message window at the top of the screen

displays the result of analysis: the ACSR and GCSR speci�cations are equivalent.

4 ANALYSIS METHODOLOGY OF PARAGON

To make the best use of the capabilities of PARAGON, we developed a methodology for speci�cation

and analysis of large-scale real-time systems. The methodology summarizes our experience with speci�cation

of real-time systems in PARAGON, gained in several case studies. PARAGON was used for speci�cation and

analysis of the Production Cell benchmark [Lewerenz and T. Lindner 1995] in [Ben-Abdallah 1996], Sunshine

ATM switch [Clarke and Lee 1996], redundancy management system of a reusable launch spacecraft [Sokolsky

12 ,

patterns
specification

fo
rm

al
iz

at
io

n

heuristics

abstraction

an
al

ys
is

specification
specification

abstract diagnostic
information

Design
description

ab
st

ra
ct

io
n

Requirements

Figure 8: PARAGON methodology

Figure 9: Structure of an RMS node

et al. 1998], schedulability analysis of the submarine sonar radar [Ben-Abdallah et al. 1996].

The main part of the methodology is a process for 1) constructing a formal speci�cation of a system

and its requirements from their informal descriptions, and 2) performing their analysis using a number

of common approaches. In addition, the methodology includes a set of patterns that commonly occur in

speci�cations, together with a set of abstraction heuristics. The overall view of the PARAGON methodology

is presented in Figure 8, and is described in detail in Section 4.1.

In this section, we illustrate the methodology using a recent case study. The case study analyzes

a part of the redundancy management system (RMS) of a spacecraft. The results of the case study are

described in [Sokolsky et al. 1998]; here we only use fragments of the RMS speci�cation as examples. The

RMS was designed and implemented by AlliedSignal, Inc., and has been extensively tested. The purpose of

the RMS is to ensure tolerance of any single fault. Our speci�cation is based on the original list of informal

requirements for the RMS and the pseudo-code that was used in the RMS design. The RMS consists of

three identical nodes. Each RMS node contains a Fault-Tolerant Executive (FTE) and a Cross Channel Data

Link (CCDL) sender and receiver used to broadcast the information to other RMS nodes. The structure of

an RMS node is shown in Figure 9. The FTE is a cyclic executive that repeats its execution every frame,

according to a timer local to the node.

, 13

4.1 The Process

Speci�cation and analysis is performed based on the documentation provided by the customer. The

documentation usually includes a set of correctness requirements and a description of the system design. The

system description can be high-level or detailed, and may take the form of design diagrams or pseudo-code of

the system. Requirements are usually represented informally, using English language. They describe the set

of properties that the system has to have in order to be considered correct. We have found that formaliza-

tion of requirements is the most time-consuming part of the speci�cation process, which involves extensive

communication with developers of the system until requirements are precise enough to be transformed into

a formal representation. The graphical notation of GCSR facilitates the communication since it shields the

customer from the mathematical foundation; additionally, the simulator of PARAGON allows one to animate

a speci�cation for better understanding. A useful side e�ect of the requirement formalization process is that

requirements become more complete by bringing out implicit assumptions made by the developers.

The methodology of PARAGON presumes separate roles for the customer, an engineer who designs

the system, and the expert who is pro�cient in formal methods but not necessarily in the speci�c problem

domain. It is desirable to bring these two roles closer. Undoubtedly, this will happen in the future. Much

research is being conducted to make formal methods more intuitive to engineers [Lee and Sokolsky 1997;

Nelken and Francez 1996]. However, given today's state of technology, an expert in formal methods is

necessary in most realistic cases as a mediator between the engineer and the tool.

The speci�cation of a system is constructed by the expert and the customer working in close coop-

eration. The structure of the speci�cation is driven by the structure of the design, but the translation is

often far from mechanical. The major role of the expert is to devise suitable abstractions to be applied

to the speci�cation. Abstractions should, on the one hand, be e�ective enough to reduce the size of the

speci�cation so that it can be analyzed by the PARAGON tools. On the other hand, abstractions have to

preserve the properties expressed by the system requirements. Abstractions are covered in more detail in

Section 4.3 using examples from the RMS case study.

The main di�culty of the speci�cation process is deciding which abstractions to use. The customer

may not be familiar with the details of abstraction, but she has the intimate knowledge of the system

behavior that would allow the team to estimate which abstractions would be e�ective and safe to use. The

speci�cation process includes extensive interaction between the expert and the customer, which helps to

transfer this knowledge to the expert.

The two most common methods of analysis in PARAGON are state-space exploration and equiva-

lence checking. State-space exploration usually takes the form of deadlock detection, which is invaluable

14 ,

in detecting synchronization and scheduling errors in the system design. More importantly, veri�cation of

safety properties can be reduced to deadlock detection by employing tester processes. Speci�cation of such

a tester is one of the patterns described below. A tester process is composed in parallel with the system.

The e�ect is as if the tester process is observing the behavior of the system and issues a special failure event

or forces a deadlock when a violation of the property is detected. The composite speci�cation is given as

input to the analysis tool, which looks for reachability of the failure event, or a deadlock induced by the

tester. In case of a failure, the analysis tool produces an execution trace leading to the undesirable event or

a deadlocked state. This trace can be run through the simulator, which visualizes the execution and helps

the user to discover the source of the problem.

This testing approach is useful if the requirements of the system are given in the form of a collection

of properties that the system has to satisfy, or constraints on the system behavior. On the other hand,

if the requirements are in the form of high-level system behaviors, the requirements and the system spec-

i�cation can be directly compared to each other. In this case, equivalence checking is more appropriate.

PARAGON supports veri�cation of a number of well-known process equivalences, extended to take priorities

into consideration. See [Lee et al. 1994] for details about these equivalences.

4.2 Speci�cation Patterns

Speci�cation patterns serve the same purpose in crafting a formal description of a system as design

patterns do in the implementation process. They include fragments of speci�cations that one can reuse.

One such pattern has already been introduced in Section 2 when we presented the scheduling example. The

ACSR process Task and GCSR process GTask represent a periodic task that commonly occurs in real-time

systems. Variations of this pattern may include other parameters such as release jitter or additional resource

requirements, but the overall structure remains the same.

Other patterns discussed in this section address the representation of data storage and manipulation,

and the use of preemption in speci�cations. The last pattern is used during analysis of speci�cations and

presents a common way to express safety properties of a speci�cation.

Representation of data. Most systems use variables to store data, and exchange data values between

subsystems. Data variables and value-passing are modeled in PARAGON speci�cations using parameteriza-

tion. There are two ways to represent data. The �rst includes the current value of a variable as a parameter

to the process de�nition. An example of such parameterized speci�cation is given by the simpli�ed version

, 15

of the hardware timer model contained in each RMS node:

T imer[tick] = fg : T imer[(tick + 1)%tmax]

+ (local time[tick]; 0):T imer[tick]

+ if tick = 0 then (frame b; 0):T imer[tick] ftick 2 0::tmax� 1g

Here, % denotes the modulo integer operator, and tmax represents the number of timer ticks in a frame.

Index variable tick ranges from 0 to tmax � 1. The timer reports the value of local time to the node, and

signals a frame boundary with the frame b signal at the beginning of the frame.

The other approach, which is commonly used in process algebras without value passing capabilities,

introduces a separate process for each variable in the system. This process holds the current value of the

variable and communicates it to other processes that need the value. These other processes may also request

to change the current value. For example, the following process is used in the RMS speci�cation to hold the

timestamp of an incoming CCDL message from node c:

Tstamp[c; v] = fg : Tstamp[c; v]

+ (getStamp[c; v]; 0):T stamp[c; v]

+ �n (setStamp[c; n]; 0):T stamp[c; n];

where v (the current value) and n (the new value) are drawn from the range of admissible timestamp values.

Operator �n is the generalized choice operator, allowing the process to accept any of setStamp[c; v] events

and thus to assign the new value v to the variable. Priorities of events in such a process are normally set to

0 so that concurrent accesses to a variable by several processes can be governed based solely on priorities of

the processes.

The �rst of the two approaches represents a variable local to the process T imer, which can be only

read by other processes. In the second case, Tstamp is shared between several processes.

The use of preemption. The notion of preemption between events and actions is primarily used to

arbitrate resource access between processes. However, preemption can also be used to express other aspects

of the system, which are usually di�cult to express with other process-algebraic approaches.

For example, priorities allow us to test for the presence of an event and provide an alternate behavior

for the case of its absence. In most other process algebras, one cannot do such test without explicitly

introducing an additional event to denote the absence of the �rst one. With ACSR, on the other hand, we

can test for an event directly. Consider the speci�cation fragment in Figure 10. It shows a process that will

interact with P via the event ready when P can do so, or else resort to some default activity instead. The

event ready that is used to signal the availability of P is restricted. This means that if P does not o�er the

matching event, the only possibility for progress is the internal � event that leads to process Default. If P

16 ,

(ready?,2)

(,1)τ
P

Talk_to_P

Restrict = {ready}

Default

Figure 10: Test for an event

(setCond[1]!,n)(testCond[0]?,1)

(testCond[1]?,1)
Wait

Critical Section

Figure 11: Atomic execution

does o�er the ready event, then synchronization occurs, resulting in a � event with a higher priority that

will preempt the default event.

Priorities can also be used to ensure atomic executions of a sequence of events. For example, consider

the implementation of the test-and-set operation in Figure 11. The process tests the value of a boolean

condition variable by means of events testCond[0] and testCond[1]. If the variable is already set, the process

is suspended (enters a Wait state). Otherwise, it sets the value of the condition to 1 and proceeds into

the critical section. It is important that test and set operations are performed atomically. In order to

express atomicity in the speci�cation, we set the priority of event setCond[1] to n, where n is higher than

any intervening event. This way, once the process performs event testCond[0], setCond[1] will preempt all

other events and the atomicity will be preserved. Without priorities, one has to explicitly include locking

mechanisms into the speci�cation in order to ensure atomicity of execution. These locking mechanisms are

usually speci�ed as separate processes, which obscure the speci�cation.

Testers for safety requirements. The purpose of formal analysis is to verify the speci�cation with re-

spect to its requirements. Most requirements in real-time systems are safety properties. Moreover, require-

ments are often expressed in terms of some required sequential behavior. In PARAGON, such requirements

can be veri�ed via a testing approach. Requirements are speci�ed as tester processes that are composed

in parallel with the system speci�cation. A tester process for a requirement is a sequential process that

watches system behaviors for potential violations of the requirement, and signals a failure if it detects such a

, 17

Figure 12: Tester for a safety requirement

violation. As an example, consider the requirement that an RMS node must collect application data at each

frame boundary, vote on the data, and signal the availability of the voted data before the end of the current

frame. The tester process for this requirement is shown in Figure 12. A fail event is issued by the tester

if a frame boundary event frame b occurs before the prescribed sequence of events is completed. A general

automata-based approach to construct testers for safety properties is discussed in [Alpern and Schneider

1989]. Another approach that generates a tester automatically from a temporal logic formula is presented

in [Aceto et al. 1998].

4.3 Abstraction Heuristics

This section presents various abstractions that are commonly used in PARAGON and illustrates them

with examples from the RMS speci�cation. The RMS is a complex system, whose behavior heavily depends

on the data exchanged between the nodes. Analysis of the RMS in PARAGON would be impossible without

abstractions because of the large state space.

A number of abstractions can be applied during the speci�cation of a system. Whether or not the

abstraction is safe to be used often depends on a speci�c property to be checked. For example, if an

abstraction does not preserve the temporal information, it is unsafe to use if we need to verify a time-

sensitive property of the system. However, property-dependent abstractions can greatly reduce the size of

the state space of a speci�cation. The drawback of this property-dependent approach is that each property

is veri�ed against a di�erent abstract speci�cation and it is di�cult to maintain consistency between several

versions of the speci�cation, which inevitably change during the analysis process. To reduce the impact of

this drawback, we employ parameterization in our speci�cations, so that we could switch between di�erent

abstract speci�cations by changing parameters.

Some abstractions are precise with respect to a property in the sense that the property is true in

18 ,

the detailed speci�cation if and only if it is true in the abstract speci�cation. Others are conservative

approximations. That is, when the property is true in the abstract speci�cation, it is also true in the

detailed one. The converse, however, may not hold. In these cases, when veri�cation fails, it is the job of

the expert to tell whether the failure is due to a design fault, or is induced by the abstraction.

Most abstractions are aimed at reducing the number of states and transitions in the model of a

speci�cation. The remaining abstractions are used to reduce the size of the internal representation of each

state in the labeled transition system. Below, we give a summary of the most commonly used heuristics.

The presented abstractions are not speci�c to ACSR/GCSR speci�cations and can be employed by most

other analysis tools.

Limiting the ranges of data variables. This abstraction is precise if the maximum value of a variable

can be decided statically. Otherwise, this abstraction may not be safe to use. Fortunately, the analysis

tool can help us make the abstraction precise. We can use reachability analysis to see if events representing

assignment of values that exceed the range of the variable ever occur in the speci�cation. If no such events

are reachable, then the abstraction is safe to use. An example of this reduction is the variable Tstamp

for recording the time stamps of incoming CCDL messages, described in the previous section. The RMS

synchronization algorithm considers only messages arriving within a certain time interval called the error

window. Therefore, we do not need to record all possible timestamps. Instead, we can limit ourselves to

values within the window plus one additional value to represent all timestamp values outside the window.

An extreme case of this abstraction is when, instead of the value of a variable, we record the value

of an expression on this variable. For example, let the process input some value v from a channel and then

test, possibly much later, whether v is less then 5. In this case, instead of storing the value in a variable

that would require the full range of possible values, we can store the value of v < 5.

Minimize the number of variables. This abstraction is similar to register minimization performed by

most compilers. When we are specifying a system that has two variables, which are always used disjointly,

both variables can be combined in a single variable. The range of the new variable is the larger of the two

ranges. Consider the voting procedure conducted by each of the RMS nodes. A simpli�ed version of it for

node n can be represented as follows:

V oting[n] = (�mData[m]kDoV otekResult)nfdata[k; v]; result[v]g

where n;m; k range over the set of nodes (f0,1,2g) and v is drawn from the set of admissible values for the

voted data item. Each Data[i] process represents the value received from node i (including i = n). Process

DoV ote uses events data to collect the values of each variable, and then event outputs result to record the

, 19

outcome of voting. One can notice that the values held by Data[i] processes are not used again after voting,

and the new values are not received until the next frame, when the result of voting is no longer important.

This allows us to use Data[n] to hold the result of voting and dispose of Result process:

V oting2[n] = (�mData[m]kDoV ote)nfdata[m; v]g

The e�ect of this abstraction is twofold. On the one hand, it reduces the number of states generated

by the algorithm. Indeed, consider the state of the speci�cation after the value of Data[n] is updated but

before voting is carried out. At that moment, Result contains a value from the previous frame, and each

combination of values of the two variables will give rise to a distinct state, which are equivalent to each other

with respect to any property that we may expect to check. V oting2 collapses all such states together. On the

other hand, the reduced speci�cation contains one parallel process fewer. Therefore, the abstraction reduces

the size of the internal representation of each state, which depends on the number of parallel processes in

the respective ACSR term. When the number of states is large, this reduction will amount to substantial

memory savings. The abstraction is always precise.

Partition the speci�cation according to the property. Often a requirement concerns only a part of

the whole system. Many of the RMS requirements describe the properties of a single node. For example,

the requirement shown in Figure 12 speci�es behavior of one node regardless of the behavior of the other

nodes. Therefore, we can consider description of one node in isolation, which considerably reduces the state

space. We refer to this kind of partitioning as the vertical partitioning of the system.

Sometimes, a requirement assumes that all components of the system are in a speci�c functional mode.

In that case, a reduced speci�cation may be constructed to reect only the required mode, which we call the

horizontal partitioning. Some of the RMS requirements that deal with fault detection and synchronization

between nodes assume that the nodes are in \steady state" mode. Therefore, the speci�cation that we used

to analyze these properties did not contain any of the \startup" modes.

Horizontal partitioning not only reduces the state space of the speci�cation, but also makes the tester

processes for the properties simpler. Figure 13 shows a fragment of the tester process for monitoring the

skew between two nodes, used in analysis of synchronization requirements. The tester collects the values

of local time from the two nodes every 20 time units and checks whether the limit on clock skew has been

exceeded. Event fail is sent when the limit is exceeded. In general, this process has to check that each node

is in the steady state. Here, the reduced version omits the check since all nodes are in the steady state by

construction.

Coarse-grain time steps. PARAGON speci�cations are based on a discrete time model. Each time-

consuming transition represents time being incremented by one tick of an implicit global clock. When we

20 ,

Figure 13: Tester process for testing clock skew

have to model absolute time values as was the case with the RMS speci�cation, we have to assume the value

of this unit of time in the speci�cation. In the RMS speci�cation, this value determines tmax, the number of

ticks of the implicit clocks in one frame, and a number of other parameters, such as the limit on clock skew

between nodes used in the tester process TestSkew of Figure 13. Clearly, these parameters signi�cantly

a�ect the size of the state space of the speci�cation.

In general, increasing the tick value is not safe. In the case of the RMS, however, behavior of the system

consists of a number of operations that can be treated as instantaneous for the tick values we considered.

These operations are separated by delays that are signi�cantly larger than one tick. Therefore, in this case

the abstractions were precise for all variations of the tick value. As part of our on-going research, we are

currently investigating general conditions that make this heuristic safe to use.

Reducing complex computations to non-determinism. When a complex computation produces a

small set of values, substantial savings may be gained by abstracting away the details of the computation and

producing the same values non-deterministically. This approach has been used in the RMS speci�cation when

checking the requirement FTE DV 04 shown in Figure 12. Indeed, with respect to the property, the result

of voting is irrelevant as long as some data is o�ered to the application. This abstraction is a conservative

approximation of the actual behavior of the system, since it loses the information about which input produces

which output. As a result, the abstract speci�cation may exhibit some spurious behaviors. For example, in

the RMS speci�cation, voting may produce an error for perfectly good data. In our experience, this approach

works best when analyzing rather \static" properties, such as FTE DV 04.

, 21

5 RELATED WORK

Real-time speci�cation. Speci�cation of real-time systems can be carried out using a variety of for-

malisms. Several real-time process algebras exist, with both discrete-time [Moller and Tofts 1990; Hennessy

and Regan 1991] and dense-time semantics [Reed and Roscoe 1988; Nicollin et al. 1991; Yi 1991]. The

automaton model has been extended for real time in [Alur and Dill 1994]. A number of real-time logics are

used to specify systems, for example [Jahanian and Mok 1986; Ramakrishna et al. 1996].

Tools. There is a wide variety of tools for formal speci�cation and analysis of systems. Tools range

from fully automatic veri�ers for �nite-state systems to theorem-provers based on higher-order formalisms.

Among the most widely used automatic tools are the Concurrency Workbench [Cleaveland et al. 1993],

Spin [Holzmann 1991], SMV [McMillan 1993]. Theorem provers such as PVS [Owre et al. 1992] often can

handle larger classes of systems, but usually require more involvement from formal methods experts for

successful application.

Many of the tools support visual speci�cation languages, which make speci�cations easier to read and

more intuitive for engineers. The design of GCSR was, to some extent, inuenced by Statecharts [Harel

1987]. Speci�cation of systems using Statecharts is supported by StateMate [Harel et al. 1990] environment.

ModeChart [Mok et al. 1996] extends Statecharts for the speci�cation of timing constraints and is supported

by the toolset called MT. Concurrency Factory [Cleaveland et al. 1994] employs a visual speci�cation

language with process-algebraic semantics.

Reduction techniques. The importance of abstraction has been long understood by the formal methods

researchers. In [Daws and Tripakis 1998], a set of abstractions speci�c to the timed-automata framework is

described. Two abstractions for SCR requirement speci�cations are presented in [Bharadwaj and Heitmeyer

1997]. The advantage of these abstractions is that they can be computed automatically.

The use of non-determinism to avoid detailed speci�cation of complex computations is an important

part of COSPAN analysis methodology [Kurshan 1994]. In this methodology, non-determinism in the speci�-

cation is gradually resolved, making speci�cation more and more precise until the desired property is proved

or a counterexample is found (or the speci�cation becomes too large to analyze). A related technique for

analysis of real-time systems [Alur et al. 1993] allows one to start with a simpli�ed speci�cation that ignores

timing information and gradually add more and more of the timing constraints.

Partial-order reductions [Godefroid and Wolper 1993; Peled 1996] is another successful approach for

managing the state-space explosion. The knowledge of the structure of a distributed system can be used to

22 ,

rule out some interleavings of events during execution. This approach is di�erent from abstraction in that

reduction is applied during analysis, rather than during speci�cation.

Run-time reductions have also been considered in the context of model checking for timed au-

tomata [Alur et al. 1992; Sokolsky and Smolka 1995]. The algorithms combine property-dependent mini-

mization with model checking.

6 CONCLUSIONS

We have presented an overview of the CSR speci�cation paradigm and its supporting toolset PARAGON.

The paradigm provides for modular easy-to-maintain speci�cations of distributed real-time systems in both

visual and textual formats. PARAGON features a collection of tools that operate on these speci�cations

and allow users to analyze and re�ne them. This paper summarizes our experience with constructing and

analyzing speci�cations using PARAGON. This experience supplements the description of the toolset and

helps the user use it e�ectively. We have discussed various abstraction heuristics that are commonly used

during analysis to be able to handle larger systems. The speci�cation and analysis paradigm of PARAGON

has been tested in a variety of case studies and proved itself scalable enough to handle real-life designs.

We are working to improve PARAGON further and make it scale to handle even larger systems.

One of the drawbacks of the current implementation is the way parameterization is handled. Parameterized

speci�cations are often used to model exchange of data between processes. Parameterization is a very

expensive way to achieve this e�ect, since all analysis is performed by PARAGON at the ground level.

The solution to this ine�ciency is to introduce value-passing capabilities directly into the CSR speci�cation

paradigm, as we have in a value-passing process algebra ACSR-VP [Kwak et al. 1998]. An implementation

of symbolic analysis algorithms for ACSR-VP speci�cations is currently under way.

Acknowledgments. This research was supported in part by NSF CCR-9415346, NSF CCR-9619910,

AFOSR F49620-95-1-0508, AFOSR F49620-96-1-0204, ONR N00014-97-1-0505 (MURI), ARO DAAG55-98-

1-0393, ARO DAAG55-98-1-0466. We would like to thank anonymous referees for their insightful comments.

REFERENCES

Aceto, L., A. Burgue~no, and K. G. Larsen (1998), \Model Checking via Reachability Testing for Timed

Automata," In Proceedings of TACAS '98 , LNCS 1384, pp. 263{280.

Alpern, B. and F. B. Schneider (1989), \Verifying Temporal Properties without Temporal Logic," ACM

Transactions on Programming Languages and Systems 11 , 1, 147{167.

, 23

Alur, R., C. Courcoubetis, N. Halbwachs, D. Dill, and H. Wong-Toi (1992), \Minimization of Timed Tran-

sition Systems," In Proceedings of CONCUR'92 , LNCS 630.

Alur, R. and D. L. Dill (1994), \The Theory of Timed Automata," Theoretical Computer Science 126 , 2.

Alur, R., A. Itai, R. Kurshan, and M. Yannakakis (1993), \Timing Veri�cation by Successive Approxima-

tion," In Proceedings of CAV '92 , LNCS 663, Springer-Verlag.

Ben-Abdallah, H. (1996), \Graphical Communicating Shared Resources: A Language for The Speci�cation,

Re�nement and Analysis of Real-Time Systems," Ph.D. thesis, Department of Computer and Information

Science, University of Pennsylvania.

Ben-Abdallah, H., Y.-S. Kim, and I. Lee (1996), \Schedulability and Safety Analysis in GCSR," In Pro-

ceedings of WORDS '96: IEEE 2nd International Workshop on Object-oriented Real-time Dependable

Systems .

Ben-Abdallah, H., I. Lee, and J.-Y. Choi (1995), \A Graphical Language with Formal Semantics for the Spec-

i�cation and Analysis of Real-Time Systems," In Proceedings of IEEE Real-Time Systems Symposium,

IEEE Computer Society Press.

Ben-Abdallah, H., I. Lee, and O. Sokolsky (1997), \Operational Semantics for Visual Simulation in PARAGON,"

In Proceedings of IEEE National Aerospace and Electronics Conference.

Bengtsson, J., K. G. Larsen, F. Larsson, P. Petersson, andW. Yi (1995), \Uppaal - a Tool Suite for Automatic

Veri�cation of Real-Time Systems," In Proceedings of the 4th DIMACS Workshop on Veri�cation and

Control of Hybrid Systems .

Bergstra, J. and J. Klop (1985), \Algebra of Communicating Processes with Abstraction," Journal of The-

oretical Computer Science 37 , 77{121.

Bharadwaj, R. and C. Heitmeyer (1997), \Verifying SCR requirements speci�cations using state exploration,"

In Proceedings of 1st ACM SIGPLAN Workshop on Automatic Analysis of Software.

Br�emond-Gr�egoire, P., J. Choi, and I. Lee (1997), \A Complete Axiomatization of Finite-state ACSR Pro-

cesses," Information and Computation 138 , 2, 124{159.

Clarke, D. and I. Lee (1996), \Testing-Based Analysis of Real-Time System Models," In Proceedings of

International Test Conference.

Clarke, D., I. Lee, and H.-L. Xie (1995), \VERSA: A Tool for the Speci�cation and Analysis of Resource-

Bound Real-Time Systems," Journal of Computer and Software Engineering 3 , 2.

Clarke, E. M. and J. M. Wing (1996), \Formal Methods: State of the Art and Future Directions," ACM

Computing Surveys 28 , 4, 626{643.

Cleaveland, R., J. N. Gada, P. M. Lewis, S. A. Smolka, O. V. Sokolsky, and S. Zhang (1994), \The Concur-

rency Factory { Practical Tools for Speci�cation, Simulation, Veri�cation and Implementation of Con-

24 ,

current Systems," In Proceedings of the DIMACS Workshop on Speci�cation Techniques for Concurrent

Systems, Princeton, NJ..

Cleaveland, R., J. Parrow, and B. Ste�en (1993), \The Concurrency Workbench: A Semantics-Based Tool

for the Veri�cation of Concurrent Systems," ACM TOPLAS 15 , 1.

Cleaveland, R. and S. A. Smolka (1996), \Strategic Directions in Concurrency Research," ACM Computing

Surveys 28 , 4, 607{625.

Daws, C., A. Olivero, S. Tripakis, and S. Yovine (1995), \The Tool KRONOS," In Proceedings of Workshop

on Hybrid Systems and Autonomous Control , volume 1066 of LNCS , Springer-Verlag, pp. 208{219.

Daws, C. and S. Tripakis (1998), \Model Checking of Real-Time Reachability Properties Using Abstractions,"

In Proceedings of TACAS '98 , LNCS 1384, pp. 313{329.

D.Clarke, H. Ben-Abdallah, I. Lee, H.-L. Xie, and O. Sokolsky (1996), \XVERSA: an integrated graphical

and textual toolset for the speci�cation and analysis of resource-bound real-time systems," In Proceedings

of Computer-Aided Veri�cation '96 , number 1102 In LNCS, Springer-Verlag, pp. 402{405.

Gerber, R. (1991), \Communicating Shared Resources: A Model for Distributed Real-Time Systems," Ph.D.

thesis, Department of Computer and Information Science, University of Pennsylvania.

Gerber, R. and I. Lee (1994), \A Resource-Based Prioritized Bisimulation for Real-Time Systems," Infor-

mation and Computation 113 , 1, 102{142.

Godefroid, P. and P. Wolper (1993), \Using Partial Orders for the E�cient Veri�cation of Deadlock Freedom

and Safety Properties," Formal Methods in System Design 2 , 2, 149{164.

Hardin, R., Z. Har'El, and R. Kurshan (1996), \COSPAN," In Proceedings of CAV '96 , pp. 423{427.

Harel, D. (1987), \Statecharts: A Visual Formulation for Complex Systems," Science of Computer Program-

ming 8 , 3, 231{274.

Harel, D. et al. (1990), \STATEMATE: A Working Environment for the Development of Complex Reactive

Systems," IEEE Transactions on Software Engineering 16 , 4, 403{414.

Hennessy, M. and T. Regan (1991), \A Process Algebra for Timed Systems," Technical Report 5/91, CS,

University of Sussex.

Hoare, C. A. R. (1985), Communicating Sequential Processes , Prentice Hall Intl.

Holzmann, G. (1991), Design and Validation of Computer Protocols , Prentice Hall.

Jahanian, F. and A. K. Mok (1986), \Safety Analysis of Timing Properties in Real-Time Systems," IEEE

Transactions on Software Engineering 12 , 9, 890{904.

Kurshan, R. P. (1994), Computer-aided veri�cation of coordinating processes : the automata-theoretic ap-

proach, Princeton University Press.

Kwak, H.-H., I. Lee, A. Philippou, J.-Y. Choi, and O. Sokolsky (1998), \Symbolic Schedulability Analysis

, 25

of Real-time Systems," In Proceedings of IEEE Real-Time Systems Symposium, IEEE Computer Society

Press.

Lee, I., P. Bremond-Gregoire, and R. Gerber (1994), \A Process Algebraic Approach to the Speci�cation

and Analysis of Resource-Bound Real-Time Systems," Proceedings of the IEEE 82 , 1.

Lee, I. and O. Sokolsky (1997), \A Graphical Property Speci�cation Language," In Proceedings of 2nd IEEE

Workshop on High-Assurance Systems Engineering , IEEE Computer Society Press.

Lewerenz, C. and E. T. Lindner (1995), Formal Development of Reactive Systems: Case Study Production

Cell , volume 891 of LNCS , Springer-Verlag.

McMillan, K. L. (1993), Symbolic Model Checking: An Approach to the State Explosion Problem, Kluwer

Academic Publishers.

Milner, R. (1989), Communication and Concurrency , Prentice Hall Intl.

Mok, A., D. Stuart, and F. Jahanian (1996), \Speci�cation and Analysis of Real-Time Systems: Modechart

Language and Toolset," In Formal Methods for Real-Time Computing , C. Heitmeyer and D. Mandrioli,

Eds., J. Wiley and Sons, pp. 33{54.

Moller, F. and C. Tofts (1990), \A Temporal Calculus of Communicating Systems," In Proceedings of CON-

CUR'90 , LNCS 458.

Nelken, R. and N. Francez (1996), \Automatic Translation of Natural Language System Speci�cations into

Temporal Logic," In Proceedings of CAV '96 , LNCS 1102, Springer-Verlag, pp. 360{371.

Nicollin, X., J.-L. Richier, J. Sifakis, and J. Voiron (1991), \ATP: an Algebra for Timed Processes," In

Real-Time: Theory in Practice, J. de Bakker et al., Ed., Proceedings of REX Workshop, LNCS 600.

Owre, S., J. Rushby, and N. Shankar (1992), \PVS: A Prototype Veri�cation System," In Proceedings of

CADE '92 , volume 607 of Lecture Notes in Arti�cial Intelligence, pp. 748{752.

Peled, D. (1996), \Combining Partial Order Reductions with On-the-y Model Checking," Formal Methods

in System Design 8 , 39{64.

Ramakrishna, Y. S., P. M. Melliar-Smith, L. E. Moser, L. K. Dillon, and G. Kutty (1996), \Interval logics

and their decision procedures. Part II: A real-time interval logic," Theoretical Computer Science 170 ,

1{2, 1{46.

Reed, G. M. and A. W. Roscoe (1988), \A Timed Model for Communicating Sequential Processes," Theo-

retical Computer Science 58 .

Sokolsky, O. and S. A. Smolka (1995), \Local Model Checking for Real-Time Systems," In Proceedings of

CAV '95 , P. Wolper, Ed., LNCS 939, pp. 211{224.

Sokolsky, O., M. Younis, I. Lee, H.-H. Kwak, and J. Zhou (1998), \Veri�cation of the Redundancy Manage-

ment System for Space Launch Vehicle," In Proceedings of 1998 Real-Time Technology and Applications

26 ,

Symposium., IEEE Computer Society Press, pp. 220{229.

Yi, W. (1991), \A Calculus of Real Time Systems," Ph.D. thesis, Chalmers University of Technology.

