
Automatic Detection of Hybrid Human-Machine Text Boundaries

Joseph Cutler Liam Dugan Shreya Havaldar Adam Stein
Trustees of the University of Pennsylvania

{jwc, ldugan, shreyah, steinad}@seas.upenn.edu

Abstract

Much effort has been spent in recent years on
using machine learning to automatically gen-
erate text which passes as having been written
by humans. Because of significant advances
in this field, language models are able to gen-
erate very convincing text. However, a reader
with a discerning eye can occasionally distin-
guish real text from fake. In this project we
introduce a novel detection task format: de-
tecting the boundary between human written
prompt and machine generated continuation.
We train various classifiers to predict not only
the true boundary but the boundary as assessed
by human annotators. We find that using pre-
trained embeddings outperform perplexity and
pairwise sentence coherence based methods.

1 Motivation
Much effort has been spent in recent years on using
machine learning to automatically generate text which
passes as having been written by humans. Because of
significant advances in this field, language models such
as GPT-2 (Radford et al., 2019) or CTRL (Keskar et al.,
2019) are able to generate very convincing text. How-
ever, a reader with a discerning eye can occasionally
distinguish real text from fake. It is still not fully un-
derstood exactly what features human annotators use to
make these predictions, but it is clear that they are not
always the same features that classifiers use (Ippolito
et al., 2020).

In this project, we utilize the “Real or Fake Text”
dataset (Dugan et al., 2020) to investigate the aspects
of generated text which make it more or less likely to
be detected by a human observer as real or fake. The
problem is structured as a classification task: Given a
10-sentence passage of text (which at some point transi-
tions from being human-written to machine generated),
predict the index of the last human written sentence
(the “boundary sentence”). Since the dataset includes
human annotations, we can choose to either predict the
true boundary or to predict the human predictions. This
second task may be even more interesting, as it may
give us clues as to how humans and machines detect

text differently. In addition, the dataset includes various
metadata elements about each individual human annota-
tor such as their major, familiarity with generated text,
and familiarity with the domain from which the prompt
was sampled, giving us even more information to use.

This task is particularly well suited to being solved
by machine learning. To start, the task is inherently
distributional in nature; generative models sample from
their own predicted distribution of next word tokens at
each time step. Thus, it makes sense for distributional
features (such as word embeddings or perplexity) to
perform well here. In addition, in the case of the true
boundary detection task, we have an abundance of data;
if we need more data for generated text detection we
can always generate more (given a known generative
model and sampling strategy). Finally, in the case of
human annotator decisions, machine learning can give
us insights into the importance of different factors in the
decisions made by human annotators.

The outcome of this project will have multiple inter-
esting implications. First, our results will shine light on
how the well-known pitfalls of current language gen-
eration techniques affect the distinguishability of real
text from fake text. Second, they will provide important
feedback to the designers of language models, who can
use our findings to iteratively improve the realism of
their models’ outputs. Finally, they can also be used
to train people to be better at distinguishing real and
fake text as they will provide insight into features which
annotators may mistakenly assume to be signs of gener-
ated text.

2 Related Work
Much of the previous work done in the automatic detec-
tion of machine generated text has centered around the
passage-level binary classification task. That is, given
a passage, determine whether the entire passage was
machine-generated or human-written. Work from So-
laiman et al. (2019) showed that fine-tuning a RoBERTa
model (Liu et al., 2019) on generations from a spe-
cific GPT-2 (Radford et al., 2019) model and specific
decoding strategy can achieve over 99% accuracy on
detecting output from the same model. Interestingly,
they show that some classifiers are able to generalize
to other decoding strategies and model sizes while oth-



ers are not. While this is an encouraging result, it is
worth noting that the binary detection task is signifi-
cantly easier than the boundary detection task; even a
single token of prompting can significantly change the
subsequent distribution of generated text and make au-
tomatic detection much harder (Ippolito et al., 2020).
Thus performance on the boundary detection task should
not be directly compared to the binary detection task,
rather, they should be used in conjunction to better un-
derstand the benefits and limitations of certain detection
methods.

Other previous baseline methods for the binary detec-
tion of generated text have considered features such as
bag-of-ngrams (Zellers et al., 2020), histogram of token
likelihoods (Gehrmann et al., 2019), and total probabil-
ity of the sequence (Solaiman et al., 2019). However,
work by Ippolito et al. (2020) and many others have
shown that these methods are soundly defeated by fine-
tuned BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) models. We follow this and other previous
work in primarily looking at these models as our main
experiments. For our baselines we skip experimenting
with bag-of-words and histograms and instead use to-
tal probability of sequence similarly to Solaiman et al.
(2019) and Zellers et al. (2020). Other methods such as
using higher-order n-gram statistics (Gallé et al., 2021)
or Topological Data Analysis (Kushnareva et al., 2021)
were also not attempted, but could be investigated in
future work.

As for the human detection of generated text, Ippolito
et al. (2020) has shown that humans are the most easily
fooled by generated text that was sampled using the
most probable token at each time step (nucleus sampling
(Holtzman et al., 2020) with p=0.0). Paradoxically, this
manner of sampling is the most detectable by automatic
detection algorithms. Our results show that this trend
still holds in the case of the boundary detection task.

3 Data

3.1 Data Collection

The dataset used for this project was gathered using
the “Real or Fake Text” (RoFT) platform (Dugan et al.,
2020). In this detection task, annotators are shown a
passage of text one sentence at a time. The first several
sentences are from a human-written text source and the
next several sentences are a machine-generated contin-
uation. The user’s goal is to guess where the boundary
between human-written and machine-generated text is.
They are also asked to give an explanation for their
choice, which can be a selection from a radio button set
of options or a free-text response. Afterwards, the true
boundary is revealed. Statistics on the distributions of
annotations across different domains in the dataset can
be found in Table 2.

This dataset was collected between late September
2021 and late October 2021 from undergraduate and
masters students at Penn taking CIS521 “Introduction

to Artificial Intelligence”1. Students were given extra
credit proportional to the amount of annotations they got
correct. In addition to this, a leaderboard of top scorers
was visible on the publicly hosted RoFT website2, fur-
ther adding to students’ motivation to perform well on
the task. Students were also given a briefing document
that helped to teach them how to detect generated text
more effectively. This document included examples of
common mistakes that generative models make as well
as tips on how to spot them. After the students finished
their annotation they were also given an exit survey that
asked them their familiarity with the different domains
of text that they had just annotated as well as their level
of English fluency and their undergraduate major.

The full dataset can be viewed at the following
link: https://drive.google.com/file/d/

1YlG1O_w_fVTc9oLkoz9eBlmzHFuGfNze/view?

usp=sharing

3.2 Features

For the task of detecting generated text we are only
interested in the basic textual features: the text of the
prompt, the generated continuation, and the true bound-
ary. However, for the human prediction detection task
one could utilize all of the provided features. For the
curious reader, a table of all of the features can be found
in Table 1

3.3 Preprocessing

A great deal of the data pre-processing was handled by
the RoFT project authors. Because of their efforts, we
started with a cleaned CSV file containing the 27501 ob-
servations, with the features listed in Table 1. Sentence
boundaries within the text fields “prompt” and “gener-
ation” were marked with a “ SEP ” token, which we
split on to construct vectors of sentences. We ensured
that all of the paragraphs were at least ten sentences by
filtering out any that were shorter: these are occasionally
generated when the language model fails to generate
more text. Finally, as is described in greater detail in
Section 5, we used pre-trained word embeddings to turn
our textual features into real-valued ones.

4 Problem Formulation

A formal definition of the two problems we will be
tackling for this project are listed below.

True Boundary Prediction Given a context passage
C = {s0, ..., s9} where si is the ith sentence in the
passage, the true boundary prediction task is to predict
the index j corresponding to the first machine-generated
sentence sj . We assume that for all 1 ≤ j ≤ i, si is
machine generated and for all k < j, sk is human-
written.

1https://artificial-intelligence-class.
org/

2http://roft.io

https://drive.google.com/file/d/1YlG1O_w_fVTc9oLkoz9eBlmzHFuGfNze/view?usp=sharing
https://drive.google.com/file/d/1YlG1O_w_fVTc9oLkoz9eBlmzHFuGfNze/view?usp=sharing
https://drive.google.com/file/d/1YlG1O_w_fVTc9oLkoz9eBlmzHFuGfNze/view?usp=sharing
https://artificial-intelligence-class.org/
https://artificial-intelligence-class.org/
http://roft.io


Feature Name Description
prompt Text of the prompt

generation Generated text
annotator Unique annotator ID

time Date and time of annotation
model Model used to generate text
dataset Source of the prompt

dec strategy Nucleus Sampling parameter p
true boundary Index of last human sentence
pred boundary Annotator’s guess of boundary

reason Annotator’s reason for answer
major Annotator’s major

familiarity Annotator’s domain familiarity
read guide Did annotator read the guide

Table 1: Features present in the RoFT dataset (Dugan
et al., 2020). The features we used are bolded.

Domain n Models
News 4,957 GPT2-XL
Reddit 5,230 GPT2, GPT2-XL
Recipes 12,186 GPT2-XL, Finetuned GPT2-XL
Total 27,471 All Models

Table 2: Statistics on the distribution of human anno-
tations collected across different domains in the RoFT
dataset. News data was sampled from Sandhaus (2008).
Reddit data was sampled from Fan et al. (2018). Recipe
data was sampled from Marin et al. (2019).

Human-Predicted Boundary Prediction Similarly
to the previous task, the human-predicted boundary pre-
diction task models the input passage. Given a passage
C = {s0, ..., s9} where si is the ith sentence in the
passage, the boundary prediction task is to predict the
average index predicted by all of the annotators who
were given the passage C. Figure 1 shows our dataset’s
distribution of average boundary values picked by anno-
tators, and Figure 2 shows our dataset’s distribution of
human labels in comparison to the true labels. We see
that the human labels are extremely noisy predictors of
the true boundary, but there is small correlation between
the average predicted boundary and the true boundary.

Loss Function Our loss function of choice is cross-
entropy loss. During training, this penalizes our model
for any incorrect prediction, high or low. One could
alternatively use a “smoother” loss function such as dis-
tance (under some metric) from the correct boundary.
While our testing indicated that this was the optimal
choice, it seems likely that a smoother alternative would
have benefits. Future work should investigate this possi-
bility more thoroughly.

5 Methods

5.1 Baselines

Our first two baselines are a simple random baseline and
a majority class baseline. We decided to use the majority

Figure 1: Distribution of Average Predicted Boundary
Value across Annotators

Figure 2: Distribution of average boundary label for
each of the 10 true boundary indexes.

class baseline to expose any class imbalances in our data
and the random baseline to show the worst possible clas-
sifier. Our third baseline is a perplexity based detection
model. We use the original language model that was
used to generate the text and get the perplexity for each
sentence in the passage conditioned on all the previous
sentences. We then use these sentence-wise perplexity
metrics to predict the true and human-predicted bound-
ary using simple heuristic methods like the location
of largest decrease in rolling average perplexity. We
consider this method to be a baseline since we use the
model used for producing the text to produce features,
so we have more information than we truly should be
given in this task.

5.2 RoBERTa
Our first main method of comparison is to use the aver-
age RoBERTa (Liu et al., 2019) embedding of the words
in each sentence as a sentence embedding. To do this
we prepend the [CLS] and append the [SEP] token to



Domain Model Top p Size Rand Maj Human Perp RoBERTa SRoBERTa STS
(train/test) (OOD/ID) (OOD/ID) (OOD/ID)

NYT gpt2-xl 0.0 324/137 0.08 0.12 0.15 0.33 0.26/0.21 0.29/0.22 0.12/0.10
NYT gpt2-xl 0.4 314/117 0.11 0.12 0.14 0.28 0.32/0.22 0.34/0.23 0.14/0.10
NYT gpt2-xl 1.0 291/128 0.11 0.12 0.19 0.02 0.13/0.41 0.23/0.26 0.13/0.13
Reddit gpt2 0.4 744/245 0.09 0.21 0.26 0.16 0.59/0.62 0.33/0.35 0.23/0.23
Reddit gpt2-xl 0.0 136/55 0.12 0.13 0.10 0.31 0.29/0.23 0.44/0.15 0.20/0.05
Reddit gpt2-xl 0.4 149/60 0.11 0.12 0.14 0.27 0.34/0.23 0.42/0.16 0.15/0.08
Reddit gpt2-xl 1.0 134/43 0.14 0.14 0.23 0.04 0.15/0.15 0.30/0.21 0.07/0.09
Recipes gpt2-xl 0.4 1111/379 0.10 0.50 0.35 0.09 0.59/0.60 0.59/0.65 0.56/0.56
Recipes finetuned 0.4 1847/647 0.10 0.12 0.25 0.05 0.38/0.39 0.43/0.43 0.10/0.11
All All 0.4 5092/2047 0.10 0.20 0.25 0.16 0.32 (0.93) 0.42 (0.89) 0.22 (0.26)

Table 3: Results for the true boundary detection task for all data subsets using the highest performing classifier
under each proposed method. Peformance on overall dataset is reported in the form test accuracy(train accuracy).
“Out of Domain” (OOD) classifiers were trained on all available data and evaluated on just the subset. “In Domain”
(ID) classifiers were trained only on the given subset. “Rand” = Random Guessing; “Maj” = Majority Class Baseline.
“Perp” = Perplexity Baseline.

each sentence of the passage in isolation. After this we
concatenate all of the sentence embeddings together into
a 7,680 dimensional passage embedding and pass that
into a logistic regression classifier with cross-entropy
loss.

5.3 SRoBERTa
Our second method is the same as the previous method
but instead of taking the average RoBERTa embeddings
we use SRoBERTa (Reimers and Gurevych, 2019) to
get a sentence embedding for each sentence in the pas-
sage. SRoBERTa is a RoBERTa model variant that
was trained in such a way as to maximize the predic-
tive power of the average of token embeddings. The
sentence embeddings of this model have shown to be
effective in a wide variety of tasks such as Natural Lan-
guage Inference. Similarly to the previous method, we
concatenate the sentence embeddings together and feed
the passage embedding to a logistic regression classifier.

5.4 Semantic Textual Similarity
The third method is similar to the second method, how-
ever instead of taking the embeddings as input to the
classifier, we take the pairwise cosine similarity of each
sentence with each preceding sentence as input. This
results in a feature vector of size 9. We then feed this
into logistic regression.

For the extraction of RoBERTa embeddings we use
the HuggingFace Transformers3 library. For SRoBERTa
we use the sentence transformers package4. Finally, for
running logistic regression and other classifier compar-
isons we use scikitlearn5.

6 Experiments and Results
For evaluation we took the data and split it into three
subsets (train, val, and test) with an 80%, 10%, 10%
split. Because the data contains many duplicate entries

3https://github.com/huggingface/transformers
4https://github.com/UKPLab/sentence-transformers
5https://scikit-learn.org/

Figure 3: 2 component PCA of the Perplexity embed-
dings for NYTimes text using GPT2-XL for generation
with p = 0.0. As expected for argmax sampling, per-
plexity clearly distinguishes between the different true
boundary classes.

(each row of our dataset corresponds to one annotator’s
annotation and multiple annotators can annotate the
same example of generated text), we made sure to de-
duplicate each set individually and ensure that there was
no leakage between the datasets.

As an accuracy metric, we chose to use a standard
0/1 error classification accuracy, because it mirrors our
choice of cross-entropy loss as our loss function: we
only take into account exactly-correct predictions, and
slightly incorrect ones are as good as very incorrect
ones.

All of of our models are given the same random seed
(42069) for reproducibilty purposes, and we use the
SAGA solver (Defazio et al., 2014) for optimization.

Once the models were decided upon and the hyper-
parameters were tuned using the validation set, we ran
all of our experiments on the test set. All of our exper-
iments were performed twice: once after the models
were trained to predict the true boundary indices on the
test set, and then again when the models were trained to



Domain Model Top p Size Rand Maj Perp RoBERTa SRoBERTa STS
(train/test) (OOD/ID) (OOD/ID) (OOD/ID)

NYT gpt2-xl 0.0 324/137 0.09 0.23 0.08 0.18/0.18 0.28/0.29 0.23/0.20
NYT gpt2-xl 0.4 314/117 0.11 0.22 0.08 0.24/0.14 0.18/0.21 0.28/0.29
NYT gpt2-xl 1.0 291/128 0.11 0.19 0.09 0.15/0.21 0.13/0.14 0.15/0.18
Reddit gpt2 0.4 744/245 0.10 0.21 0.08 0.15/0.15 0.22/0.23 0.22/0.19
Reddit gpt2-xl 0.0 136/55 0.11 0.28 0.05 0.17/0.30 0.2/0.42 0.20/0.22
Reddit gpt2-xl 0.4 149/60 0.09 0.20 0.08 0.15/0.23 0.18/0.28 0.23/0.27
Reddit gpt2-xl 1.0 134/43 0.11 0.21 0.10 0.15/0.31 0.14/0.12 0.26/0.19
Recipes gpt2-xl 0.4 1111/379 0.10 0.20 0.06 0.13/0.10 0.39/0.40 0.18/0.17
Recipes finetuned 0.4 1847/647 0.10 0.21 0.07 0.20/0.193 0.27/0.27 0.20/0.20
All All 0.4 5092/2047 0.10 0.21 0.06 0.17 (0.86) 0.25 (0.95) 0.22 (0.27)

Table 4: Results for the human-predicted boundary detection task for all data subsets using the highest performing
classifier under each proposed method. Peformance on overall dataset is reported in the form test accuracy(train
accuracy). “Out of Domain” (OOD) classifiers were trained on all available data and evaluated on just the subset.
“In Domain” (ID) classifiers were trained only on the given subset. “Rand” = Random Guessing; “Maj” = Majority
Class Baseline. “Perp” = Perplexity Baseline.

Experiment Parameter Search Space Optimal Value
RoBERTa Regularization Penalty [1.0,0.1,0.01,0.001,0.005,0.0001] 0.001

SRoBERTa Regularization [0.0001, 0.0005, 0.001, 0.005] 0.0005
penalty [’l2’, ’l1’] l2

STS Regularization [0.01, 0.05, 0.1, 0.5] 0.5
penalty [’l2’, ’l1’] l2

Table 5: Hyperparameter Tuning across Experiments: Values Searched and Value Selected

predict the (average) human-predicted boundary indices.
These results are reported in full in Table 3 and Table 4,
respectively.

6.1 Baselines

The three baseline methods were random, majority la-
bel, and a non-parametric perplexity based detection
model. As expected, the random baseline got roughly
10% accuracy across all the data subsets and on the full
dataset. More interesting is the majority class baseline
which exposed the large class imbalances present in the
dataset. In particular, the subset of the true boundary
data for the Recipes subset which was generated with
GPT2-XL using a top-p sampling with p = 0.4 had 50%
of the samples labeled with the true boundary as 9. For
the human predicted labels, we see that overall 21% of
our data is labelled with 9. A model which simply out-
performs random guessing may still not be a valuable
model if it does not outperform the majority baseline
since we want to learn a model which can detect the true
or predicted boundary better than always guessing 9.

We found that the performance of the perplexity base-
line was highly dependent on the top-p sampling method
used for generating the text. For text generated with
GPT2-XL using p=0.0, the performance of the perplex-
ity baseline is roughly twice as good as the majority
baseline. We see in Figure 3 the extent to which perplex-
ity is able to distinguish between the different classes
for p = 0.0. However, as the value of p increases, the
performance of the perplexity baseline decreases since
the generated text becomes less predictable and may
begin to look closer to the true distribution of human

sentences. This goes to an extreme when p = 1.0 since
the machine generated text has even higher perplexity
than the human generated text. This causes the perplex-
ity to increase for machine generated sentences, so we
see that the performance is worse than random guessing
since our detector will not predict the boundary where
perplexity increases.

Since the non-parametric perplexity baseline per-
formed so well, it may seem like we should train a
more sophisticated parametric model on these features.
We decided against this approach because this assumes
prior knowledge of the generative model. For our prob-
lem definition we did not allow for this. One possible
extension of this to the case where we don’t a priori
know the model is to compute the perplexity scores for
all popular pre-trained models for each sample and learn
a model over those features.

6.2 RoBERTa

In order to determine the optimal model for classifica-
tion using concatenated RoBERTa embeddings, we tried
a variety of models, and calculated their accuracy on the
validation set. These models and their best validation
accuracies (over coarsely tuned hyperparameters) are
included in Table 6.

Among these models, logistic regression has the high-
est accuracy, and so we chose to focus on it for our
experimentation. We then ran a more fine-grained hyper-
parameter search (more values checked) on the regres-
sion coefficient of the logistic regression to maximize
our validation accuracy. The results of this search, as
well as the hyperparameter values we searched over, can



Model Validation Accuracy
Ridge Regression 0.369

Logistic Regression 0.377
KNN 0.253

Neural Network 0.198
AutoML 0.104

Table 6: RoBERTa Model Experimentation for the true
boundary prediction task

be found in Table 5.

6.3 SRoBERTa
Similarly to the procedure employed for the RoBERTa
embeddings, we experimented with a variety of
SKLearn classifiers and calculated accuracy on the val-
idation set. The models and their resulting accuracies
are included in the table below. Manual hyperparameter
tuning was used for each of these tested models, with
a more involved hyperparameter search on the highest
performing model to create our final SRoBERTa classi-
fier.

Model Validation Accuracy
Random Forest 0.2154

Logistic Regression 0.4180
Multiclass SVM 0.2291

KNN 0.2706
Neural Network 0.3249

Table 7: SRoBERTa Model Experimentation for the true
boundary prediction task

Based on the results, we selected the logistic regres-
sion classifier. We then performed more thorough hy-
perparameter tuning in order to maximize validation
accuracy. The parameters tuned and range of values
tried can be found in Table 5.

6.4 Semantic Textual Similarity (STS)
In order to determine the optimal model for classifi-
cation using our semantic textual similarity features,
we conducted the same experimentation process. The
SKLearn models we tried and their resulting accura-
cies are included in Table 8. Manual hyperparameter
tuning was used for each of these tested models, with
a more involved hyperparameter search on the highest
performing model to create our final STS classifier.

Model Validation Accuracy
Random Forest 0.2154

Logistic Regression 0.2184
Multiclass SVM 0.2120

KNN 0.2052
Neural Network 0.1411

Table 8: STS Model Experimentation for the true bound-
ary prediction task

We noticed very comparable accuracies between the
random forest classifier and the logistic regression clas-
sifier. Ultimately, we decided to go with the logistic
regression classifier as the training time needed for the
model was shorter. We then performed more thorough
hyperparameter tuning in order to maximize validation
accuracy. The parameters tuned and range of values
tried can be found in Table 5.

6.5 Evaluation and Subset Testing
After model selection and hyperparameter tuning, we
used our resulting classifiers (RoBERTa, SRoBERTa,
STS) to calculate how well our model performed on the
test set. Table 3 shows our performance on classifying
the true boundary, and Table 4 shows our performance
on classifying the human-predicted boundary.

In order to analyze which subsets of data our model
performed the best/worst on, we filtered by how the
machine-generated text was created (gpt2, gpt2-xl, fine-
tuned), which value of the Nucleus Sampling (Holtzman
et al., 2020) parameter p was used (0.0, 0.4, 1.0), and
what the source of the human-written text was (New
York Times, Reddit Short Stories, Recipes). For each
subset evaluation, we trained our model both in-domain
(training on only the data points from the subset we test
on) and out of domain (training on the entire training
set). The resulting test accuracies for each subset can
be found in Table 3 on the true boundary, and Table 4
on the predicted boundary. These tables also contain
calculated accuracies for each subset using our baseline
classifiers, random, majority class, and perplexity.

7 Conclusion and Discussion
Findings and Model Comparisons While the bound-
ary prediction task is clearly a very difficult one (none
of our classifiers consistently performed better than 50%
accuracy), we do have many worthwhile takeaways from
this project. For starters, we see that the embeddings
based classifiers significantly outperform human accu-
racy on spotting generated text. This is reassuring and
is a good sign that classifiers for generated text are not
only useful but necessary going forward.

In the case of the human-predicted boundary predic-
tion task, we see that the majority class baseline is very
strong - outperforming all other methods on our limited
size dataset when aggregating over all subsets. The ac-
curacy of the majority class baseline indicates that the
distribution of sentences selected as the boundary by hu-
man annotators is highly non-uniform. Further research
should investigate the psychological factors that may
influence annotators to select certain sentences.

We also see that the performance of the perplexity
baseline does very well for p=0.0 but worse than chance
for p=1.0 when predicting true boundary. This is con-
sistent with what we would expect, given that text pro-
duced by p=0.0 will have artificially high likelihood as
determined by the language model from which the text
was generated. Interestingly, perplexity does identical



to random chance at the human-predicted boundary de-
tection task – indicating that human annotators do not at
all look at perplexity for their predictions. In addition,
similar to the results from (Ippolito et al., 2020), we
see that human accuracy at predicting the true boundary
is lowest for text produced by p=0.0 while this is the
easiest for the perplexity baseline to detect.

Finally, we see that, in the case of the Semantic Tex-
tual Similarity (STS) experiment, while the embeddings
significantly outperform STS for the true boundary de-
tection, the human-predicted boundary prediction task
tells a different story. While the SRoBERTa classifier is
still the best overall, the margin is significantly smaller,
with STS outperforming the standard RoBERTa embed-
dings and perplexity. From this we can tentatively draw
the conclusion that human annotators are particularly
sensitive to sudden sentence-level semantic shift and
consider text that does this to be unnatural.

Lessons Learned The main lessons we learned from
this project were about dealing with data. There were
many times where we realized that our classifiers were
conditioning on bad features or other artifacts that we
left in the data. Ensuring there was no leakage be-
tween training and test data, ensuring that we had proper
boundary values, and ensuring that we dealt with NaNs
properly were all sources of unexpected complications.
We realized time and time again that the hardest part
of a Machine Learning project is properly cleaning the
data and that the easier part is writing the code to run
the model.

Another lesson we learned is that the most complex
classifier is not always the most optimal one. In our case,
given a smaller dataset the best performing classifier
was, in fact, the standard Logistic Regression classifier
and not any other more powerful method. This reaffirms
the importance of testing classifiers that are generally
considered to be less powerful and not always assuming
that a neural network will be the highest performer.

Future Work Finally, future work should seek to fur-
ther experiment with not only the methods chosen but
also the problem formulation. We chose to use the stan-
dard 0/1 accuracy with cross-entropy loss due to our
framing of the task as a classification task. However,
this is not the only framing of this task that is possible –
one could make the case that a predicted boundary that
is one sentence away from the true boundary is a better
prediction than one that is much further away. Using a
loss function such as the L2 distance of the prediction
away from the boundary may have led our classifiers to
perform better.

On top of this, while we were limited to only select-
ing data that was annotated by humans for our human-
predicted boundary prediction task, this is not the case
for the true boundary prediction task. It is theoretically
very easy to generate extra data for this task and fu-
ture work should seek to utilize much more data when
evaluating classifiers on true boundary prediction.

References
Aaron Defazio, Francis Bach, and Simon Lacoste-Julien.

2014. Saga: A fast incremental gradient method with
support for non-strongly convex composite objec-
tives.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Liam Dugan, Daphne Ippolito, Arun Kirubarajan, and
Chris Callison-Burch. 2020. Roft: A tool for evaluat-
ing human detection of machine-generated text.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation.

Matthias Gallé, Jos Rozen, Germán Kruszewski, and
Hady Elsahar. 2021. Unsupervised and distributional
detection of machine-generated text.

Sebastian Gehrmann, Hendrik Strobelt, and Alexan-
der M. Rush. 2019. Gltr: Statistical detection and
visualization of generated text.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration.

Daphne Ippolito, Daniel Duckworth, Chris Callison-
Burch, and Douglas Eck. 2020. Automatic detec-
tion of generated text is easiest when humans are
fooled. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1808–1822, Online. Association for Computational
Linguistics.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation.

Laida Kushnareva, Daniil Cherniavskii, Vladislav
Mikhailov, Ekaterina Artemova, Serguei Barannikov,
Alexander Bernstein, Irina Piontkovskaya, Dmitri Pi-
ontkovski, and Evgeny Burnaev. 2021. Artificial text
detection via examining the topology of attention
maps.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach.

Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes,
Amaia Salvador, Yusuf Aytar, Ingmar Weber, and
Antonio Torralba. 2019. Recipe1m+: A dataset for
learning cross-modal embeddings for cooking recipes
and food images. IEEE Trans. Pattern Anal. Mach.
Intell.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

http://arxiv.org/abs/1407.0202
http://arxiv.org/abs/1407.0202
http://arxiv.org/abs/1407.0202
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2010.03070
http://arxiv.org/abs/2010.03070
http://arxiv.org/abs/1805.04833
http://arxiv.org/abs/2111.02878
http://arxiv.org/abs/2111.02878
http://arxiv.org/abs/1906.04043
http://arxiv.org/abs/1906.04043
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/2109.04825
http://arxiv.org/abs/2109.04825
http://arxiv.org/abs/2109.04825
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692


Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.

Evan Sandhaus. 2008. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia,
6(12):e26752.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Radford,
Gretchen Krueger, Jong Wook Kim, Sarah Kreps,
Miles McCain, Alex Newhouse, Jason Blazakis, Kris
McGuffie, and Jasmine Wang. 2019. Release strate-
gies and the social impacts of language models.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2020. Defending against neural fake
news.

http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.09203
http://arxiv.org/abs/1908.09203
http://arxiv.org/abs/1905.12616
http://arxiv.org/abs/1905.12616

