
Programming up to Congruence (Extended version)

Vilhelm Sjöberg Stephanie Weirich
University of Pennsylvania, Philadelphia, PA, USA

{vilhelm,sweirich}@cis.upenn.edu

Abstract

This paper presents the design of ZOMBIE, a dependently-typed
programming language that uses an adaptation of a congruence
closure algorithm for proof and type inference. This algorithm al-
lows the type checker to automatically use equality assumptions
from the context when reasoning about equality. Most dependently-
typed languages automatically use equalities that follow from β-
reduction during type checking; however, such reasoning is incom-
patible with congruence closure. In contrast, ZOMBIE does not use
automatic β-reduction because types may contain potentially di-
verging terms. Therefore ZOMBIE provides a unique opportunity
to explore an alternative definition of equivalence in dependently-
typed language design.

Our work includes the specification of the language via a bidirec-
tional type system, which works “up-to-congruence,” and an algo-
rithm for elaborating expressions in this language to an explicitly
typed core language. We prove that our elaboration algorithm is
complete with respect to the source type system, and always pro-
duces well typed terms in the core language. This algorithm has
been implemented in the ZOMBIE language, which includes gen-
eral recursion, irrelevant arguments, heterogeneous equality and
datatypes.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

Keywords Dependent types; Congruence closure

1. Introduction

The ZOMBIE language [10] aims to provide a smooth path from
ordinary functional programming in a language like Haskell to
dependently typed programming in a language like Agda. However,
one significant difference between Haskell and Agda is that in the
latter, programmers must show that every function terminates. Such
proofs often require delicate reasoning, especially when they must
be done in conjunction with the function definition. In contrast,
ZOMBIE includes arbitrary nontermination, relying on the type
system to track whether an expression has been typechecked in the
normalizing fragment of the language.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676974

Prior work on ZOMBIE [10, 28] has focused on the metatheory of
the core language—type safety for the entire language and con-
sistency for the normalizing fragment—and provides a solid foun-
dation. However, it is not feasible to write programs directly in the
core language because the terms get cluttered with type annotations
and type conversion proofs. This paper addresses the other half
of the design: crafting a programmer-friendly surface language,
which elaborates into the core.

The reason that elaboration is important in this context is that core
ZOMBIE has a weak definition of equivalence. Most dependently-
typed languages define terms to be equal when they are (at least)
β-convertible. However, the presence of nontermination makes this
definition awkward. To check whether two types are β-equivalent
the type checker has to evaluate expressions inside them, which be-
comes problematic if expressions may diverge—what if the type
checker gets stuck in an infinite loop? Existing languages fix an
arbitrary global cut off for how many steps of evaluation the type-
checker is willing to do (Cayenne [3]), or only reduce expressions
that have passed a conservative termination test (Idris [9]). Core
ZOMBIE, somewhat radically, omits automatic β-conversion com-
pletely. Instead, β-equality is available only through explicit con-
version.

Because ZOMBIE does not include automatic β-conversion, it pro-
vides an opportunity to explore an alternative definition of equiva-
lence in a surface language design.

Congruence closure, also known as the theory of equality with un-
interpreted function symbols, is a basic operation in automatic the-
orem provers for first-order logic (particularly SMT solvers, such
as Z3 [14]). Given some context Γ which contains assumptions of
the form a = b, the congruence closure of Γ is the set of equa-
tions which are deducible by reflexivity, symmetry, transitivity, and
changing subterms. Figure 1 specifies the congruence closure of a
given context.

Although efficient algorithms for congruence closure are well-
known [16, 22, 27] this reasoning principle has seen little use in
dependently-typed programming languages. The problem is not
lack of opportunity. Dependently-typed languages feature propo-
sitional equality, written a = b, which is a type that asserts the
equality of the two expressions. Programs that use propositional
equality build members of this type (using assumptions in the con-
text, and various lemmas) and specify where and how they should
be used. Congruence closure can assist with both of these tasks by
automating the construction of these proofs and determining the
“motive” for their elimination.

However, the adaption of this first-order technique to the higher-
order logics of dependently-typed languages is not straightforward.
The combination of congruence closure and full β-reduction makes
the equality relation undecidable. As a result, most dependently-
typed languages take the conservative approach of only incor-
porating congruence closure as a meta-operation, such as Coq’s

a = b ∈ Γ
Γ ` a = b Γ ` a = a

Γ ` b = a
Γ ` a = b

Γ ` a = c Γ ` c = b
Γ ` a = b

Γ ` a = a ′ Γ ` b = b′

Γ ` a b = a ′ b′

Figure 1. The “classic” congruence closure relation for untyped
first-order logic terms

congruence tactic. While this tactic can assist with the creation of
equality proofs, such proofs must still be explicitly eliminated. Pro-
posals to use equations from the context automatically [1, 29, 30]
have done so in addition to β-reduction, which makes it hard
to characterize exactly which programs will typecheck, and also
leaves open the question of how expressive congruence closure is
in isolation.

In this work we define the ZOMBIE surface language to be fully
“up to congruence”, i.e. types which are equated by congruence
closure can always be used interchangeably, and then show how
the elaborator can implement this type system.

Designing a language around an elaborator—an unavoidably com-
plicated piece of software—raises the risk of making the language
hard to understand. Programmers could find it difficult to predict
what core term a given surface term will elaborate to, or they may
have to think about the details of the elaboration algorithm in order
to understand whether a program will successfully elaborate at all.

We avoid these problems using two strategies. First, the syntax
of the surface and the core language differ only by erasable an-
notations and the operational semantics ignores these annotations.
Therefore the semantics of an expression is apparent just from look-
ing at the source; the elaborator only adds annotations that can not
change its behavior. Second, we define a declarative specification
of the surface language, and prove that the elaborator is complete
for the specification. As a result, the programmer does not have to
think about the concrete elaboration algorithm.

We make the following contributions:

• We demonstrate how congruence closure is useful when pro-
gramming, by comparing examples written in Agda, ZOMBIE,
and ZOMBIE’s explicitly-typed core language (Section 2).

• We define a dependently typed core language where the syntax
contains erasable annotations (Section 3).

• We define a typed version of the congruence closure relation
that is compatible with our core language, including features
(erasure, injectivity, and generalized assumption) suitable for a
dependent type system (Section 4).

• We specify the surface language using a bidirectional type sys-
tem that uses this congruence closure relation as its definition
of type equality (Section 5).

• We define an elaboration algorithm of the surface language to
the core language (Section 6) based on a novel algorithm for
typed congruence closure (Section 7). We prove that our elabo-
ration algorithm is complete for the surface language and pro-
duces well-typed core language expressions. Our typed congru-
ence closure algorithm both decides whether two terms are in
the relation and also produces core language equality proofs.

• We have implemented these algorithms in ZOMBIE, extending
the ideas of this paper to a language that includes datatypes and

data Term : Set where

leaf : Term

branch : Term → Term → Term

var : N → Term

data Unify : (t1 t2 : Term) → Set where

nomatch : ∀{t1 t2} → Unify t1 t2

match : ∀{t1 t2} (s : Substitution)

→ ap s t1 ≡ ap s t2 → Unify t1 t2

-- Several lemmas --

apCompose : ∀ {s s’} (t : Term)

→ ap (compose s s’) t ≡ ap s (ap s’ t)

apCompose = ...

singleton-6∈ : ∀ t x s → (x ∈ t)

→ ap (singleton x s) t ≡ t

singleton-6∈ = ...

varSingleton : ∀ x t → t ≡ ap (singleton x t) (var x)

varSingleton = ...

Figure 2. Supporting lemmas for Figure 3

pattern matching, a richer logical fragment, and other features.
Congruence closure works well in this setting; in particular,
it significantly simplifies the typing rules for case-expressions
(Section 8). Our implementation is available.1

2. Programming up to congruence

Consider this simple proof in Agda, which shows that zero is a right
identity for addition.

npluszero : (n : Nat) → n + 0 ≡ n

npluszero zero = refl

npluszero (suc m) = cong suc (npluszero m)

The proof follows by induction on natural numbers. In the base
case, refl is a proof of 0 = 0. In the next line, cong translates
a proof of m + 0 ≡ m (from the recursive call) to a proof of
suc(m + 0) ≡ suc m.

This proof relies on the fact that Agda’s propositional equality
relation (≡) is reflexive and a congruence relation. The former
property holds by definition, but the latter must be explicitly shown.
In other words, the proof relies on the following lemma:

cong : ∀ {A B} {m n : A}

→ (f : A → B) → m ≡ n → f m ≡ f n

cong f refl = refl

Now compare this proof to a similar result in ZOMBIE. The same
reasoning is present: the proof follows via natural number induc-
tion, using the reduction behavior of addition in both cases.

npluszero : (n : Nat) → (n + 0 = n)

npluszero n =

case n [eq] of

Zero → (join : 0 + 0 = 0)

Suc m →
let _ = npluszero m in

(join : (Suc m) + 0 = Suc (m + 0))

1 https://code.google.com/p/trellys/

{-# NO_TERMINATION_CHECK #-}

unify : (t1 t2 : Term) → Unify t1 t2

unify leaf leaf = match empty refl

unify leaf (branch t2 t3) = nomatch

unify (branch t1 t2) leaf = nomatch

unify (branch t11 t12) (branch t21 t22)

with unify t11 t21

... | nomatch = nomatch

... | match s p with unify (ap s t12) (ap s t22)

... | nomatch = nomatch

... | match s’ q

= match (compose s’ s)

(trans (apCompose (branch t11 t12))

(trans (cong2 (λ t1 t2 →
branch (ap s’ t1) t2) p q)

(sym (apCompose (branch t21 t22)))))

unify t1 (var x) with (x is∈ t1)

... | no q

= match (singleton x t1)

(trans (singleton-6∈ t x t q)

(varSingleton x t))

... | yes p with t

... | var y

= match empty (cong var (sym (invvar p)))

... | _

= nomatch

unify (var x) t2 with unify t2 (var x)

... | nomatch = nomatch

... | match s p = match s (sym p)

prog unify : (t1 t2 : Term) → Unify t1 t2

rec unify t1 = \ t2 . case t1, t2 of

leaf, leaf → match empty _

leaf, branch _ _ → nomatch

branch _ _, leaf → nomatch

branch t11 t12, branch t21 t22 →
case (unify t11 t21) of

nomatch → nomatch

match s p → case (unify (ap s t12) (ap s t22)) of

nomatch → nomatch

match s’ _ →
unfold (ap s’ (ap s t1)) in

unfold (ap s’ (ap s t2)) in

let _ = apCompose s’ s t1 in

let _ = apCompose s’ s t2 in

match (compose s’ s) _

_ , var x → case (isin x t1) of

no q →
let _ = varSingleton x t1 in

let _ = singletonNotIn t1 x t1 q in

match (singleton x t1) _

yes _ → case t1 of

var y → let [_] = invvar x y p in

match empty _

_ →
nomatch

var x, _ → case (unify t2 (var x)) of

nomatch → nomatch

match s p → match s _

Figure 3. First-order unification in Agda (left) and in ZOMBIE (right)

Because ZOMBIE does not provide automatic β-equivalence, re-
duction must be made explicit above. The term join explicitly in-
troduces an equality based on reduction. However, in the successor
case, the ZOMBIE type checker is able to infer exactly how the
equalities should be put together.

For comparison, the corresponding ZOMBIE core language term
includes a number of explicit type coercions:

npluszero : (n : Nat) → (n + 0 = n)

npluszero (n : Nat) =

case n [eq] of

Zero → join [; 0 + 0 = 0]

. join [~eq + 0 = ~eq]

Suc m →
let ih = npluszero m in

join [; (Suc m) + 0 = Suc (m + 0)]

. join [(Suc m) + 0 = Suc ~ih]

. join [~eq + 0 = ~eq]

Above, an expression of the form a . b converts the type of the
expression a, using the equality proof b. Equality proofs may be
formed in two ways, either via co-reduction (if a1 and a2 both
reduce to some common term b, then join[;a1 = a2] is a proof
of their equality) or by congruence (if a is a proof of b1=b2, then
join[{ ∼ a/x}A] is a proof of {b1/x}A = {b2/x}A).

Both sorts of equality proofs are constructed in the example. In
the base case, The proof join[; 0 + 0 = 0] follows from reduc-
tion, and is converted to be a proof of (n + 0) = n by the con-
gruence proof. Here, eq is a proof that 0 = n, an assumption de-
rived from pattern matching. Congruence reasoning constructs a

proof that that ((0 + 0) = 0) = ((n + 0) = n); the parts that dif-
fer on each side of the equality are marked by ~eq in the congru-
ence proof. The successor case uses congruence twice. The equal-
ity derived from reduction is first coerced by a congruence de-
rived from the recursive call (ih : m + 0 = m), so that it has type
((Suc m) + 0 = Suc m). This equality is then coerced by a con-
gruence derived from eq : (Suc m = n), so that the result has type
(n + 0) = n.

As another example, Mu, Ko and Jansson [21] model relational pro-
gram derivation in Agda. One property that they show is the univer-
sal property of the foldr function. In their code, they deliberately
use Agda’s features for equational reasoning—showing exactly the
derivation of the equality. The reduction behavior of a program is
an important part of a proof.

foldr-universal : {A B} (h : List A → B) f e →
(h [] ≡ e) → (∀ x xs → h (x::xs) ≡ f x (h xs)) →
(ys : List A) → h ys ≡ foldr f e ys

foldr-universal h f e base step [] = base

foldr-universal h f e base step (x :: xs) =

h (x :: xs)

≡〈step x xs〉
f x (h xs)

≡〈cong (f x) (foldr-universal h f e base step xs)〉
f x (foldr f e xs)

≡〈refl〉
foldr f e (x::xs)

2

log snoc_inv : (xs ys : List A) → (z : A) → ((snoc xs z) = (snoc ys z)) → xs = ys

ind snoc_inv xs = \ ys z pf. case xs [xeq], ys of

Cons x xs’ , Cons y ys’ →
let _ = (smartjoin : (snoc xs z) = Cons x (snoc xs’ z)) in

let _ = (smartjoin : (snoc ys z) = Cons y (snoc ys’ z)) in

let _ = snoc_inv xs’ [ord xeq] ys’ z _ in

_

...

-- Agda pattern matching based solution

snoc-inv : ∀ xs ys z → (snoc xs z ≡ snoc ys z) → xs ≡ ys

snoc-inv (x :: xs’) (y :: ys’) z pf with (snoc xs’ z) | (snoc ys’ z) | inspect (snoc xs’) z | inspect (snoc ys’) z

snoc-inv (.y :: xs’) (y :: ys’) z refl | .s2 | s2 | [p] | [q] with (snoc-inv xs’ ys’ z (trans p (sym q)))

snoc-inv (.y :: .ys’) (y :: ys’) z refl | .s2 | s2 | [p] | [q] | refl = refl

...

-- Alternative Agda solution based on congruence and injectivity

cons-inj1 : ∀ {x xs y ys} → ((x :: xs) ≡ y :: ys) → x ≡ y

cons-inj1 refl = refl

cons-inj2 : ∀ {x xs y ys} → x :: xs ≡ y :: ys → xs ≡ ys

cons-inj2 refl = refl

snoc-inv’ : ∀ xs ys z → (snoc xs z ≡ snoc ys z) → xs ≡ ys

snoc-inv’ (x :: xs’) (y :: ys’) z pf = cong2 _::_ (cons-inj1 pf) (snoc-inv’ xs’ ys’ z (cons-inj2 pf))

...

Figure 4. Pattern matching can be tricky in Agda

In ZOMBIE, the congruence closure algorithm can put the various
steps together, including the unfolding, the step case and the induc-
tion. Note that ZOMBIE allows programmers to notate arguments
that are irrelevant (in square brackets, should have no affect on
computation) and inferred (⇒ instead of →, automatically deter-
mined through unification).

foldrUniversal : [A :Type]⇒ [B:Type] ⇒
(h : List A → B) → (f : A → B → B) →
(e : B) → (h [] = e) →
((x:A) → (xs:List A) → h (x :: xs) = f x (h xs)) →
(ys : List A) → h ys = fold e f ys

foldrUniversal [A][B] h f e base step xs =

case xs [_] of

[] → let _ = (join : fold e f [] = e) in

_

x :: xs’ →
let _ = step x xs’ in

let _ = foldrUniversal h f e base step xs’ in

let _ = (join : f x (fold e f xs’)

= fold e f (x :: xs’)) in

_

For a larger example, consider unification of first-order terms (Fig-
ure 3). For this example, the term language is the simplest possible,
consisting only of binary trees constructed by branch and leaf and
possibly containing unification variables, var, represented as nat-
ural numbers. We also use a type Substitution of substitutions,
which are built by the functions singleton and compose, and ap-
plied to terms by ap.

Proving that unify terminates is difficult because the termina-
tion metric involves not just the structure of the terms but also
the number of unassigned unification variables. (For example, see
McBride [20]). To save development effort, a programmer may

elect to prove only a partial correctness property: if the function
terminates then the substitution it returns is a unifier.

In other words, if the unify function returns, it either says that the
terms do not match, or produces a substitution s and a proof that
s unifies them. We write the data structure in ZOMBIE as follows
(the Agda version is similar):

data Unify (t1 : Term) (t2 : Term) : Type where

nomatch

match of (s : Substitution) (pf : ap s t1 = ap s t2)

Comparing the Agda and ZOMBIE implementations, we can see
the effect of programming up-to-congruence instead of up-to-β.
When the unifier returns match, it needs to supply a proof of
equality. The Agda version explicitly constructs the proof using
equational reasoning, which involves calling congruence lemmas
sym, trans, cong and cong2 from the standard library. The ZOMBIE
version leaves such proof arguments as just an underscore, meaning
that it can be inferred from the equations in the context. For that
purpose, it introduces equalities to the context with unfold (for β-
reductions, see Section 8.2) and with calls to relevant lemmas.

Figure 4 demonstrates how congruence closure makes ZOMBIE’s
version of dependently-typed pattern matching (i.e smart case)
both simple and powerful. The figure compares (parts of) inductive
proofs in ZOMBIE and Agda of an inversion lemma about the snoc

operation, which appends an element to the end of a list. When
both lists are nonempty, the proof argument can be used to derive
that x = y (using the injectivity of Cons), and the recursive call
shows that xs’ = ys’. Congruence closure both puts these together
in a proof of Cons x xs’ = Cons y ys’ and supplies the necessary
proof for the recursive call.

In Agda, one is tempted to prove the property by pattern match-
ing on the equality between the lists. This approach leads to a

x, y, f, g, h ∈ expression variables

expressions
a, b, c, A,B ::= Type | x

| (x :A)→ B | rec fA x .a | a b
| •(x :A)→ B | rec fA •x .a | a •b
| a = b | joinΣ | a.b

strategies
Σ ::= ;p i j : a = b

| {∼v1/x1} ... {∼vj/xj}c : B
| injdom a | injrng a b | injeq i a

values
v ::= Type | x

| (x :A)→ B | rec fA x .a
| •(x :A)→ B | rec fA •x .a
| a = b | joinΣ | v.b

Figure 5. Syntax

a ;cbv b

(rec f x .a) v ;cbv {v/x} {rec f x .a/f } a SCAPPBETA

(rec f •.a) •;cbv {rec f •.a/f } a SCIAPPBETA

a ;cbv a ′

a b ;cbv a ′ b
SCCTX1

a ;cbv a ′

v a ;cbv v a ′
SCCTX2

a ;cbv a ′

a •;cbv a ′ • SCCTX3

Figure 6. Call-by-value operational semantics

“quite fun” puzzle.2 Here, the equivalence between x and y can-
not be observed until (snoc xs’ z) and (snoc xs’ z) are named.
The so-called “inspect on steroids” trick provides the equalities
(p : (snoc xs’ z = s2) and q : (snoc ys’ z) = s2) that are
necessary to constructing the fourth argument for the recursive call.
Although this development is not long, it is not at all straightfor-
ward, requiring advanced knowledge of Agda idioms.

Alternatively, the reasoning used in the ZOMBIE example is also
available in Agda, as in the definition of snoc-inv’. However, this
version requires the use of helper functions to prove that cons is
injective and congruent.

3. Annotated core language

We now turn to the theory of the system. We begin by describing the
target of the elaborator: our annotated core language. This language
is a small variant of the dependently-typed call-by-value language
defined in prior work [28]. It corresponds to a portion of ZOMBIE’s
core language, but to keep the proofs tractable we omit ZOMBIE’s
recursive datatypes and replace its terminating sublanguage [10]
with syntactic value restrictions.

2 Posed by Eric Mertens on #agda.

|Type| = Type
|x | = x
rec fA x .a	= rec f x .	a		
rec fA •x .a	= rec f •.	a		
(x :A)→ B	= (x :	A)→	B
a b	=	a		b
• (x :A)→ B	= •(x :	A)→	B
a •b	=	a	•	
a = b	= (a	=	b
joinΣ	= join			
a.b	=	a		

Figure 7. The erasure function | · |

The syntax is shown in Figure 5. Terms, types and the sort Type
are collapsed into one syntactic category. By convention, we use
lowercase metavariables a, b for expressions that are terms and
uppercase metavariables A,B for expressions that are types.We use
the notation {a/x}B to denote the capture-avoiding substitution of
a for x in B . The notation FV (a) calculates the set of free variables
appearing in an expression. As is standard in dependently-typed
languages, our notation for nondependent function types A→ B is
syntactic sugar for function types (x :A)→ B , where the variable
x is not free in B .

Type annotations, such as A in rec fA x .a , are optional and may
be omitted from expressions. Annotations are subscripted in Fig-
ure 5. The meta-operator |a| removes these annotations (Figure 7).
Expressions that contain no typing annotations are called erased.

An expression that includes all annotations is called a core or
annotated expression. The core typing judgement, written Γ ` a :
A and described below, requires that all annotations be present. In
this case, the judgement is syntax-directed and trivially decidable.
Given a context and an expression, there is a simple algorithm to
determine the type of that expression (if any). In contrast, type
checking for erased terms is undecidable.

The only role of annotations is to ensure decidable type checking.
They have no effect on the semantics. In fact, the operational
semantics, written a ;cbv b, is defined only for erased terms and
extended to terms with annotations via erasure. This operational
semantics is a small-step, call-by-value evaluation relation, shown
in Figure 6.

Figure 8 shows the typing rules of the core language typing judge-
ment Γ ` a : A. The type system identifies which expressions are
types: A is a type when Γ ` A : Type holds. The rule TTYPE en-
sures that Type itself is typeable. Additionally, the judgement ` Γ
(elided from the figure) states that each type in Γ is well-formed.

The variable lookup rule TVAR is standard. Function types are
formed by the rule TPI, and introduced and eliminated by TREC,
TAPP, and TDAPP. We use the notation A → B for (x :A) → B
when x is not free in B .

Recursive functions are defined using expressions rec f x .a , with
the typing rule TREC. Such expressions are values, and applications
step by the rule (rec f x .a) v ;cbv {v/x} {rec f x .a/f } a .
If the function makes no recursive calls we also use the syntactic
sugar λx .a . When a function has a dependent type (TDAPP) then its
argument must be a value (this restriction is common for languages
with nontermination [18, 32]).

Irrelevance In addition to the normal function type, the core lan-
guage also include computationally irrelevant function types •(x :

Γ ` a : A
` Γ

Γ ` Type : Type
TTYPE

x : A ∈ Γ ` Γ

Γ ` x : A
TVAR

Γ ` A : Type
Γ, x : A ` B : Type

Γ ` (x :A)→ B : Type
TPI

Γ ` (x :A1)→ A2 : Type
Γ, f : (x :A1)→ A2, x : A1 ` a : A2

Γ ` rec f(x:A1)→A2
x .a : (x :A1)→ A2

TREC

Γ ` a : A→ B
Γ ` b : A

Γ ` a b : B
TAPP

Γ ` a : (x :A)→ B
Γ ` v : A

Γ ` a v : {v/x}B TDAPP

Γ ` A : Type
Γ, x : A ` B : Type

Γ ` •(x :A)→ B : Type
TIPI

Γ ` •(x :A1)→ A2 : Type
Γ, f : •(x :A1)→ A2, x : A1 ` a : A2

x /∈ FV (|a|)
Γ ` rec f(x:A1)→A2

•x .a : (x :A1)→ A2
TIREC

Γ ` a : •(x :A)→ B
Γ ` v : A

Γ ` a •v : {v/x}B TIDAPP

Γ ` a : A Γ ` b : B

Γ ` a = b : Type
TEQ

Γ ` a : A Γ ` v : A = B Γ ` B : Type

Γ ` a.v : B
TCAST

|a1|;i
p b |a2|;j

p b Γ ` a1 = a2 : Type

Γ ` join;pi j :a1=a2
: a1 = a2

TJOINP
|a1|;i

cbv b |a2|;j
cbv b Γ ` a1 = a2 : Type

Γ ` join;cbvi j :a1=a2
: a1 = a2

TJOINC

Γ ` B : Type ∀k . Γ ` vk : ak = bk
|B | = |({a1/x1} ... {aj/xj} c = {b1/x1} ... {bj/xj} c)|

Γ ` join{∼v1/x1} ... {∼vj /xj }c:B : B
TJSUBST

Γ ` v : (A1 = A2) = (B1 = B2)

Γ ` joininjeq i v : Ai = Bi
TJINJEQ

Γ ` v : ((x :A1)→ B1) = ((x :A2)→ B2)

Γ ` joininjdom v : A1 = A2
TJINJDOM

Γ ` v1 : ((x :A)→ B1) = ((x :A)→ B2) Γ ` v2 : A

Γ ` joininjrng v1 v2
: {v2/x}B1 = {v2/x}B2

TJINJRNG

Γ ` v : (•(x :A1)→ B1) = (•(x :A2)→ B2)

Γ ` joininjdom v : A1 = A2
TJIINJDOM

Γ ` v1 : (•(x :A)→ B1) = (•(x :A)→ B2) Γ ` v2 : A

Γ ` joininjrng v1 v2
: {v2/x}B1 = {v2/x}B2

TJIINJRNG

Figure 8. Typing rules for the annotated core language

A) → B , which are inhabited by irrelevant functions rec fA •x .b
and eliminated by irrelevant applications a •b . Many expressions in
a dependently typed program are only used for type checking, but
do not affect the runtime behavior of the program, and these can
be marked irrelevant. Some common examples are type arguments
to polymorphic functions (e.g. map : •(A B : Type) → (A →
B) → List A → List B), indices to dependent datatypes (e.g.
append : •(nm : Nat)→ Vec n→ Vecm→ Vec (n+m)), and
preconditions to functions (e.g. divide : (x y : Int)→ •(y 6= 0)→
Int). When comparing two expressions for equality the typechecker
will ignore arguments in irrelevant positions. For example, if both
p and q have type y 6= 0, the typechecker will treat divide x y •p
and divide x y •q as equal without looking at the last argument.

Our treatment of irrelevance follows ICC* [6]. The introduction
rule for irrelevant functions, TIREC, is similar to the rule for normal
functions, but with the additional restriction that the bound variable
must not remain in the erasure of the body b. This restriction means
that x can only appear in irrelevant positions in b, such as type
annotations and proofs for conversions.

The application rule TIDAPP is also similar to normal application.
To ensure type safety we must ensure that diverging terms are not
erased [28]. In this version of the core language we use a rather
simple-minded restriction, by requiring the argument to be a value.
A more ambitious alternative would be to make the type system
distinguish between terminating and possibly nonterminating ex-
pressions, like in [10].

We include computational irrelevance in this work to show that, be-
sides being generally useful, irrelevance works well with congru-

ence closure. Given that we already handle erasable annotations,
we can support full irrelevance for free.

Equality The typing rules at the bottom of Figure 8 deal with
propositional equality, a primitive type. The formation rule TEQ
states a = b is a well-formed type whenever a and b are two well-
typed expressions. There is no requirement that they have the same
type (that is to say, our equality type is heterogeneous).

Propositional equality is eliminated by the rule TCAST: given a
proof, v of an equation A = B we can change the type of an ex-
pression from A to B . Since our equality is heterogeneous, we need
to check that B is in fact a type. We require the proof to be a value
in order to rule out divergence. A full-scale language could use a
more ambitious termination analysis. (Indeed, our ZOMBIE imple-
mentation does so.) However, the congruence proofs generated by
our elaborator are syntactic values, so for the purposes of this pa-
per, the simple value restriction is enough. The proof term v in a
type cast is an erasable annotation with no operational significance,
so the typechecker considers equalities like a = a.v to be trivially
true, and the elaborator is free to insert coercions using congruence
closure proofs anywhere.

The rest of the figure shows introduction rules for equality. Equal-
ity proofs do not carry any information at runtime, so they all use
the same term constructor join, but with different (erasable) anno-
tations, Σ.

The rule TJOINP introduces equations which are justified by the
operational semantics. ZOMBIE source programs must use TJOINP
to explicitly indicate expressions that should be reduced. The rule

states that join is a proof of a1 = a2 when the erasures of a1 and
a2 reduce to a common expression b, using the parallel reduction
relation. This common expression, b, is not required to be a value.
Note that without normalization, we need a cutoff for how long
to evaluate, so programmers must specify the number of steps i,
j of reduction to allow (in ZOMBIE this defaults to 1000 if these
numbers are elided). The rule TJOINC is similar, except that it uses
call-by-value evaluation directly instead of parallel reduction.

Actually, these two rules hint at some subtleties which are outside
the scope of this paper. In a normalizing confluent language, the
evaluation order does not matter. But in a language with nontermi-
nation the programmer needs more fine-grained control. Our im-
plementation currently offers two evaluation strategies: CBV eval-
uation (good for cases where an expression is expected to reduce
to a value), and a parallel reduction which heuristically avoids un-
folding recursive calls inside a function body (good when trying to
prove recursive fixpoint equations).

The rule TJSUBST states that equality is a congruence. The simplest
use of the rule is to change a single subexpression, using a proof v.
The use of the proof is marked with a tilde in the Σ annotation;
for example, if Γ ` v : y = 0 then we can prove the equality
joinVec Nat (∼v):Vec Nat y=Vec Nat 0. One can also eliminate several
different equality proofs in one use of the rule. For example if
Γ ` v1 : x = 0 and Γ ` v2 : y = 0, then we can use both proofs at
once in the expression joinVec Nat (∼v1+∼v2) : Vec Nat (x + y) =
Vec Nat (0+0). The syntax of subst includes a type annotation B ,
and the last premise of the TJSUBST rule checks that the ascribed
type B matches what one gets after substituting the given equalities
into the template c. This annotation adds flexibility because the
check is only up-to erasure: if needed the programmer can give the
left- and right-hand side of B different annotations to make both
sides well-typed.

Finally, the rules TJINJEQ, TJINJDOM, TJINJDOM, TJINJRNG, and
TJIINJRNG state that the equality type and arrow type construc-
tors are injective. The rule for arrow domains is exactly what one
would expect: if (x :A)→ B = (x :A′)→ B , then A = A′. The
rule for arrow codomains must account for the bound variable x, so
it states that the codomains are equal when any value v is substi-
tuted in. Making type constructors injective is unconventional for
a dependent language. It is incompatible with e.g. Homotopy Type
Theory, which proves Nat → Void = Bool → Void. However, in
our language we need arrow injectivity to prove type preservation,
because type casts are erased and do not block reduction [28]. For
example, if a function coerced by type cast steps via β-reduction,
we must use arrow injectivity to derive casts for the argument and
result of the application.

We also add injectivity for the equality type constructor (TJINJEQ).
This is not required for type safety, but it is justified by the metathe-
ory, so it is safe to add. Injectivity is important for the surface lan-
guage design, see Section 6.

The core language satisfies the usual properties for type systems.
For the proofs in Section 6 we rely on the fact that it satisfies
weakening, substitution (restricted to values), and regularity.

Lemma 1 (Weakening). If Γ ` a : A and Γ ⊆ Γ′, then Γ′ ` a : A.

Lemma 2 (Value Substitution). If Γ, x : A ` b : B and Γ ` v : A,
then Γ ` {v/x} b : {v/x}B .

Lemma 3 (Regularity).

1. ` Γ and x : A ∈ Γ, then Γ ` A : Type.

2. If Γ ` a : A then ` Γ and Γ ` A : Type

It also satisfies preservation, progress, and decidable type checking.
The proofs of these lemmas are in Sjöberg et al. [28].

4. Congruence closure

The driving idea behind our surface language is that the program-
mer should never have to explicitly write a type cast a.v if the proof
v can be inferred by congruence closure. In this section we exactly
specify which proofs can be inferred, by defining the typed congru-
ence closure relation Γ � a = b shown in Figure 9.

Like the usual congruence closure relation for first-order terms, the
rules in Figure 9, specify that this relation is reflexive, symmetric
and transitive. It also includes rules for using assumptions in the
context and congruence by changing subterms. However, we make
a few changes:

First, we add typing premises (in TCCREFL and TCCERASURE)
to make sure that the relation only equates well-typed and fully-
annotated core language terms. In other words,

If Γ � a = b, then Γ ` a : A and Γ ` b : B .

Next, we adapt the congruence rule so that it corresponds to the
TJSUBST rule of the core language. In particular, the rule TCC-
CONGRUENCE includes an explicit erasure step so that the two
sides of the equality can differ in their erasable portions.

Furthermore, we extend the relation in several ways.3 We automat-
ically use computational irrelevance, in the rule TCCERASURE.
This makes sure that the programmer can ignore all annotations
when reasoning about programs. Also, we reason up to injectiv-
ity of datatype constructors (in rules TCCINJDOM, TCCINJRNG,
and TCCINJEQ). As mentioned in Section 3 these rules are valid in
the core language, and we will see in Section 6 that there is good
reason to make the congruence closure algorithm use them auto-
matically. Note that we restrict rule TCCINJRNG so that it applies
only to nondependent function types; we explain this restriction in
Section 6.

Finally, the rule TCCASSUMPTION is a bit stronger than the classic
rule from first order logic. In the first-order logic setting, this rule
is defined as just the closure over equations in the context:

x : a = b ∈ Γ
Γ � a = b

However, in a dependently typed language, we can have equations
between equations. In this setting, the classic rule does not respect
CC-equivalence of contexts. For example, it would prove the first
of the following two problem instances, but not the second.

x :Nat, y :Nat, a :Type, h1 : (x = y) = a, h2 :x = y � x = y

x :Nat, y :Nat, a :Type, h1 : (x = y) = a, h2 :a � x = y

Therefore we replace the rule with the stronger version shown in
the figure.

We were led to these strengthened rules by theoretical considera-
tions when trying to show that our elaboration algorithm was com-
plete with respect to the declarative specification (see Section 6).
Once we implemented the current set of rules, we found that they
were useful in practice as well as in theory, because they improved
the elaboration of some examples in our test suite.

3 Systems based around congruence closure often strengthen their automatic
theorem prover in some way, e.g. Nieuwenhuis and Oliveras [23] add
reasoning about natural number equations, and the Coq congruence tactic
automatically uses injectivity of data constructors [12].

Γ ` a : A

Γ � a = a
TCCREFL

Γ � a = b

Γ � b = a
TCCSYM

Γ � a = b Γ � b = c

Γ � a = c
TCCTRANS

|a| = |b| Γ ` a : A Γ ` b : B

Γ � a = b
TCCERASURE

x : A ∈ Γ Γ � A = (a = b)

Γ � a = b
TCCASSUMPTION

Γ ` A = B : Type ∀k . Γ � ak = bk
|A = B | = |{a1/x1} ... {aj/xj} c = {b1/x1} ... {bj/xj} c|

Γ � A = B
TCCCONGRUENCE

Γ � (a1 = a2) = (b1 = b2)

Γ � ak = bk
TCCINJEQ

Γ � ((x :A1)→ B1) = ((x :A2)→ B2)

Γ � A1 = A2
TCCINJDOM

Γ � (A1 → B1) = (A2 → B2)

Γ � B1 = B2
TCCINJRNG

Γ � (•(x :A1)→ B1) = (•(x :A2)→ B2)

Γ � A1 = A2
TCCIINJDOM

Γ � (•A1 → B1) = (•A2 → B2)

Γ � B1 = B2
TCCIINJRNG

Figure 9. Typed congruence closure relation

The stronger assumption rule is useful in situations where type-
level computation produces equality types, for example when us-
ing custom induction principles. Say we want to prove a theorem
∀n.f(n) = g(n) by first proving that course-of-values induction
holds for any predicate P : Nat → Type, and then instantiating
the induction lemma with P := (λn.f(n) = g(n)). Then in the
step case after calling the induction hypothesis on some numberm,
the context will contain H : P (m), and by β-reduction we know
that P (m) = (f(m) = g(m)). In that situation, the extended as-
sumption rule says that H should be used when constructing the
congruence closure of the context, even if the programmer does not
apply an explicit type cast to H , which accords with intuition.

5. Surface language

Next, we give a precise specification of the surface language, which
shows how type inference can use congruence closure to infer casts
of the form a.v . Note that this process involves determining both
the location of such casts and the proof of equality v .

Figure 10 defines a bidirectional type system for a partially anno-
tated language. This type system is defined by two (mutually de-
fined) judgements: type synthesis, written Γ ` a ⇒ A, and type
checking, written Γ ` a ⇐ A. Here Γ and a are always inputs, but
A is an output of the synthesizing judgement and an input of the
checking judgement.

Bidirectional systems are a standard form of local type inference.
In such systems, the programmer must provide types for top-level
definitions, and those definitions are then checked against the as-
cribed types. As a result, most type annotations can be omitted, e.g.
in a definition like

foo : Nat → Nat → Nat

foo = \ x y . 2*x + y

there is no need for type annotations on the bound variables x and
y, since the function is checked against a known top-level type.

Most rules of this type system are standard for bidirectional sys-
tems [25], including the rules for inferring the types of variables
(IVAR), the well-formedness of types (IEQ, ITYPE, and IPI), non-
dependent application (IAPP), and the mode switching rules CINF
and IANNOT. Any term that has enough annotations to synthesize
a type A also checks against that type (CINF). Conversely, some
terms (e.g. functions) require a known type to check against, and

so if the surrounding context does not specify one, the programmer
must add a type annotation (IANNOT).

The rules ICAST and CCAST in Figure 10 specify that checking
and inference work “up-to-congruence.” At any point in the typ-
ing derivation, the system can replace the inferred or checked type
with something congruent. The notation Γ �∃ A = B lifts the
congruence closure judgement from Section 4 to the partially an-
notated surface language. These two rules contain kinding premises
to maintain well-formedness of types. The invariant maintained by
the type system is that (in a well-formed context Γ) any synthesized
type is guaranteed to be well-kinded, while it is the caller’s respon-
sibility to ensure that any time the checking judgement is used the
input type is well-kinded.

The rule for checking functions (CREC) is almost identical to the
corresponding rule in the core language, with just two changes.
First, the programmer can omit the types A1, and A2, because in a
bidirectional system they can be deduced from the type the expres-
sion is checked against. Second, the new premise injrng slightly
restricts the use of this rule. The difficulty is that the congruence
closure algorithm does not implement the full TJINJRNG rule of
the core language, but injective reasoning is needed by the type
checker. Therefore, we rule out function types that do not support
injectivity for their ranges in certain (pathological) typing contexts.
This premise also appears in the rule for dependent application
(IDAPP). We return to this issue in Section 6.

Equations that are provable via congruence closure are available
via the checking rule, CREFL. In this case the proof term is just
join, written as an underscore in the concrete syntax. Because this
is a checking rule, the equation to be proved does not have to be
written down directly if it can be inferred from the context.

The rule IJOINP proves equations using the operational seman-
tics. We saw this rule used in the npluszero example, written
join : 0 + 0 = 0 in the concrete syntax. Note that the program-
mer must explicitly write down the terms that should be reduced.
The rule IJOINP is a synthesizing rather than checking rule in order
to ensure that the typing rules are effectively implementable. Al-
though the type system works “up to congruence” the operational
semantics do not. So the expression itself needs to contain enough
information to tell the typechecker which member of the equiva-
lence class should be reduced—it cannot get this information from
the checking context. (In practice, having to explicitly write this an-
notation can be annoying. The ZOMBIE implementation includes a
feature smartjoin which can help—see Section 8.2).

Γ ` a ⇒ A Γ ` a ⇐ A

Γ ` a ⇒ A Γ �∃ A = B Γ ` B ⇐ Type

Γ ` a ⇒ B
ICAST

Γ ` a ⇐ A Γ �∃ A = B Γ ` B ⇐ Type

Γ ` a ⇐ B
CCAST

Γ ` A⇐ Type Γ ` a ⇐ A

Γ ` aA ⇒ A
IANNOT

Γ ` a ⇒ A

Γ ` a ⇐ A
CINF

Γ ` a ⇒ A Γ ` b ⇒ B

Γ ` a = b ⇒ Type
IEQ

Γ �∃ a = b

Γ ` join⇐ a = b
CREFL

Γ ` a1 = a2 ⇐ Type
|a1|;i

p b |a2|;j
p b

Γ ` join;pi j :a1=a2
⇒ a1 = a2

IJOINP

Γ, f : (x :A1)→ A2, x : A1 ` a ⇐ A2

Γ, f : (x :A1)→ A2, x : A1 �∃ injrng (x :A1)→ A2 for x
Γ, f : (x :A1)→ A2 ` (x :A1)→ A2 ⇐ Type

Γ ` rec f x .a ⇐ (x :A1)→ A2
CREC

` Γ⇐
Γ ` Type⇒ Type

ITYPE

Γ ` A⇐ Type Γ, x : A ` B ⇐ Type

Γ ` •(x :A)→ B ⇒ Type
IIPI

Γ, f : •(x :A1)→ A2, x : A1 ` a ⇐ A2

x /∈ FV (|a|)
Γ, f : •(x :A1)→ A2, x : A1 �∃ injrng • (x :A1)→ A2 for x
Γ, f : •(x :A1)→ A2 ` •(x :A1)→ A2 ⇐ Type

Γ ` rec f •.a ⇐ •(x :A1)→ A2
CIREC

Γ ` a ⇒ •(x :A)→ B
Γ ` v ⇐ A
Γ �∃ injrng • (x :A)→ B for v
Γ ` {vA/x}B ⇐ Type

Γ ` a •v ⇒ {vA/x}B
IIDAPP

Γ ` a1 = a2 ⇐ Type
|a1|;i

cbv b |a2|;j
cbv b

Γ ` join;cbvi j :a1=a2
⇒ a1 = a2

IJOINC

` Γ⇐ x : A ∈ Γ Γ ` A⇐ Type

Γ ` x ⇒ A
IVAR Γ �∃ a = b

Γ ` A⇐ Type Γ, x : A ` B ⇐ Type

Γ ` (x :A)→ B ⇒ Type
IPI

Γ′ � a ′ = b′ |a| = |a ′| |b| = |b′| |Γ| = |Γ′|
Γ �∃ a = b

EEQ

Γ ` a ⇒ A→ B Γ ` b ⇐ A
Γ ` B ⇐ Type

Γ ` a b ⇒ B
IAPP Γ �∃ injrngA for v

Γ ` a ⇒ (x :A)→ B Γ ` v ⇐ A
Γ �∃ injrng (x :A)→ B for v
Γ ` {vA/x}B ⇐ Type

Γ ` a v ⇒ {vA/x}B
IDAPP

∀A′B′. Γ �∃ ((x :A)→ B) = ((x :A′)→ B ′)
implies Γ �∃ {v/x}B = {v/x}B ′

Γ �∃ injrng (x :A)→ B for v
EIRIPI

∀A′B′. Γ �∃ (•(x :A)→ B) = (•(x :A′)→ B ′)
implies Γ �∃ {v/x}B = {v/x}B ′

Γ �∃ injrng (x :A)→ B for v
EIRIPI

Figure 10. Bidirectional typing rules for surface language

Γ � injrngA for v

Γ ` v : A Γ ` (x :A)→ B : Type
∀A′ B ′.((Γ � ((x :A)→ B) = ((x :A′)→ B ′)) implies (Γ � {v/x}B = {v.v0/x}B ′ where Γ ` v0 : A = A′))

Γ � injrng (x :A)→ B for v
IRPI

Γ ` v : A Γ ` •(x :A)→ B : Type
∀A′ B ′.((Γ � (•(x :A)→ B) = (•(x :A′)→ B ′)) implies (Γ � {v/x}B = {v.v0/x}B ′ where Γ ` v0 : A = A′))

Γ � injrng • (x :A)→ B for v
IRIPI

Figure 11. Core language injectivity restriction

It is also interesting to note the rules that do not appear in Figure 10.
For example, there is no rule or surface syntax corresponding to
TCAST, because this feature can be written as a user-level function.
Similarly, the rather involved machinery for rewriting subterms and
and erased terms (rule TJSUBST) can be entirely omitted, since it
is subsumed by the congruence closure relation. The programmer
only needs to introduce the equations into the context and they will
be used automatically.

Finally we note that the surface language does not satisfy some of
the usual properties of type systems. In particular, it lacks a general
weakening lemma because the injrng relation cannot be weakened.
Similarly, it does not satisfy a substitution lemma because that
property fails for the congruence closure relation. (We might expect
that Γ, x : C � a = b and Γ ` v : C would imply Γ �
{v/x} a = {v/x} b. But this fails if C is an equation and the proof
v makes use of the operational semantics.) And it does not satisfy a
strengthening lemma, because even variables that do not occur in a
term may be implicitly used as assumptions of congruence proofs.

The situations where weakening and substitution fail are rare (we
have never encountered one when writing example programs in
ZOMBIE) and there are straightforward workarounds for program-
mers. Furthermore, these properties do hold for fully annotated ex-
pressions, so there are no restrictions on the output of elaboration.
However, the typing rules for the declarative system must be for-
mulated to avoid these issues, which requires some extra premises.
The rule IVAR requires Γ ` A⇐ Type (proving this from ` Γ⇐
would need weakening); IAPP requires Γ ` B ⇐ Type (proving
this from Γ ` A → B : Type would need strengthening); and
CREC requires Γ, f : (x :A1) → A2 ` (x :A1) → A2 ⇐ Type
(proving this from Γ ` (x : A1) → A2 ⇐ Type would need
weakening).

6. Elaboration

We implement the declarative system using an elaborating type-
checker, which translates a surface language expression (if it is
well-formed according to the bidirectional rules) to an expression
in the core language.

We formalize the algorithm that the elaborator uses as two induc-
tively defined judgements, written Γ′ a ⇒ a ′ : A′ (Γ′ and a are
inputs) and Γ′ a ⇐ A′ ; a ′ (Γ′, a , and A′ are inputs). The vari-
ables with primes (Γ′, a ′ and A′) are fully annotated expressions
in the core language, while a is the surface language term being
elaborated. The elaborator deals with each top-level definition in
the program separately, and the context Γ′ is an input containing
the types of the previously elaborated definitions.

The job of the elaborator is to insert enough annotations in the
term to create a well-typed core expression. It should not otherwise
change the term. Stated more formally,

Theorem 4 (Elaboration soundness).

1. If Γ a ⇒ a ′ : A, then Γ ` a ′ : A and |a| = |a ′|.

2. If Γ ` A : Type and Γ a ⇐ A ; a ′, then Γ ` a ′ : A and
|a| = |a ′|.

Furthermore, the elaborator should accept those terms specified by
the declarative system. If the type system of Section 5 accepts a
program, then the elaborator succeeds (and produces an equivalent
type in inference mode).

Theorem 5 (Elaboration completeness).

1. If Γ ` a ⇒ A and Γ ; Γ′ and Γ′ A⇐ Type ; A′, then
Γ′ a ⇒ a ′ : A′′ and Γ′ � A′ = A′′

2. If Γ ` a ⇐ A and and Γ ; Γ′ and Γ′ A⇐ Type ; A′,
then Γ′ a ⇐ A′ ; a ′.

Designing the elaboration rules follows the standard pattern of
turning a declarative specification into an algorithm: remove all
rules that are not syntax directed (in this case ICAST and CCAST),
and generalize the premises of the remaining rules to create a
syntax-directed system that accepts the same terms. At the same
time, the uses of congruence closure relation Γ � a = b, must be
replaced by appropriate calls to the congruence closure algorithm.
We specify this algorithm using the following (partial) functions:

Γ A
?
= B ; v , which checks A and B for equality and

produces core-language proof v .
Γ A =? (x : B1)→ B2 ; v , which checks whether A is equal

to some function type and produces that type and proof v .
Γ A =? (B1 = B2) ; v , which is similar to above, except

for equality types.

For example, consider the rule for elaborating function applica-
tions:

Γ a ⇒ a ′ : A1 Γ A1 =? (x : A)→ B ; v1

Γ v ⇐ A ; v ′ Γ � injrng (x :A)→ B for v ′

Γ a v ⇒ a ′.v1 v ′ : {v ′/x}B EIDAPP

In the corresponding declarative rule (IDAPP) the applied term a
must have an arrow type, but this can be arranged by implicitly us-
ing ICAST to adjust a’s type. Therefore, in the algorithmic system,
the corresponding condition is that the type of a should be equal
to an arrow type (x : A) → B modulo the congruence closure.
Operationally, the typechecker will infer some type A1 for a , then
run the congruence closure algorithm to construct the set of all ex-
pressions that are equal to A1, and check if the set contains some

expression which is an arrow type. The elaborated core term uses
the produced proof of A1 = (x :A) → B in a cast to change the
type of a .

At this point there is a potential problem: what if A1 is equal to
more than one arrow type? For example, if A1 = (x :A) → B =
(x :A′) → B , then the elaborator has to choose whether to check
b against A or A′. A priori it is quite possible that only one of them
will work; for example the context Γ may contain an inconsistent
equation like Nat → Nat = Bool → Nat. We do not wish to
introduce a backtracking search here, because that could make type
checking too slow.

This kind of mismatch in the domain type can be handled by
extending the congruence closure algorithm. Note that things are
fine if Γ � A = A′, since then it does not matter if A or A′ is
chosen. So the issue only arises if Γ � (x :A)→ B = (x :A′)→
B and not Γ � A = A′. Fortunately, type constructors are injective
in the core language (Section 3). Including injectivity as part of the
congruence closure judgement (by the rule TCCINJDOM) ensures
that it does not matter which arrow type is picked.

We also have to worry about a mismatch in the codomain type, i.e.
the case when Γ � A1 = (x :A) → B and Γ � A1 = (x :A′) →
B ′ for two different types. At first glance it seems as if we could use
the same solution. After all, the core language includes a rule for
injectivity of the range of function types (rule TJINJRNG). There is
an important difference between this rule and TJINJDOM, however,
which is the handling of the bound variable x in the codomain B :
the rule says that this can be closed by substituting any value for
it. As a result, we cannot match this rule in the congruence closure
relation, because the algorithm would have to guess that value. In
other words, to match this rule in the congruence closure relation
would mean to add a rule like

Γ � (x :A)→ B = (x :A)→ B ′ Γ ` v : A

Γ � {v/x}B = {v/x}B ′

This proposed rule is an axiom schema, which can be instantiated
for any value v . Unfortunately, that makes the resulting equational
theory undecidable.

For example, the equational theory of SKI-combinators (which is
known undecidable) could be encoded as an assumption context
containing one indexed datatype T and two equations:

data SK = S | K | App of SK SK

T : SK → Type

ax1 : ((x y : SK) →
T (App (App K x) y)) = ((x y : SK) → T x)

ax2 : ((f g x : SK) →
T (App (App (App S f) g) x)) = ...

As far as writing an elaborator goes, maybe this is fine—after all,
we only want to apply the axiom to the particular value v from
the function application a v . However, there does not seem to be
any natural way to write a declarative specification explaining what
values v should be candidates.

Instead, we restrict the declarative language to forbid this problem-
atic case. That is, the programmer is not allowed to write a func-
tion application unless all possible return types for the function are
equal. Note that in cases when an application is forbidden by this
check, the programmer can avoid the problem by proving the re-
quired equation manually and ensuring that it is available in the
context.

In the fully-annotated core language we express this restriction with
the rule IRPI (in Figure 11), and then lift this operation to partially
annotated terms by rule EIRPI (Figure 10). Operationally, the type-
checker will search for all arrow types equal to A1 and check that
the the codomains with v substituted are equal in the congruence
closure. This takes advantage of the fact that equivalence classes
under congruence closure can be efficiently represented—although
the rule as written appears to quantify over potentially infinitely
many function types, the algorithm in Section 7 will represent these
as a finite union-find structure which can be effectively enumer-
ated. In the core language rule we need to insert a type coercion
from A to A′ to make the right-hand side well typed. By the rule
TCCINJDOM that equality is always provable, so the typechecker
will use the proof term v0 that the congruence closure algorithm
produced.

In the case of a simple arrow type A→ B , the range injectivity rule
is unproblematic and we do include it in the congruence closure
relation (TCCINJRNG). So the application rule for simply-typed
functions (EIAPP) does not need the injectivity restriction. On the
other hand, if the core language did not support injectivity for arrow
domains, we could have used the same injectivity restriction for
both the domain and codomain.

The rule for checking function definitions (ECREC)

Γ A =? (x : A1)→ A2 ; v1

Γ, f : (x :A1)→ A2, x : A1 a ⇐ A2 ; a ′

Γ, f : (x :A1)→ A2, x : A1 � injrng (x :A1)→ A2 for x
Γ, f : (x :A1)→ A2 (x :A1)→ A2 ⇐ Type ; A0

Γ rec f x .a ⇐ A ; (rec f(x:A1)→A2
x .a ′)

.symm v1

ECREC

uses the same ideas that we saw in the application rule. First,
while the declarative rule checks against a syntactic arrow type, the
algorithmic system searches whether the type A is equivalent to
some arrow type (x :A1) → A2. Second, to avoid trouble if there
is more than one such function type, we add an injrng restriction.

Thus the ECREC rule ensures that although there may be some
choice about what type A1 to give to the new variable x in the
context, all the types that can be chosen are equal up to CC. We then
need to design the type system so that all judgements are invariant
under-CC equivalent contexts.

The rest of the elaborations rules hold few surprises. The rules
for computationally irrelevant abstractions and applications (EIIPI,
EIIDAPP, and ECIREC) are exactly analog to the rules for relevant
functions.

On the checking side, the mode-change rule ECINF now needs to
prove that the synthesized and checked types are equal.

Γ a ⇒ a ′ : A Γ A
?
= B ; v1

Γ a ⇐ B ; a ′.v1
ECINF

This rule corresponds to a direct call to the congruence closure al-
gorithm, producing a proof term v1. Note that the inputs are fully
elaborated terms—in moving from the declarative to the algorith-
mic type system, we replaced the undecidable condition Γ �∃ A =
B with a decidable one.

Finally, the rule ECREFL elaborates checkable equality proofs
(written as underscores in the concrete ZOMBIE syntax).

Γ A =? (a = b) ; v1 Γ a
?
= b ; v

Γ join⇐ A ; v.symm v1

ECREFL

As in the rule for application, the typechecker does a search through
the equivalence class of the ascribed type A to see if it contains any

equations. If there is more than one equation it does not matter
which one gets picked, because the congruence relation includes
injectivity of the equality type constructor (TCCINJEQ). In the
elaborated term we need to prove (a = b) = A given A = (a =
b). This can be done using TJOINP (for reflexivity) and TJSUBST,
and we abbreviate that proof term symm v1.

6.1 Properties of the congruence closure algorithm

It is attractive to base our type system around congruence closure
because there exists efficient algorithms to decide it. But the cor-
rectness proof for the elaborator does not need to go into details
about how that algorithm work. It only assumes that the congru-
ence closure algorithm satisfies the following properties. (We show
the statement of these properties for function types below, the oth-
ers are similar.)

Property 6 (Soundness). If Γ A
?
= (x : B1) → B2 ; v ,

then Γ ` v : A = ((x : B1) → B2) and |v | = join and
Γ � A = (x :B1)→ B2.

Property 7 (Completeness). If Γ � A = (x :B1)→ B2 then there
exists a B ′1, B ′2 and v such that Γ A

?
= (x :B ′1)→ B ′2 ; v .

Property 8 (Respects Congruence Closure). If Γ � A = B and Γ

B
?
= (x :C1)→ C2 ; v then Γ A

?
= ((x :C ′1)→ C ′2) ; v ′.

In other words, the algorithm should be sound and complete with
respect to the Γ � A = B relation; it should generate correct
core proof terms v ; and the output should depend only on the
equivalence class the input is in. In the next section we show how
to implement an algorithm satisfying this interface.

7. Implementing congruence closure

Algorithms for congruence closure in the first-order setting are well
studied, and our work builds on them. However, in our type system
the relation Γ � a = b does more work than “classic” congruence
closure: we must also handle erasure, terms with bound variables,
(dependently) typed terms, the injectivity rules, the “assumption up
to congruence” rule, and we must generate proof terms in the core
language.

Our implementation proves an equation a = b in three steps. First,
we erase all annotations from the input terms and explicitly mark
places where the congruence rule can be applied, using an operation
called labelling. Then we use an adapted version of the congruence
closure algorithm by Nieuwenhuis and Oliveras [23]. Our version
of their algorithm has been extended to also handle injectivity and
“assumption up to congruence”, but it ignores all the checks that the
terms involved are well-typed. Finally, we take the untyped proof
of equality, and process it into a proof that a and b are also related
by the typed relation. The implementation is factored in this way
because the congruence rule does not necessarily preserve well-
typedness, so the invariants of the algorithm are easier to maintain
if we do not have to track well-typedness at the same time.

7.1 Labelling terms

In Γ � a = b, the rule TCCCONGRUENCE is stated in terms
of substitution. But existing algorithms expect congruence to be
applied only to syntactic function applications: from a = b con-
clude f a = f b. To bridge this gap, we preprocess equations into
(erased) labelled expressions. A label F is an erased language ex-
pression with some designated holes (written –) in it, and a labelled

expression is a label applied to zero or more labelled expressions,
i.e. a term in the following grammar.

a ::= F ai

Typically a label will represent just a single node of the abstract
syntax tree. For example, a wanted equation f x = f y will
be processed into (– –) f x = (– –) f y , where the label
(– –) means this is an application. However, for syntactic forms
involving bound variables, it can be necessary to be more coarse-
grained. For example, given a = b our implementation can prove
rec f x .a+x = rec f x .b+x , which involves using rec f x .–+x
as a label. In general, to process an expression a into a labelled
term, the implementation will select the largest subexpressions that
do not involve any bound variables.

The labelling step also deletes all annotations from the input ex-
pressions. This means that we automatically compute the congru-
ence closure up to erasure (rule TCCERASURE), at the cost of need-
ing to do more work when we generate core language witnesses
(Section 7.3).

Applying the labelling step simplifies the congruence closure prob-
lems in several ways. We show the simpler problem by defining
the relation Γ `L a = b defined in Figure 12. Compared to Fig-
ure 9 we no longer need a rule for erasure, congruence is only used
on syntactic label applications, all the different injectivity rules are
handled generically, and we do not ensure that the terms are well-
typed. In the appendix we formally define the label operation, and
prove that it is complete in the following sense.

Lemma 9. If Γ � a = b then label Γ `L label a = label b.

7.2 Untyped congruence closure

Next, we use an algorithm based on Nieuwenhuis and Oliveras [23]
to decide the Γ `L a = b relation. The algorithm first “flattens”
the problem by allocating constants ci (i.e. fresh names) for every
subexpression in the input. After this transformation every input
equation has either the form c1 = c2 or c = F (c1, c2), that is,
it is either an equation between two atomic constants or between
a constant and a label F applied to constants. Then follows the
main loop of the algorithm, which is centered around three data-
structures: a queue of input equations, a union-find structure and
a lookup table. In each step of the loop, we take off an equation
from the queue and update the state accordingly. When all the
equations have been processed the union-find structure represents
the congruence closure.

The union-find structure tracks which constants are known to be
equal to each other. When the algorithm sees an input equation
c1 = c2 it merges the corresponding union-find classes. This deals
with the reflexivity, symmetry and transitivity rules. The lookup
table is used to handle the congruence rule. It maps applications
F (c1, c2) to some canonical representative c. If the algorithm sees
an input equation c = F (c1, c2), then c is recorded as the repre-
sentative. If the table already had an entry c′, then we deduce a new
equation c = c′ which is added to the queue.

In order to adapt this algorithm to our setting, we make three
changes. First, we adapt the lookup tables to include the richer la-
bels corresponding to the many syntactic categories of our core lan-
guage. (Nieuwenhuis and Oliveras only use a single label meaning
“application of a unary function.”)

Second, we deal with injectivity rules in a way similar to the
implementation of Coq’s congruence tactic [12]. Certain labels
are considered injective, and in each union-find class we identify

Γ `L a = a
LCCREFL

Γ `L a = b

Γ `L b = a
LCCSYM

Γ `L a1 = b Γ `L b = a2

Γ `L a1 = a2
LCCTRANS

x : A ∈ Γ Γ `L A = ((– = –) a b)

Γ `L a = b
LCCASSUM

∀k . Γ `L ak = bk

Γ `L F ai = F bi
LCCCONG

Γ `L F a = F b F injective

Γ `L a = b
LCCINJ

Figure 12. Untyped congruence closure on labelled terms

the set of terms that start with an injective label. If we see an input
equation c = F (c1, c2) andF is injective we record this in the class
of c. Whenever we merge two classes, we check for terms headed
by the same F ; e.g. if we merge a class containing F (c1, c2) with a
class containing F (c′1, c

′
2), we deduce new equations c1 = c′1 and

c2 = c′2 and add those to the queue.

Third, our implementation of the extended assumption rule works
much like injectivity. With each union-find class we record two
new pieces of information: whether any of the constants in the
class (which represent types of our language) are known to be
inhabited by a variable, and whether any of the constants in the
class represents an equality type. Whenever we merge two classes
we check for new equations to be added to the queue.

In Appendix D we give a precise description of our algorithm, and
prove its correctness, i.e. that it terminates and returns “yes” iff the
wanted equation is in the Γ `L a = b relation.

First we prove that flattening a context does not change which ex-
pressions are equal in that context. Although the flattening algo-
rithm itself is the same as in previous work, the statement of the
correctness proof is refined to say that the new assumptions h are
always used as plain assumptions h.refl, as opposed to the general
assumption-up-to-CC rule h.p . The distinction is important, be-
cause although the flattening algorithm will process every assump-
tion that was in the original context, it does not go on to recursively
flatten the new assumptions that it added. So for completeness of
the whole algorithm we need to know that there is never a need to
reason about equality between such assumptions.

Then the correctness proof of the main algorithm is done in two
parts. The soundness of the algorithm (i.e. if the algorithm says
“yes” then the two terms really are provably equal) is fairly straight-
forward. We verify the invariant that every equation which is added
to the input queue, union-find structure, and lookup table really is
provably true. For each step of the algorithm which extends these
datastructures we check that the new equation is provable from the
already known ones. In fact, this proof closely mirrors the way the
implementation in ZOMBIE works: there the datastructures contain
not only bare equations but also the evidence terms that justify them
(see section 7.3), and each step of the algorithm builds new evi-
dence terms from existing ones.

The completeness direction (if Γ `L a = b then the algorithm will
return “yes”) is more involved. We need to prove that at the end
of a run of the algorithm, the union-find structure satisfies all the
proof rules of the congruence relation. For our injectivity rule and
extended assumption rule this means properties like

• For all ai and bi, if F ai ≈R F bi and F is injective, then
∀k.ak ≈R bk .

• If x : A ∈ Γ then for all a, b, if A ≈R (a = b) then a ≈R b.

where≈R denotes the equivalence relation generated by the union-
find links. The proof uses a generalized invariant: while the algo-
rithm is still runningR satisfies the proof rules modulo the pending

equationsE in the input queue, e.g. the invariant for the assumption
rule is

If x : A ∈ Γ then for all a, b, if A ≈R (a = b) then
a ≈E,R b.

However, the congruence rule presents some extra difficulties. The
full congruence relation for a given context Γ is in general infinite
(if Γ `L a = b, then by the congruence rule we will also have
Γ `L S a = S b and Γ `L S (S a) = S (S b) and . . .). So at the
end of the run of an algorithm the datastructures will not contain
information about all possible congruence instances, but only those
instances that involve terms from the input problem.

Following Corbineau [11] we attack this problem in two steps. First
we show that at the end of the run of the algorithm the union-find
structure R locally satisfies the congruence rule in the following
sense:

• If ai ≈R bi for all 0 ≤ i < n, and F ai and F bi both appeared
in the list of input equations, then F ai ≈R F bi.

We then need to prove that this local completeness implies com-
pleteness. This amounts to showing that if a given statement Γ `L
a = b is provable at all, it is provable by using the congruence
rule only to prove equations between subexpressions of Γ, a, and b.
There are a few approaches to this in the literature. The algorithm
by Nieuwenhuis and Oliveras [23] can be shown correct because it
is an instance of Abstract Congruence Closure (ACC) [4], while the
correctness proofs for ACC algorithms in general relies on results
from rewriting theory. However, it is not immediately obvious how
to generalize this approach to handle additional rules like injectiv-
ity. Corbineau [11] instead gives a semantic argument about finite
and general models.

As it happens, in our development there is a separate reason for us
to prove that local uses of the congruence rule suffice: we need this
result to bridge the gap between untyped and typed congruence.
This is the subject of Section 7.3, and we use the lemmas from that
section to finish the completeness argument. All in all, this yields:

Lemma 10. The algorithm described above is a decision procedure
for the relation Γ `L a = b.

7.3 Typing restrictions and generating core language proofs

Along the pointers in the union-find structure, we also keep track
of the evidence that showed that two expressions are equal. The
syntax of the evidence terms is given by the following grammar. An
evidence term p is either an assumption x (with a proof p that x’s
type is an equation), reflexivity, symmetry, transitivity, injectivity,
or an application of congruence annotated with a label A.

p, q ::= x.p | refl | p−1 | p; q | inji p | cong A p1 .. pi

Next we need to turn the evidence terms p into proof terms in
the core calculus. This is nontrivial, because the Nieuwenhuis-
Oliveras algorithm does not track types. Not every equation which
is derivable by untyped congruence closure is derivable in the typed
theory; for example, if f : Bool → Bool, then from the equation
(a : Nat) = (b : Nat) we can not conclude f a = f b, because
f a is not a well-typed term. Worse still, even if the conclusion is
well-typed, not every untyped proof is valid in the typed theory,
because it may involve ill-typed intermediate terms. For example,
let Id : (A : Type) → A → A be the polymorphic identity
function, and suppose we have some terms a : A, b : B, and know
the equations x : A = B and y : a = b. Then

(congId x refl); (congId refl y)

is a valid untyped proof of Id A a = Id B b. But it is not a correct
typed proof because it involves the ill-typed term Id B a:

x : A = B a = a
Id A a = Id B a

cong
B = B y : a = b

Id B a = Id B b
cong

Id A a = Id B b
trans

Corbineau [12] notes this as an open problem. Of course, the
above proof is unnecessarily complicated. The same equation can
be proved by a single use of congruence.

x : A = B y : a = b

Id A a = Id B b
cong

Furthermore, the simpler proof does not have any issues with typ-
ing: every expression occurring in the derivation is either a subex-
pression of the goal or a subexpression of one of the equations from
the context, so we know they are well-typed.

Our key observation is that this trick works in general. The only
time a congruence proof will involve expressions which were not
already present in the context or goal is when transitivity is applied
to two derivations ending in cong. We simplify such situations
using the following CONGTRANS rule.

(cong A p1 .. pi); (cong A q1 .. qi) 7→ cong A (p1; q1) .. (pi ; qi)

This rule is valid in general, and it does not make the proof
larger. We also need rules for simplifying evidence terms that com-
bine transitivity with injectivity or assumption-up-to-CC, such as
inji (cong A p1 .. pk) and x.(r ;cong = p q), rules for pushing uses
of symmetry (−1) past the other evidence constructors, and rules
for rewriting subterms. The complete simplification relation 7→ is
shown in Figure 13.

Any evidence term p can be simplified into a normalized evidence
term p∗. (In the appendix we define an explicit grammar for fully
simplified terms p∗, and prove than any term can be simplified into
that form). And given p∗ it is easy to produce a corresponding proof
term in the core language. The idea is that one can reconstruct the
middle expression in every use of transitivity (p; q), because at
least one of p and q will be specific enough to pin down exactly
what equation it is proving. Formally, we define the judgement
Γ `L p : a = b by adding evidence terms to the rules in Figure 12,
and then prove:

Lemma 11. If we have label Γ `L p∗ : label a = label b and
Γ ` a = b : Type, then Γ � a = b.

Simplifying the evidence terms also solves another issue, which
arises because of the TCCERASURE rule. Because the input terms
are preprocessed to delete annotations (Section 7.1), an arbitrary
evidence term will not uniquely specify the annotations. For ex-
ample, change the previous example by making the type param-
eter an erased argument of Id, and suppose we have assump-
tions x : a = a ′ and y : a ′ = b. Then the evidence term

(cong Id • – x); (cong Id • – y) could serve as the skeleton of either
the valid proof

x : a = a′

Id •A a = Id •A a ′
cong

y : a′ = b

Id •A a ′ = Id •B b
cong

Id •A a = Id •B B
trans

or the invalid proof

x : a = a′

Id •A a = Id •B a ′
cong

y : a′ = b

Id •B a ′ = Id •B b
cong

Id •A a = Id •B B
trans

Again, this issue only arises because of the cong-trans pair. Simpli-
fying the evidence term resolves the issue, because in a simplified
term every intermediate expression is pinned down.

Putting together the labelling step, the evidence simplification step
and the proof term generation step we can relate typed and un-
typed congruence closure. In the following theorem, the relation
Γ ` a = b is defined by similar rules as Figure 9 except that we
omit the typing premises in TCCREFL, TTCERASURE and TTC-
CONGRUENCE.

Theorem 12. Suppose Γ ` a = b and Γ ` a = b : Type. Then
Γ � a = b. Furthermore Γ ` v : a = b for some v .

The computational content of the proof is how the elaborator gen-
erates core language evidence for equalities, so this shows the cor-
rectness of the ZOMBIE implementation. But it is also interesting
as a theoretical result in its own right, and an important part of the
proof of completeness of elaboration (Section 6).

8. Extensions

The full ZOMBIE implementation includes more features than the
surface language described in Section 5. We omitted them from the
formal system in order to simplify the proofs, but they are important
to make programming up to congruence work well.

8.1 Smart case

Although we do not include datatypes in this paper, they are a
part of the ZOMBIE implementation, and an important component
of any dependently-typed language. The presence of congruence
closure elaboration means that the core language [28] can use a
specification of dependently-typed pattern matching called smart
case [1].

With smart case, the rule for case analysis introduces a new equa-
tion into the context when checking each branch of a case expres-
sion. For example, the rule for an if expression type checks each
branch under the assumption that the condition is true or false.

Γ ` a : Bool
Γ, x : a = true ` b1 : A
Γ, x : a = false ` b2 : A

Γ ` if a then b1 else b2 : A
TFULLCASE

This rule is in contrast to specifications that use unification to
communicate the information gained by pattern matching. In those
systems, if the scrutinee and the patterns are not unifiable (in
the fragment of higher-order unification supported by the type
system) then the case expression must be rejected. Furthermore, the
specification of the typing rule for the unification based systems
is more complicated. Smart case, by pushing this information to
propositional equality, is both simpler and more expressive.

p 7→ p
refl−1 7→ refl
refl; p 7→ p
p; refl 7→ p
(p; q); r 7→ p; (q ; r)
p; p−1 7→ refl
p−1; p 7→ refl

p−1−1 7→ p
(p; q)−1 7→ q−1; p−1

(cong A p1 .. pi)
−1 7→ cong A p1

−1 .. pi
−1

(inji p)−1 7→ inji (p−1)

(cong A p1 ... pi); (cong A q1 ... qi) 7→ cong A (p1; q1) .. (pi ; qi)

injk (cong A p1 ... pi) 7→ pk
injk ((cong A p1 .. pi); r) 7→ pk ; (injk r)

injk (r ; (cong A p1 ... pi)) 7→ (injk r); pk
x.(r ;cong = p q) 7→ p−1; (x.r); q

p 7→ p′

x.p 7→ x.p′
ASSUMPTION

p 7→ p′ q 7→ q ′

p; q 7→ p′; q ′
TRANS

∀k . pk 7→ p′k
cong A p1 .. pi 7→ cong A p′1 .. p

′
i

CONG
p 7→ p′

injk p 7→ injk p′
INJ

Figure 13. Simplification rules for evidence terms

The downside to smart case has been that because this information
is recorded as an assumption in the context, it is more work for the
programmer. However, with congruence closure, the type system
is immediately able to take advantage of these equalities in each
branch. Thus, the ZOMBIE surface language has the convenience
of the unification-based rule, while the core language enjoys the
simplicity of smart case.

8.2 Reduction modulo congruence

In the paper all β-reductions are introduced by expressions
join : a = b. But in practice some additional support from the
typechecker for common patterns can make programming much
more pleasant.

First, one often wants to evaluate some expression a “as far as
it goes”. Then making the programmer write both sides of the
equation a = b is unnecessarily verbose. Instead we provide
the syntax unfold a in body. The implementation reduces a to
normal form, a ;cbv a

′ ;cbv a
′′ ;cbv a

′′′ (if a does not terminate
the programmer can specify a maximum number of steps), and then
introduces the corresponding equations into the context with fresh
names. That is, it elaborates as

let _ = (join : a = a’) in

let _ = (join : a’ = a’’) in

let _ = (join : a’’ = a’’’) in

body

Second, many proofs requires an interleaving of evaluation and
equations from the context, particularly in order to take advantage
of equations introduced by smart case. One example is npluszero

in Section 2. The case-expression needs to return a proof of
n+0 = n. If we try to directly evaluate n+0, we would reach the
stuck expression case n of Zero → 0; Succ m’ → Succ (m’ + 0),
so instead we used an explicit type annotation in the Zero branch to
evaluate 0+0. However, the context contains the equation n = Zero,
which suggests that there should be another way to make progress.

To take advantage of such equations, we add some extra intelli-
gence to the way unfold handles CBV-evaluation contexts, that is
expressions of the form f a or (case b of . . .). When encountering
such an expression it will first recursively unfold the function f , the
argument a, or the scrutinee b (as with ordinary CBV-evaluation),
and add the resulting equations to the context. However, it will then
examine the congruence equivalence class of these expressions to
see if they contain any suitable values—any value v is suitable for
a, a function value rec f x .a0 for f , and a value headed by a

data constructor for b—and then unfold the resulting expression
(rec f x .a0) v . (If there are several suitable values, one is selected
arbitrarily). This way unfolding can make progress where ordinary
CBV-evaluation gets stuck.

Using the same machinery we also provide a “smarter” version of
join, which first unfolds both sides of the equation, and then checks
that the resulting expressions are CC-equivalent. This lets us omit
the type annotations from npluszero:

npluszero n = case n [eq] of

Zero → smartjoin

Suc m → ...

The unfold algorithm does not fully respect CC-equivalence, be-
cause it only converts into values. For example, suppose the con-
text contains the equation f a = v , Then unfold g (f a) will
evaluate f a and add the corresponding equations to the context,
but unfold g v will not cause f a to be evaluated. This gives the
programmer more control over what expressions are run.

We have not studied the theory of the unfold algorithm, and indeed
it is not a complete decision procedure for our propositional equal-
ity. If a subexpression of a does not terminate, unfold will spend all
its reduction budget on just that subexpression (but this is OK, be-
cause the programmer decides what expression a to unfold). And if
the context contains e.g. an equation between two unrelated func-
tion values, unfold will arbitrarily choose one of them (but it is hard
to think of an example where this would happen). We have found
unfold very helpful when writing examples.

9. Related work

The annotated core language in this paper is a slight variation on
previous work [28], which in turn is a subset of the full language
implemented by ZOMBIE [10]. In this version, in order to keep
the formalism small we omit some features (uncatchable excep-
tions and general datatypes) and replace the application rule with
a slightly less expressive value-dependent version. However, these
omissions are not significant (the original system is still compati-
ble with the “up to congruence” approach and is implemented in
ZOMBIE). We also took the opportunity to simplify some typing
rules, and to emphasize the role of erasable annotations. Compared
to the previous version, we replaced the old rule TCONV with two
rules TCONG and TCAST, and we changed the rules for recursive
functions.

The dependent application rule of the original system (and the one
implemented in ZOMBIE) does not restrict its argument to be a
value. Instead, this rule includes a premise that requires that the
substituted type is well-formed. (With the value-restricted rule it is
always well-formed, because the type system enjoys substitution
for values, lemma 2). Thus the app rule looks as follows:

Γ ` a : (x :A)→ B
Γ ` b : A
Γ ` {b/x}B : Type

Γ ` a b : {b/x}B TFULLAPP

When designing the elaborator, the premise Γ ` {b/x}B : Type
requires attention. Among the arrow types that are equal to the type
of the applied functions, there may be some where the resulting
type {b/x}B is well-formed and others where it is not. Because
the congruence closure relation only equates well-typed expres-
sions, the current definition of the Γ � injrngA for v says that the
application is only allowed if all possible function types would lead
to a well-formed result, and this check is what the current ZOMBIE
implementation does. Perhaps one could instead search for some
type which works—usually B will be a small expression, so the
check for well-formedness can be done quickly. On the other hand,
the question is somewhat academic, because in our experience the
injrng condition is always satisfied in practice.

Propositional Equality The idea of using congruence closure is
not limited to the particular version of propositional equality used
by our core language, which has some nonstandard features (we
discussed the motivations for them in [28]). Below, we discuss how
those features interact with congruence closure and suggest how
the algorithm could be adapted to other settings.

First, our equality is very heterogeneous, that is we can form and
use equations between terms of different types. This has pros and
cons: it can be convenient for the programmer to not worry about
types, and the metatheory is simple, but it makes it hard to include
type-directed η-rules. However, congruence closure will work just
as well with a conventional homogeneous equality.

In fact, in one way a conventionally typed equality would work
better, because if would allow a more expressive congruence rule.
In first-order logic, a term is either an atom or an application, so
there is just a single congruence rule, the one for applications. One
might expect that our relation would have one congruence rule
for each syntactic form (i.e. for a = b and (x : A) → B and
rec f x .a etc). However, we do not do that, because it would lead
to problems for terms with variable-binding structure. For those,
one would expect the congruence rules to go under binders, e.g.:

Γ, x : A � b = b′

Γ � (λxA.b) = (λxA.b
′)

However, adding this rule is equivalent to adding functional exten-
sionality, which is not compatible with our “very heterogeneous”
treatment of equality [28]. Instead we adopt the rule TCCCONGRU-
ENCE, which is phrased in terms of substitution. This is rule in par-
ticular subsumes the usual congruence rule for application, but it
additionally allows changing subterms under binders, as long as
the subterms do not mention the bound variables.

Second, we use an n-ary congruence rule, while most theories only
allow eliminating one equation at a time. For congruence closure
to work equality must be a congruence, e.g. given a = a′ and
b = b′ we should be able to conclude f a b = f a′ b′. Our n-
ary rule supports this in the most straightforward way possible. An
alternative (used in some versions of ETT [13]) would be to use
separate n-ary congruence rules for each syntactic form. Systems

that only allow rewriting by one equation at a time require some
tricks to avoid ill-typed intermediate terms (e.g. [7] Section 8.2.7).

Finally, in our system the elimination of propositional equality is
erased, so equations like a.b = a are considered trivially true.
This is similar to Extensional Type Theory, but unlike Coq and
Agda. Having such equations available is important, because the
elaborator inserts casts automatically, without detailed control by
the programmer. In Coq that would be problematic, because an
inserted cast could prevent two terms from being equal. However,
making the conversion erasable is not the only possible approach.
For example, in Observational Type Theory [2] the conversions are
computationally relevant but the theory includes a.b = a as an
axiom. In that system one can imagine the elaborator would use the
axiom to make the elaborated program type-check.

Stronger equational theories The theory of congruence closure
is one among a number of related theories. One can strengthen it
in various ways by adding more reasoning rules, in order to get a
more expressive programming language. However, doing so may
endanger type inference, or even the decidability of type checking.

One obvious question is whether we could extend the relation
Γ � a = b to do both congruence reasoning and β-reduction at
the same time. Unfortunately, this extension causes the relation to
become undecidable.

This is clearly the case in our language, which directly includes
general recursive function definitions. But even if we allowed only
terminating functions, the combination of equality assumption and
lambdas can be used to encode general recursion. For example,
reasoning in a context containing

f : Nat → Nat

h : f = (\x. if (even x) then f (n/2) else f (3*n+1))

is equivalent to having available a direct recursive definition

f x = if (even x) then f (n/2) else f (3*n+1)

Another natural generalization is to allow rewriting by axiom
schemes, i.e. instead of only using ground equations a = b
from the context, also instantiate and use quantified formulas like
∀xyz.a = b. In general this generalization (the “word problem”) is
also not decidable, e.g. it is easy to write down an axiom scheme
for the equational theory of SKI-combinators. However, there are
semi-decision procedures such as unfailing completion [5] which
form the basis of many automated theorem provers.

Even when preserving decidability one can still extend congruence
closure to know about specific axioms schemes, such as for nat-
ural numbers with successor and predecessor [23] or lists [22] or
injective data constructors [12].

Clearly one could design a programming language around a more
ambitious theory than just congruence closure. Many languages,
such as Dafny [19] and Dminor [8] call out to an off-the-shelf
theorem prover in order to take advantage of all the theories that
the prover implements. One reason we focus on a simple theory
is that it makes unification easier, which seems to offer promis-
ing avenues for future work on type inference. Unification modulo
congruence closure (rigid E-unification) is NP-complete [17]. This
compares favorably with unification modulo β (higher-order unifi-
cation) which is undecidable. Unification modulo other equational
theories (E-unification) must be handled on a theory-by-theory ba-
sis, and it is not an operation exposed by most provers.

Simplifying congruence proofs Our CONGTRANS simplification
rule is quite natural, and in fact the same rule has been studied be-
fore for a different reason. For efficiency, users of congruence clo-
sure want to make proofs as small as possible by taking advantage
of simplifications like refl; p 7→ p or p−1; p 7→ refl [15, 31]. How-
ever, uses of cong can hide the opportunity for such simplifications.
De Moura et al. define the same CONGTRANS rule and give the
following example [15]. Given assumptions h1 : a = b, h2 : b =
d, h3 : c = b, consider the proof term

(cong f (h1; h3
−1)); (cong f (h3; h2)) : fa = fd

We can get rid of the assumption h3 by doing the rewrite

(cong f (h1; h3
−1)); (cong f (h3; h2)) 7→ cong f (h1; h3

−1; h3; h2).

Dependent programming with congruence closure CoqMT [30]
aims to make Coq’s definitional equality stronger by including ad-
ditional equational theories, such as Presburger arithmetic, so that
for example the types Vec 0 and Vec (n × 0) can be used inter-
changeably. The prototype implementation only looks at the types
themselves, but the metatheory also considers using assumptions
from the context. This is complicated because CoqMT still wants to
consider types modulo β-convertibility, and in contexts with incon-
sistent assumptions like true = false one could write nonterminat-
ing expressions. Therefore CoqMT imposes restrictions on where
an assumption can be used. VeriML makes the definitional equal-
ity user-programmable [29], and as an example builds a “stack”
combining congruence closure, β-reduction, and potentially other
theorem proving.

Neither CoqMT or VeriML prove that their implementation is com-
plete with respect to a declarative specification. For example, the
VeriML application rule requires that the applied function has the
type T → T ′ and then checks that T is definitionally equal to
the type of the argument, but there is no attempt to also handle
declarative derivations which require definitional equality to create
an arrow type.

The Guru language includes a tactic hypjoin [24] similar to our
smartjoin and unfold. However, instead of using equations from
the context, the programmer has to write an explicit list of equa-
tions, and unlike unfold it normalizes the given equations.

10. Conclusion

We consider this paper as an application of automatic theorem
proving to language design. Of course, in a higher-order logic, we
always expect that the programmer will have to supply some proofs
manually; the question is which ones. Intensional Type Theory rec-
ognizes that βη-equivalence in a normalizing language is decid-
able, so such equality proofs can be handled automatically as part
of the definitional equality relation. This paper considers a different
decidable equational theory, and proposes a language that is “the
dual of ITT”: while conventional dependently-typed languages au-
tomatically use equalities that follow from β-reductions but do not
automatically use assumptions from the context, our language uses
assumptions but does not automatically reduce expressions.

We look forward to exploring the ramifications of this design deci-
sion more deeply in the context of a full programming language.
Our ZOMBIE implementation provides a good baseline, but we
would like to add more automation. In particular, the addition of
rigid E-unification seems promising. Furthermore, we would like
to explore ways in which β-reduction and congruence closure can
co-exist—perhaps there is some way to achieve the benefits of each
approach in the same context.

Acknowledgments

This material is based upon work supported by the National Science
Foundation under Grant Nos. 0910500, 1116620, and 1319880.
The ZOMBIE implementation was developed with the assistance
of the Trellys team. This paper was written with the help of the
Ott tool [26]. The authors would also like to thank the anonymous
reviewers for their comments.

References
[1] T. Altenkirch. The case of the smart case: How to implement condi-

tional convertibility? Presentation at NII Shonan seminar 007, Japan,
Sept. 2011.

[2] T. Altenkirch, C. McBride, and W. Swierstra. Observational equality,
now! In PLPV ’07: Programming Languages meets Program Verifica-
tion, pages 57–68. ACM, 2007.

[3] L. Augustsson. Cayenne – a language with dependent types. In ICFP
’98: International Conference on Functional Programming, pages
239–250. ACM, 1998.

[4] L. Bachmair and A. Tiwari. Abstract congruence closure and special-
izations. In D. McAllester, editor, Automated Deduction — CADE-17,
volume 1831 of Lecture Notes in Artificial Intelligence, pages 64–78.
Springer-Verlag, jun 2000.

[5] L. Bachmair, N. Dershowitz, and D. A. Plaisted. Completion Without
Failure. In A. H. Kaci and M. Nivat, editors, Resolution of Equations
in Algebraic Structures, volume 2: Rewriting Techniques, pages 1–30.
Academic Press, 1989.

[6] B. Barras and B. Bernardo. The Implicit Calculus of Constructions as a
Programming Language with Dependent Types. In 11th international
conference on Foundations of Software Science and Computational
Structures (FOSSACS 2008), volume 4962 of LNCS, pages 365–379.
Springer, 2008.

[7] Y. Bertot and P. Castéran. Interactive Theorem Proving and Pro-
gram Development, Coq’Art:the Calculus of Inductive Constructions.
Springer-Verlag, 2004.

[8] G. M. Bierman, A. D. Gordon, C. Hritcu, and D. E. Langworthy.
Semantic subtyping with an SMT solver. In ICFP ’10: International
Conference on Functional Programming, pages 105–116, 2010.

[9] E. C. Brady. Idris—systems programming meets full dependent types.
In PLPV’11: Programming languages meets program verification,
pages 43–54. ACM, 2011. ISBN 978-1-4503-0487-0.

[10] C. Casinghino, V. Sjöberg, and S. Weirich. Combining proofs and
programs in a dependently typed langauge. In POPL ’14: 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, 2014.

[11] P. Corbineau. Démonstration automatique en Théorie des Types. PhD
thesis, University Paris 11, September 2005.

[12] P. Corbineau. Deciding equality in the constructor theory. In T. Al-
tenkirch and C. McBride, editors, Types for Proofs and Programs,
volume 4502 of Lecture Notes in Computer Science, pages 78–92.
Springer Berlin Heidelberg, 2007.

[13] K. Crary. Type-Theoretic Methodology for Practical Programming
Languages. PhD thesis, Cornell University, 1998.

[14] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Proceed-
ings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[15] L. de Moura, H. Rueß, and N. Shankar. Justifying equality. Electronic
Notes in Theoretical Computer Science (ENTCS), 125(3):69–85, July
2005.

[16] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common
subexpression problem. J. ACM, 27(4):758–771, Oct. 1980.

[17] J. Gallier, W. Snyder, P. Narendran, and D. Plaisted. Rigid E-
unification is NP-complete. In Proceedings of the Third Annual Sym-
posium on Logic in Computer Science (LICS ’88), pages 218–227,
1988.

[18] L. Jia, J. A. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr, and
S. Zdancewic. AURA: A programming language for authorization
and audit. In ICFP ’08: International Conference on Functional
Programming), pages 27–38, 2008.

[19] K. R. M. Leino. Dafny: an automatic program verifier for func-
tional correctness. In Proceedings of the 16th international confer-
ence on Logic for programming, artificial intelligence, and reasoning,
LPAR’10, pages 348–370. Springer-Verlag, 2010.

[20] C. McBride. First-order unification by structural recursion, 2001.
[21] S.-C. Mu, H.-S. Ko, and P. Jansson. Algebra of programming in agda:

dependent types for relational program derivation. 19(5):545–579,
2009.

[22] G. Nelson and D. C. Oppen. Fast decision procedures based on
congruence closure. J. ACM, 27(2):356–364, Apr. 1980.

[23] R. Nieuwenhuis and A. Oliveras. Fast congruence closure and exten-
sions. Inf. Comput., 205(4):557–580, Apr. 2007.

[24] A. Petcher and A. Stump. Deciding Joinability Modulo Ground
Equations in Operational Type Theory. In S. Lengrand and D. Miller,
editors, Proof Search in Type Theories (PSTT), 2009.

[25] B. C. Pierce and D. N. Turner. Local type inference. ACM Trans.
Program. Lang. Syst., 22(1):1–44, Jan. 2000.

[26] P. Sewell, F. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and
R. Strnisa. Ott: Effective tool support for the working semanticist. J.
Funct. Program., 20(1):71–122, 2010.

[27] R. E. Shostak. An algorithm for reasoning about equality. Commun.
ACM, 21(7):583–585, July 1978.

[28] V. Sjöberg, C. Casinghino, K. Y. Ahn, N. Collins, H. D. Eades III,
P. Fu, G. Kimmell, T. Sheard, A. Stump, and S. Weirich. Irrelevance,
heterogeneous equality, and call-by-value dependent type systems. In
J. Chapman and P. B. Levy, editors, MSFP ’12, volume 76 of EPTCS,
pages 112–162. Open Publishing Association, 2012.

[29] A. Stampoulis and Z. Shao. Static and user-extensible proof check-
ing. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’12, pages
273–284, New York, NY, USA, 2012. ACM.

[30] P.-Y. Strub. Coq modulo theory. In CSL, pages 529–543, 2010.
[31] A. Stump and L.-Y. Tan. The algebra of equality proofs. In 16th

International Conference on Rewriting Techniques and Applications
(RTA’05), pages 469–483. Springer, 2005.

[32] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang.
Secure Distributed Programming with Value-dependent Types. In
ICFP ’11: International Conference on Functional Programming,
pages 285–296. ACM, 2011.

A. Full specification

A.1 Grammars

env , Γ ::= typing environment
| · empty
| Γ, decl

decl ::= typing env declaration
| x : A variable

exp, a, b, c, A, B , C ::= annotated expressions
| Type type
| x variable
| rec fA x .a recursive definition
| rec fA •x .a irrelevant recursive definition
| a b application
| a •b irrelevant application
| (x :A)→ B function type
| •(x :A)→ B irrelevant function type
| a = b equality proposition
| joinΣ equality proof
| a.b type conversion

Σ ::= equality strategies
| ;cbv i j : a = b
| ;p i j : a = b
| •
| injdom a
| injrng a b
| injeq i a
| CTX : B

ctx , CTX ::= subst context
| {∼b1/x1} ... {∼bi/xi}A

val , V , v ::= values
| x
| Type
| (x :A)→ B
| •(x :A)→ B
| a = b
| v.v′
| joinΣ

| rec fA x .a
| rec fA •x .a

A.2 Core language specification

The following rules define the full type system for the core language of the paper. It includes two sets of rules which were omitted from the
body of the paper for space. First, in addition to join proofs join;cbvi j :a=b , which prove goals using a parallel reduction relationship, we also
allow join;cbvi j :a=b , which uses plain CBV-evaluation (without reducing under binders). The relation ;p will prove more goals, but when
it works we expect ;cbv to be more efficient. (This is analogous to how Coq provides both lazy and cbv evaluation tactics).

Second, we include typing rules for computationally irrelevant function (TIPI, TIREC, and TIDAPP). These are similar to the rules for ordinary
functions, except that TIREC has an additional restriction that the argument x must not appear in a computationally relevant position.

a ;cbv b

(rec f x .a) v ;cbv {v/x} {rec f x .a/f } a SCAPPBETA

(rec f •.a) •;cbv {rec f •.a/f } a SCIAPPBETA

a ;cbv a ′

a b ;cbv a ′ b
SCCTX1

a ;cbv a ′

v a ;cbv v a ′
SCCTX2

a ;cbv a ′

a •;cbv a ′ • SCCTX3

a ;p b

a ;p a
SPREFL

a ;p a ′

rec f x .a ;p rec f x .a ′
SPREC

A ;p A′

B ;p B ′

(x :A)→ B ;p (x :A′)→ B ′
SPPI

A ;p A′

B ;p B ′

•(x :A)→ B ;p •(x :A′)→ B ′
SPIPI

a ;p a ′

b ;p b′

a = b ;p a ′ = b′
SPEQ

a ;p a ′

b ;p b′

a b ;p a ′ b′
SPAPP

a ;p a ′

v ;p v ′

(rec f x .a) v ;p ({v ′/x} {rec f x .a ′/f } a ′) SPAPPBETA

a ;p a ′

(rec f •.a) •;p ({rec f •.a ′/f } a ′) SPIAPPBETA

Γ ` a : A Annotated core language typing rules

` Γ

Γ ` Type : Type
TTYPE

x : A ∈ Γ ` Γ

Γ ` x : A
TVAR

Γ ` A : Type
Γ, x : A ` B : Type

Γ ` (x :A)→ B : Type
TPI

Γ ` A : Type
Γ, x : A ` B : Type

Γ ` •(x :A)→ B : Type
TIPI

Γ ` (x :A1)→ A2 : Type
Γ, f : (x :A1)→ A2, x : A1 ` a : A2

Γ ` rec f(x:A1)→A2
x .a : (x :A1)→ A2

TREC

Γ ` •(x :A1)→ A2 : Type
Γ, f : •(x :A1)→ A2, x : A1 ` a : A2

x /∈ FV (|a|)
Γ ` rec f(x:A1)→A2

•x .a : (x :A1)→ A2
TIREC

Γ ` a : A→ B
Γ ` b : A

Γ ` a b : B
TAPP

Γ ` a : (x :A)→ B
Γ ` v : A

Γ ` a v : {v/x}B TDAPP

Γ ` a : •(x :A)→ B
Γ ` v : A

Γ ` a •v : {v/x}B TIDAPP

Γ ` a : A Γ ` b : B

Γ ` a = b : Type
TEQ

|a1|;i
cbv b |a2|;j

cbv b Γ ` a1 = a2 : Type

Γ ` join;cbvi j :a1=a2
: a1 = a2

TJOINC

|a1|;i
p b |a2|;j

p b Γ ` a1 = a2 : Type

Γ ` join;pi j :a1=a2
: a1 = a2

TJOINP

Γ ` v : ((x :A1)→ B1) = ((x :A2)→ B2)

Γ ` joininjdom v : A1 = A2
TJINJDOM

Γ ` v1 : ((x :A)→ B1) = ((x :A)→ B2) Γ ` v2 : A

Γ ` joininjrng v1 v2
: {v2/x}B1 = {v2/x}B2

TJINJRNG

Γ ` v : (•(x :A1)→ B1) = (•(x :A2)→ B2)

Γ ` joininjdom v : A1 = A2
TJIINJDOM

Γ ` v1 : (•(x :A)→ B1) = (•(x :A)→ B2) Γ ` v2 : A

Γ ` joininjrng v1 v2
: {v2/x}B1 = {v2/x}B2

TJIINJRNG

Γ ` v : (A1 = A2) = (B1 = B2)

Γ ` joininjeq i v : Ai = Bi
TJINJEQ

Γ ` B : Type ∀k . Γ ` vk : ak = bk
|B | = |({a1/x1} ... {aj/xj} c = {b1/x1} ... {bj/xj} c)|

Γ ` join{∼v1/x1} ... {∼vj /xj }c:B : B
TJSUBST

Γ ` a : A Γ ` v : A = B Γ ` B : Type

Γ ` a.v : B
TCAST

` Γ G is a well-formed environment

` · ENVWFEMPTY

` Γ Γ ` A : Type

` Γ, x : A
ENVWFVAR

A.3 Congruence closure and injrng for core language

Γ � a = b typed congruence closure (up to erasure)

Γ ` a : A

Γ � a = a
TCCREFL

Γ � a = b

Γ � b = a
TCCSYM

Γ � a = b Γ � b = c

Γ � a = c
TCCTRANS

x : A ∈ Γ Γ � A = (a = b)

Γ � a = b
TCCASSUMPTION

Γ ` A = B : Type ∀k . Γ � ak = bk
|A = B | = |{a1/x1} ... {aj/xj} c = {b1/x1} ... {bj/xj} c|

Γ � A = B
TCCCONGRUENCE

Γ � ((x :A1)→ B1) = ((x :A2)→ B2)

Γ � A1 = A2
TCCINJDOM

Γ � (A1 → B1) = (A2 → B2)

Γ � B1 = B2
TCCINJRNG

Γ � (•(x :A1)→ B1) = (•(x :A2)→ B2)

Γ � A1 = A2
TCCIINJDOM

Γ � (•A1 → B1) = (•A2 → B2)

Γ � B1 = B2
TCCIINJRNG

Γ � (a1 = a2) = (b1 = b2)

Γ � ak = bk
TCCINJEQ

|a| = |b| Γ ` a : A Γ ` b : B

Γ � a = b
TCCERASURE

Γ � injrngA for v injectivity side condition

Γ ` v : A Γ ` (x :A)→ B : Type
∀A′ B ′.((Γ � ((x :A)→ B) = ((x :A′)→ B ′)) implies (Γ � {v/x}B = {v.v0/x}B ′ where Γ ` v0 : A = A′))

Γ � injrng (x :A)→ B for v
IRPI

Γ ` v : A Γ ` •(x :A)→ B : Type
∀A′ B ′.((Γ � (•(x :A)→ B) = (•(x :A′)→ B ′)) implies (Γ � {v/x}B = {v.v0/x}B ′ where Γ ` v0 : A = A′))

Γ � injrng • (x :A)→ B for v
IRIPI

A.4 Bidirectional system

Γ ` a ⇒ A Inference mode

` Γ⇐
Γ ` Type⇒ Type

ITYPE

` Γ⇐ x : A ∈ Γ Γ ` A⇐ Type

Γ ` x ⇒ A
IVAR

Γ ` A⇐ Type Γ, x : A ` B ⇐ Type

Γ ` (x :A)→ B ⇒ Type
IPI

Γ ` A⇐ Type Γ, x : A ` B ⇐ Type

Γ ` •(x :A)→ B ⇒ Type
IIPI

Γ ` a ⇒ (x :A)→ B Γ ` v ⇐ A
Γ �∃ injrng (x :A)→ B for v
Γ ` {vA/x}B ⇐ Type

Γ ` a v ⇒ {vA/x}B
IDAPP

Γ ` a ⇒ •(x :A)→ B
Γ ` v ⇐ A
Γ �∃ injrng • (x :A)→ B for v
Γ ` {vA/x}B ⇐ Type

Γ ` a •v ⇒ {vA/x}B
IIDAPP

Γ ` a ⇒ A→ B Γ ` b ⇐ A
Γ ` B ⇐ Type

Γ ` a b ⇒ B
IAPP

Γ ` a ⇒ A Γ ` b ⇒ B

Γ ` a = b ⇒ Type
IEQ

Γ ` a1 = a2 ⇐ Type
|a1|;i

cbv b |a2|;j
cbv b

Γ ` join;cbvi j :a1=a2
⇒ a1 = a2

IJOINC

Γ ` a1 = a2 ⇐ Type
|a1|;i

p b |a2|;j
p b

Γ ` join;pi j :a1=a2
⇒ a1 = a2

IJOINP

Γ ` A⇐ Type Γ ` a ⇐ A

Γ ` aA ⇒ A
IANNOT

Γ ` a ⇒ A Γ �∃ A = B Γ ` B ⇐ Type

Γ ` a ⇒ B
ICAST

Γ ` a ⇐ A Checking mode

Γ, f : (x :A1)→ A2, x : A1 ` a ⇐ A2

Γ, f : (x :A1)→ A2, x : A1 �∃ injrng (x :A1)→ A2 for x
Γ, f : (x :A1)→ A2 ` (x :A1)→ A2 ⇐ Type

Γ ` rec f x .a ⇐ (x :A1)→ A2
CREC

Γ, f : •(x :A1)→ A2, x : A1 ` a ⇐ A2

x /∈ FV (|a|)
Γ, f : •(x :A1)→ A2, x : A1 �∃ injrng • (x :A1)→ A2 for x
Γ, f : •(x :A1)→ A2 ` •(x :A1)→ A2 ⇐ Type

Γ ` rec f •.a ⇐ •(x :A1)→ A2
CIREC

Γ �∃ a = b

Γ ` join⇐ a = b
CREFL

Γ ` a ⇒ A

Γ ` a ⇐ A
CINF

Γ ` a ⇐ A Γ �∃ A = B Γ ` B ⇐ Type

Γ ` a ⇐ B
CCAST

` Γ⇐ G is a well-formed environment

` · ⇐GEMPTY

` Γ x /∈ dom (Γ)
Γ ` A⇐ Type

` Γ, x : A⇐ GVAR

A.5 Elaboration

Γ ; Γ′ G is a well-formed environment (elaborating version)

·; · EGEMPTY

Γ ; Γ′

x /∈ dom (Γ)
Γ′ A⇐ Type ; A′

Γ, x : A ; Γ′, x : A′
EGVAR

Γ a ⇒ a ′ : A Inference mode, with elaboration

Γ Type⇒ Type : Type
EITYPE

x : A ∈ Γ Γ A⇐ Type ; A0

Γ x ⇒ x : A
EIVAR

Γ A⇐ Type ; A′

Γ, x : A′ B ⇐ Type ; B ′

Γ (x :A)→ B ⇒ (x :A′)→ B ′ : Type
EIPI

Γ A⇐ Type ; A′

Γ, x : A′ B ⇐ Type ; B ′

Γ •(x :A)→ B ⇒ •(x :A′)→ B ′ : Type
EIIPI

Γ a ⇒ a ′ : A1

Γ A1 =? A→ B ; v1

Γ b ⇐ A ; b′

Γ a b ⇒ a ′.v1 b′ : B
EIAPP

Γ a ⇒ a ′ : A1 Γ A1 =? (x : A)→ B ; v1

Γ v ⇐ A ; v ′ Γ � injrng (x :A)→ B for v ′

Γ a v ⇒ a ′.v1 v ′ : {v ′/x}B EIDAPP

Γ a ⇒ a ′ : A1

Γ A1 =? [x : A]→ B ; v1

Γ v ⇐ A ; v ′

Γ � injrng • (x :A)→ B for v ′

Γ a •v ⇒ a ′.v1 •v′ : {v ′/x}B EIIDAPP

Γ a ⇒ a ′ : A Γ b ⇒ b′ : B

Γ a = b ⇒ a ′ = b′ : Type
EIEQ

|a|;i
cbv c |b|;j

cbv c
Γ a = b ⇐ Type ; a ′ = b′

Γ join;cbvi j :a=b ⇒ join;cbvi j :a
′=b′ : a ′ = b′

EIJOINC

|a|;i
p c |b|;j

p c
Γ a = b ⇐ Type ; a ′ = b′

Γ join;pi j :a=b ⇒ join;pi j :a′=b′ : a ′ = b′
EIJOINP

Γ A⇐ Type ; A′

Γ a ⇐ A′ ; a ′

Γ aA ⇒ a ′ : A′
EIANNOT

Γ a ⇐ A ; a ′ Checking mode, with elaboration

Γ A =? (x : A1)→ A2 ; v1

Γ, f : (x :A1)→ A2, x : A1 a ⇐ A2 ; a ′

Γ, f : (x :A1)→ A2, x : A1 � injrng (x :A1)→ A2 for x
Γ, f : (x :A1)→ A2 (x :A1)→ A2 ⇐ Type ; A0

Γ rec f x .a ⇐ A ; (rec f(x:A1)→A2
x .a ′)

.symm v1

ECREC

Γ A =? [x : A1]→ A2 ; v1

Γ, f : •(x :A1)→ A2, x : A1 a ⇐ A2 ; a ′

Γ, f : •(x :A1)→ A2, x : A1 � injrng • (x :A1)→ A2 for x
x /∈ FV (|a ′|)
Γ, f : •(x :A1)→ A2 •(x :A1)→ A2 ⇐ Type ; A0

Γ rec f •.a ⇐ A ; (rec f•(x:A1)→A2
•x .a ′).symm v1

ECIREC

Γ A =? (a = b) ; v1 Γ a
?
= b ; v

Γ join⇐ A ; v.symm v1

ECREFL

Γ a ⇒ a ′ : A Γ A
?
= B ; v1

Γ a ⇐ B ; a ′.v1
ECINF

B. Assumptions

B.1 Assumptions about the annotated core language

The following properties of the core language were proved in our prior work [28], so in this paper we assume them without proof.

Assumption 13 (Weakening for annotated language). If Γ ` a : A and Γ ⊆ Γ′, then Γ′ ` a : A.

Assumption 14 (Strengthening for annotated language). If Γ,Γ′ ` b : B and FV (b) ⊆ dom (Γ), then Γ ` b : B .

Assumption 15 (Inversion for type well-formedness). 1. If Γ ` a = b : C , then Γ ` a = b : Type and there exists A and B such that
Γ ` a : A and Γ ` b : B .

2. If Γ ` (x :A)→ B : C , then Γ ` (x :A)→ B : Type and Γ ` A : Type and Γ, x : A ` B : Type.

3. If Γ ` •(x :A)→ B : C , then Γ ` •(x :A)→ B : Type and Γ ` A : Type and Γ, x : A ` B : Type.

Assumption 16 (Substitution for fully-annotated language). If Γ, x : A ` b : B and Γ ` v : A, then Γ ` {v/x} b : {v/x}B .

Assumption 17 (Regularity for fully-annotated language).

If ` Γ and x : A ∈ Γ, then Γ ` A : Type.

If Γ ` a : A then ` Γ and Γ ` A : Type

B.2 Algorithmic congruence closure relations

Next we specify what assumptions we make about the congruence closure algorithm. Calls to it are represented as judgements:

• Γ A =? (x : A′)→ B ′ ; v

• Γ A =? [x : A′]→ B ′ ; v

• Γ A =? (A′ = B ′) ; v

• Γ A
?
= B ; v

Here, A and B are inputs, while A′, B ′ and v are outputs. For example, Γ A =? (x : A′) → B ′ ; v means “find A′ and B′ such that
Γ � A = (x :A′)→ B ′, and a v such that Γ ` v : A = ((x :A′)→ B ′)”. Note that the judgement Γ A =? A′ → B ′ ; v is syntactic
sugar for the dependently-typed version, Γ A =? (x : A′)→ B ′ ; v .

By using the congruence closure algorithm presented in Section 7 these relations can be straightforwardly implemented: one constructs the
congruence closure of all equations in the context, and then checks whether the equivalence class of A contains any members with the right
form (and return the first one found if there are several). Note that this algorithm will give the same answer for two inputs which are in the
same equivalence class (but with a different proof v). We formalize that observation as the following assumption.

Assumption 18. (Respects CC) If Γ � A = B

• Γ B
?
= C ; v1 then Γ A

?
= C ; v2.

• Γ B =? (x : C1)→ C2 ; v1 then Γ A =? (x : C1)→ C2 ; v2.

• other forms of types

Furthermore, the algorithm can also generate terms in the core language that prove that the required equation holds. We write this as
Γ A =? (x : B1)→ B2 ; v , etc. It is also convenient to specify that the inferred proof always erases to just join. That is, we assume the
following interface.

Assumption 19. (CC soundness for function types) If Γ A =? (x : B1) → B2 ; v , then Γ ` v : A = ((x :B1) → B2) and |v | = join
and Γ � A = ((x :B1)→ B2).

Similar assumptions are required for the other versions of the relation.

Finally we use the elaborating relation Γ A
?
= B ; v , which decides whether Γ � A = B (both A and B are inputs), and if so produces

a core proof term v for the equation.

Assumption 20. (CC soundness) If Γ A
?
= B ; v , then Γ ` v : A = B and |v | = join and Γ � A = B .

Assumption 21. (CC completeness) If Γ � A = (x :B1) → B2 then there exists a (x :B ′1) → B ′2 and v such that Γ A =? (x : B1) →
B2 ; v succeeds.

Similar assumptions are required for the other versions of the relation.

|a| = |b|
Γ ` a = b

CCREFL
Γ ` a = b

Γ ` b = a
CCSYM

Γ ` a = b Γ ` b = c

Γ ` a = c
CCTRANS

x : A ∈ Γ Γ ` A = (a = b)

Γ ` a = b
CCASSUMPTION

Γ ` a = b

Γ ` {a/x} c = {b/x} c CCCONGRUENCE
Γ ` (A1 → B1) = (A2 → B2)

Γ ` A1 = B1
CCINJDOM

Γ ` (A1 → B1) = (A2 → B2)

Γ ` A2 = B2
CCINJRNG

Γ ` (•A1 → B1) = (•A2 → B2)

Γ ` A1 = B1
CCIINJDOM

Γ ` (•A1 → B1) = (•A2 → B2)

Γ ` A2 = B2
CCIINJRNG

Γ ` (a1 = a2) = (b1 = b2)

Γ ` ak = bk
CCINJEQ

Figure 14. Untyped congruence closure

Γ `L refl : a = a
CCPREFL

Γ `L p : a = b

Γ `L p−1 : b = a
CCPSYM

Γ `L p : a = b
Γ `L q : b = c

Γ `L p; q : a = c
CCPTRANS

x : A ∈ Γ
Γ `L p : A = ((– = –) a b)

Γ `L x.p : a = b
CCPASSUMPTION

∀k . Γ `L pk : ak = bk

Γ `L congF pk k : F ai = F bi
CCPCONG

Γ `L p : F ai = F bi
F injective

Γ `L inji p : ai = bi
CCPINJ

Figure 15. (Untyped, labelled) congruence closure, tracking the evidence terms

C. Proofs about the congruence closure relation

C.1 Properties of typed congruence closure relation

This subsection gives the proofs for the results described in Sections 7.1 and 7.3. The main result is a theorem relating the typed congruence
closure relation Γ � a = b with an untyped variation Γ ` a = b. The latter is defined in Figure 14.

Definition 22 (Injective labels). We define the judgement F injective to mean that F is one of –→ – or •–→ – or – = – .

Lemma 23 (Weakening for congruence closure). If Γ � a = b and ` Γ,Γ′, then Γ,Γ′ � a = b.

Proof. Easy induction on Γ � a = b. All cases except TCCASSUMPTION are direct by the IH.

Lemma 24 (Regularity for congruence closure).
If Γ � a = b then Γ ` a = b : Type.

Proof. Induction on Γ � a = b. The cases are:

TCCREFL, TCCCONGRUENCE, TCCERASURE These rules have a typing assumption which proves Γ ` a = b : Type.

TCCSYM,TCCTRANS Direct by IH.

TCCINJRNG By the IH, we get that Γ ` (A1 → B1) = (A2 → B2). Applying kinding inversion (lemma 15) twice we find Γ ` A1 : Type
and Γ, x : A1 ` B1 : Type, and similarly for A2 and B2. Since x is not free in B1 (this is a simple type), by strengthening (lemma 14)
we know Γ ` B1 : Type. Similarly, Γ ` B2 : Type. So we have Γ ` B1 = B2 : Type as required.

TCCINJDOM,TCCIINJDOM,TCCIINJRNG,TCCINJEQ Similar to the previous case.

We define the judgement Γ `L p : a = b (“p is evidence that Γ ` a = b”) in the obvious way, by adding evidence terms to each inference
rule in the definition in Γ `L a = b. The resulting rules are shown in Figure 15. The grammar of evidence terms (which was also shown in
the main paper) is as follows

p, q ::= x.p | refl | p−1 | p; q | inji p | cong A p1 .. pi

Note that the notation −1 (symmetry) and ; (transitivity) are simply syntactic constructors of evidence terms, as opposed to functions operating
on evidence terms.

Lemma 25 (Γ `L p : a = b is deterministic). If Γ `L p : a = b and Γ `L p : a ′ = b′, then a = a′ and b = b′.

Proof. Simple induction on p. We implicitly assume that Γ only has one binding for any given variable.

p 7→ p NULL
refl−1 7→ refl INVREFL
refl; p 7→ p REFLTRANS1
p; refl 7→ p REFLTRANS2
(p; q); r 7→ p; (q ; r) TRANSTRANS
p; p−1 7→ refl INVTRANS1
p−1; p 7→ refl INVTRANS2

p−1−1 7→ p INVINV

(p; q)−1 7→ q−1; p−1 INVTRANS

(cong A p1 .. pi)
−1 7→ cong A p1

−1 .. pi
−1 INVCONG

(inji p)−1 7→ inji (p−1) INVINJ

(cong A p1 ... pi); (cong A q1 ... qi) 7→ cong A (p1; q1) .. (pi ; qi) CONGTRANS

injk (cong A p1 ... pi) 7→ pk INJCONG1
injk ((cong A p1 .. pi); r) 7→ pk ; (injk r) INJCONG2
injk (r ; (cong A p1 ... pi)) 7→ (injk r); pk INJCONG3
x.(r ;cong = p q) 7→ p−1; (x.r); q ASSUMCONG

p 7→ p′

x.p 7→ x.p′
ASSUMPTION

p 7→ p′ q 7→ q ′

p; q 7→ p′; q ′
TRANS

∀k . pk 7→ p′k
cong A p1 .. pi 7→ cong A p′1 .. p

′
i

CONG
p 7→ p′

injk p 7→ injk p′
INJ

Figure 16. Simplification rules for evidence terms (with names for rules)

The evidence simplification relation p 7→ q was already shown in Figure 13, but we repeat it in Figure 16 in order to give names to the rules
so we can conveniently refer to them. We write 7→∗ for the transitive closure of 7→.

Lemma 26. If Γ `L p : a = b and p 7→ q, then Γ `L q : a = b.

Proof. Induction on on p 7→ q , then do inversion on the assumption Γ `L p : a = b.

In INVTRANS1 and INVTRANS2, we use lemma 25 to know that the two occurrences of p prove the same equation.

Next, we define a syntactic class of of fully simplified evidence term, as follows.We define grammars for synthesizable term pS , checkable
terms pC , and chained terms p∗ (containing zero or more ps—an empty chain denotes the term refl, and a nonempty chain denotes a sequence
of right-associated uses of transitivity p1; (p2; (. . . ; pn))). The metavariable p∗LR ranges over chains that begin and end with a synthesizable
term (as opposed to an empty chain or a chain with a pC at the beginning or end), and p∗R over chains that end with a pS (but may have a pC
at the beginning). Finally, x o is an abbreviation for x o

.refl.

o ::= 1 | − 1
pS ::= x o | xo

.p∗
R
| inj i pS | p∗LR

pC ::= cong A p
∗
1 .. p

∗
i

p∗ ::= (pS | pC)∗

p∗R ::= (p∗; pS)
p∗LR ::= pS | (pS ; p∗; pS)

There is one additional condition which is not shown in the grammar: there must never be two check-terms adjacent to each other in a chain.

Lemma 27. If Γ `L p : a = b, then there exists some p∗ such that p 7→∗ p∗.

Proof. As a first step, we use the INV∗ rules to push uses of symmetry to the leaves of the evidence term. That is, the symmetry rule is
only applied the uses of assumptions from the contexts. So without loss of generality we can assume that the evidence term p belongs to the
following subgrammar.

p ::= x o
.p | refl | p; q | inji p | cong A p1 .. pi

Next, we proceed by induction on the structure of p. In each case, we must show there exists some evidence chain p∗ such that p 7→∗ p∗.

• The term is x o
.p . By IH, we know p 7→∗ p∗.

If p∗ is empty (refl) or ends with a synthesizable term, then the term x o
.p∗ is a valid chain and we are done.

Otherwise, p∗ ends with a use of cong, i.e. p∗ is r∗; cong A q1 .. qi . However, by the assumption we know that Γ `L x o
.(r∗;cong A q1 ... qi)

:

a = b. Assuming (wlog) that o = 1, this means that Γ `L (r∗; cong A q1 ... qi) : A = (a = b). By inversion we know that the label A is
= and there are exactly two subterms q1 and q2, so we can simplify using ASSUMCONG:

x.(r∗;cong = q1 q2) 7→ q1
−1; (x.r∗); q2

which is a valid chain. Similarly, in the case o = −1 we can simplify using ASSUMCONG and INVTRANS:

x−.(r∗;cong = q1 q2)1 7→ q2
−1; (x.r∗)

−1; q1

• The term is refl. This is already a valid (empty) chain.

• The term is p; q . By the IHs for p and q we know that there are chains p∗ and q∗. We must now show that p∗; q∗ can be simplified into a
valid chain r∗.

If p∗ is the empty chain refl, then by REFLTRANS1 we can just return q∗. Similarly if q∗ is empty, then by REFLTRANS2 we can return
p∗.

If both p∗ and q∗ are nonempty, we use TRANSTRANS to reassociate p∗; q∗ into a right-associated chain. However, we must also ensure
that the resulting chain does not contain two adjacent pC s. That would happen if p∗ ends with a use of cong and q∗ begins with cong. In
that case, after reassociation we end up with a subproof of the form

(cong A p1 .. pi); (cong B q1 .. qj)

By assumption we know this is evidence for some equation a = b. By inversion on the judgement

Γ `L (cong A p1 .. pi); (cong B q1 .. qj) : a = b

we see that we must have A = B and i = j, and a = b must be A ai =A bi. Then we can use CONGTRANS to simplify to a single use
of cong.

• The term is inji p. By IH we know p 7→∗ p∗.

Now, inj i p∗ may not be a valid normalized evidence term, because it may violate the condition that p∗ begins and ends with a pS . Let
p∗ = q∗1 ; q∗2 ; q∗3 , such that q∗1 and q∗3 consists only of checkable terms and q∗2 begins and ends with a synthesizable term. Now apply
INJCONG2 and INJCONG3 repeatedly to simplify q∗1 and q∗3 . We get

inj i p∗ 7→∗ r∗1 ; (inj i q∗2); r∗3

where r∗1 consists of subterms from the cong-expressions in q∗1 , and similarly for q∗3 .

Finally, at this point r∗1 and r∗3 may contain adjacent cong-terms, so we need to simplify them using CONGTRANS as in the previous
case.

• The term is cong A p1 .. pi . By the IHs, we know pk 7→∗ p∗k . Then

cong A p1 .. pi 7→∗ cong A p
∗
1 .. p

∗
i

which is a valid chain.

Intuitively, the label function recursively decomposes a term a into a first-ordered “labelled” expression F (a1, . . . , ak), where F is the least
nontrival linear multi-hole context that agrees with a. The label function takes an expression a, and returns a label F together with a list of
subexpressions ak. We write this as

label a = F ai

The function label is defined in turns of a helper function labelS a, which takes as argument a set of variables S and an expression a and also
returns A ai, with the additional constraint that labelS tries to select the smallest label F such that FV (ak) ∩ S = ∅. The two functions are
quite similar (in the Haskell implementation there is just one function which takes an extra boolean argument); the difference is that labelS

can return the trivial context which is just a single hole, whereas label always chooses a label that contains at least one syntactic constructor.

label Type = (Type)
label x = (x)
label (rec fA x .a) = (rec f x.F) ai

where label{f ,x} a = F ai
label (rec fA •x .a) = (rec f • .F) ai

where label{f ,x} a = F ai
label (a b) = (– –) (label a) (label b)
label (a •b) = (– •) (label a)
label ((x :A)→ B) = (x : –)→ F) (labelA) Bi

where label{x} B = F Bi
label (•(x :A)→ B) = •(x : –)→ F) (labelA) Bi

where label{x} B = F Bi
label (a = b) = (– = –) (label a) (label b)
label joinΣ = (join)
label (a.b) = label a

labelS a = (–) (label a)
when FV (a) ∩ S = ∅

Otherwise:
labelS x = (x)
labelS (rec fA x .a) = (rec f x.F) ai

where labelS∪{f ,x} a = F ai
labelS (rec fA •x .a) = (rec f • .F) ai

where labelS∪{f ,x} a = F ai
labelS (a b) = (F G) ai bi

where labelS a = F ai
and labelS b = Gbi

labelS (a •b) = (F •) ai
where labelS a = F ai

labelS ((x :A)→ B) = ((x : F)→ G) Ai Bi
where labelS A = F Ai
and labelS∪{x} B = GBi

labelS (•(x :A)→ B) = (•(x : F)→ G) Ai Bi
where labelS A = F Ai
and labelS∪{x} B = GBi

labelS (a = b) = (F G) ai bi
where labelS a = F ai
and labelS b = Gbi

labelS joinΣ = (join)
labelS (a.b) = labelS a

We also define the “inverse” function unlabel, which simply substitutes away all the label applications. The function unlabel is defined by
recursion on the labelled term:

unlabel (F ai) = {unlabel a1/x1} ... {unlabel aj/xj}F
when the holes in F are named x1 through xj .

Lemmas 28–31 are all proved by inductions on the term a .

Lemma 28 (unlabel-label). For any a , we have unlabel (label a) = |a|.

Lemma 29 (Substituting into a label). Suppose label a ′ = F ai where the holes inF are named x1 . . . xi . Then |a ′| = |{unlabel a1/x1} ... {unlabel aj/xk}F |.

Lemma 30 (label does not let bound variables escape).

• If label a = F ai, then for every k we have FV (ak) ⊆ FV (a).

• If labelS a = F ai, then for every k we have FV (ak) ⊆ (FV (a) \ S).

Lemma 31 (label decides erasure). For any expressions a and b, we have |a| = |b| iff (label a) = (label b)

Lemma 32. For all a, b and c such that FV (a) ∩ S = ∅ and FV (b) ∩ S = ∅, if labelS {a/x} c = F ai and labelS {b/x} c = Gbi, then
F = G, and there exists ci such that for all k, ak = label {a/x} ck and bk = label {b/x} ck .a

Proof. Induction on the structure of c.

c is x Then since we assumed that a and b have no free variables in S, labelS {a/x} c = (–) (label a) and labelS {b/x} c = (–) (label b),
so the labels are equal and we can take the list to be just c0 = x.

c is Type Then labelS {a/x} c = labelS {b/x} c = (Type), so the labels are indeed equal, and we can take the empty list for ci.

c is some variable y 6= x Similar to the previous case.

c is joinΣ Similar to the previous case.

c is rec fA y .c0 Let labelS {a/x} c0 = F ai and labelS {b/x} c0 = Gbi. By the IH we know F = G, and there is a list ci.

Now, labelS {a/x} c = (rec f y .F) ai and labelS {b/x} c = (rec f y .G) bi. So the labels are indeed equal, and the list of expressions
is just ci.

c is rec fA •y .c0 Similar to the previous case.

c is (y :C1)→ C2 Let
labelS {a/x}C1 = F ai
labelS {b/x}C1 = Gbi
labelS∪{y} {a/x}C2 = F ′ ai

′

labelS∪{y} {b/x}C2 = G′ bi
′

Since we can choose the bound variable y fresh, the disjointness condition on S is still satisfied. So by the IHs we get that F = G and
F ′ = G′, and also suitable lists ci and ci.

Now, labelS {a/x} ((y :C1) → C2) = ((y : F) → F ′) ai ai
′ and labelS {b/x} ((y :C1) → C2) = ((y : F) → F ′) bi bi

′
. So the

label is indeed the same for both applications, and ci ci′ is a suitable list.

c is •(y :C1)→ C2 or c1 c2 or c1 = c2 Similar to the previous case.

c is c1 •c2 Let
labelS {a/x} c1 = F ai
labelS {b/x} c1 = Gbi

The IH gives F = G and a list ci. The label we return is (F •), and the argument list is ci.

c is c1.c2 Similar to the previous case.

Lemma 33 (CC implies LCC, the congruence case). For all c, if Γ `L label a = label b then Γ `L label {a/x} c = label {b/x} c

Proof. Simultaneous induction on the structure of c. Most of the cases are similar, so we show only some representative ones.

c is x we must show Γ `L label a = label b, which we have as an assumption.

c is Type . Then both label {a/x} c and label {b/x} c are just (Type), so LCCREFL proves the required equation.

c is a variable y 6= x Similar to previous case.

c is some variable joinΣ Similar to the previous case.

c is rec fA y .c0 By lemma 32, there is some F and ci such that label{f ,y} {a/x} c0 = F ai and label{f ,y} {b/x} c0 = F bi, and
furthermore ak = label {a/x} ck and bk = label {b/x} ck .

By the IH, we know that ∀k . Γ `L ak = bk .

But note that label {a/x} (rec fA y .c0) is (rec f y .F) ai, and label {b/x} (rec fA y .c0) is (rec f y .F) bi. So by LCCCONG using the
label (rec f y .F) we have Γ `L {a/x} c = {b/x} c as required.

c is rec fA •y .c0 Similar to the previous case.

c is (y :C1)→ C2 By lemma 32, there is some F and ci such that labelS {a/x}C2 = F ai and labelS {b/x}C2 = F bi, and furthermore
ak = label {a/x} ck and bk = label {b/x} ck .

Now label {a/x} c = ((y : –)→ F) (label {a/x}C1)ai. and label {b/x} c = ((y : –)→ F) (label {b/x}C1)bi.

By the IHs we get Γ `L label {a/x}C1 = label {b/x}C1 and also ∀k . Γ `L ak = bk . So we conclude by LCCCONG using the label
((y : –)→ F).

c is •(y :C1)→ C2 or c1 c2 or c1 = c2 Similar to the previous case.

c is c1 •c2 Then label {a/x} c = (– •) (label {a/x} c1) and label {b/x} c = (– •) (label {b/x} c1). By the IH we have Γ `L
label {a/x} c1 = label {b/x} b1. So we conclude by LCCCONG using the label (– •).

c is c1.c2 Similar to the previous case.

Lemma 34 (label preserves CC). If Γ ` a = b, then label Γ `L label a = label b.

Proof. Induction on Γ ` a = b. The cases are

CCREFL We are given
|a| = |b|

Γ ` a = b
CCREFL

From |a| = |b| and lemma 31 we know label a = label b. So apply LCCREFL.

CCSYM,CCTRANS These follow directly by IH.

CCASSUMPTION We are given
x : A ∈ Γ Γ ` A = (a = b)

Γ ` a = b
CCASSUMPTION

Since x : A ∈ Γ we know x : labelA ∈ label Γ. And by the IH we have label Γ ` labelA = label (a = b). Since label (a = b) is the
same as label a = label b, we conclude by LCCASSUMPTION.

CCCONGRUENCE We are given
Γ ` a = b

Γ ` {a/x} c = {b/x} c CCCONGRUENCE

Apply lemma 33.

CCINJDOM We are given
Γ ` (A1 → B1) = (A2 → B2)

Γ ` A1 = B1
CCINJDOM

The IH gives label Γ ` label (A1 → B1) = label (A2 → B2), which is the same as label Γ ` (– → –) (labelA1) (labelB1) = (– →
–) (labelA2) (labelB2). And (–→ –) is an injective label, so we conclude by CCINJECTIVITY.

CCINJRNG,CCIINJDOM,CCIINJRNG,CCINJEQ These cases are similar to the previous one.

Lemma 35 (Label arguments arise from well-typed subexpressions). • If Γ ` a ′ : A, and label a ′ = F ai, then for every ak there exists a ′k
such that Γ ` a ′k : Ak and ak = label a ′k .

• If Γ ` a ′ : A, and labelS a ′ = F ai, then for every ak there exists a ′k such that Γ ` a ′k : Ak and ak = label a ′k .

Proof. (Strong) induction on the structure of a ′. Most of the cases of the induction are similar, so we do not show all of them. A few
representative cases for label are:

a ′ is Type or some variable x Then label a ′ is a nullary label-application, so ai is empty and the lemma is vacuously true.

a ′ is rec fA x .b′ There is only one typing rule for rec-expressions, so from the judgement Γ ` a ′ : A, we know that

Γ, f : (x :A1)→ A2, x : A1 ` b′ : A2

From the definition of label we know that label a ′ is (rec f:A x.F) ai, where label{f ,x} b = F ai. So by the IH for a ′ we know that
there exists a ′k such that ak = label a ′k and Γ, f : (x :A1) → A2, x : A1 ` a ′k : A′. By lemma 30 we know that f and x are not free in
a ′k , so by strengthening (lemma 14) we have Γ ` a ′k : A′ as required.

a ′ is b′ c′ Then label a ′ is (– –) bi ci. The expression ak must belong to one of the lists bi or ci, so by the IH for b′ or c′ we get a
corresponding b′k or c′k .

A few representative cases for labelS are:

a ′ has no free variables in S Then labelS a ′ = (–) (label a ′). So there is only a single ak, which must be (label a ′). Thus we can take
a ′k = a ′.

a ′ is Type or some variable x Similar to the corresponding case for label: labelS a ′ is a nullary label-application and the lemma is
vacuously true.

a ′ is rec fA x .b′ As in the case for label, we know that

Γ, f : (x :A1)→ A2, x : A1 ` b′ : A2

and labelS a ′ is (rec f:A x.F) ai, where labelS∪{f ,x} b = F ai. Conclude by IH and strengthening as in the above case.

a ′ is b′ c′ Then labelS a ′ is (F G) bi ci. The expression ak must belong to one of the lists bi or ci, so by the IH for b′ or c′ we get a
corresponding b′k or c′k .

Lemma 36 (Inversion for label). • If (labelA′) = (– = –) a b, then there exists a ′ and b′ such that A′ = (a′ = b′) and (label a ′) = a
and (label b′) = b.

• If labelA′ = (–→ –) a1 a2, then there exists a ′1 and a ′2 such that A′ = (a ′1 → a ′2), and (label a ′1) = a1 and (label a ′2) = a2.

• Similar for •a ′1 → a ′2

• Similar fpr a ′1 = a ′2.

Proof. Immediate from considering cases for A′ and examining the definition of label.

Lemma 37 (Normalized untyped CC implies typed CC). • If label Γ′ `L pS : a = b, then there exists annotated core expressions a′, b′

such that a = label a ′ and b = label b′ and Γ′ � a ′ = b′.

• If label Γ′ `L pC : label a ′ = label b′ and Γ′ ` a ′ = b′ : Type, then Γ′ � a ′ = b′.

• If label Γ′ `L p∗ : label a ′ = label b′ and Γ′ ` a ′ = b′ : Type, then Γ′ � a ′ = b′.

• If label Γ′ `L p∗R : label a ′ = b and Γ′ ` a ′ : A, then there exists an b′ such that b = label b′ and Γ′ � a ′ = b′.

Proof. We proceed by mutual induction on the sizes of pS and p∗. The cases for pS are:

The evidence is x.p∗
R

By examining the definition of Γ `L p : a = b, we see that the only rule that applies is CCPASSUMPTION, so we
know we have

x : A ∈ (label Γ′)
label Γ′ `L p∗R : A = ((– = –) a b)

From x : A ∈ (label Γ′) we know that A = labelA′ for some x : A′ ∈ Γ′.

Then from the mutual IH for p∗R we known that there exists some B ′ such that ((– = –) a b) = labelB ′ and Γ′ � A′ = B ′.

Further, by lemma 36 we know that B ′ = label (a ′ = b′) for some expressions a ′ and b′ such that a = label a ′ and b = label b′. So we
have shown Γ′ � A′ = (a ′ = b′). Now apply TCCASSUMPTION to conclude Γ′ � a ′ = b′ as required.

The evidence is (x.p∗
R
)−1 By reasoning as in the previous case we get some a′ and b′ such that a = label a ′ and b = label b′ and

Γ′ � a ′ = b′. Then apply TCCSYM to conclude Γ′ � b′ = b′ as required.

The evidence is inj i pS By examining the definition of the Γ `L p : a = b judgement we see that the only rule that applies is CCPINJ. So
we must have

label Γ′ `L pS : F ai = F bi
F injective

Recall that F injective means that F is either –→ –, – = –, or •–→ –.

We consider the case when it is –→ – and i is 1; the other cases are similar. That is, the assumed derivation looks like

label Γ′ ` pS : (–→ –) a1 a2 = (–→ –) b1 b2

label Γ′ `L inj i pS : a1 = b1

From the IH we get expressions A′ and B ′ such that (– → –) a1 a2 = labelA′ and (– → –) b1 b2 = labelB ′, and Γ′ � A′ = B ′. By
lemma 36 we then know A′ = (a ′1 → a ′2) and B ′ = (b′1 → b′2) Then apply TCCINJDOM to conclude Γ′ � a ′1 = b′1 as required.

The evidence is a chain p∗LR From the grammar for p∗LR that means that it is either a single terms pS (which we dealt with in the above
cases), or it is a chain starting and ending with a synthesizable term, that is p∗LR is pS ; q∗; rS .

In the latter case, by the IH for pS and rS we get terms c′1 and c′2 such that Γ � label a ′ = label c′1 and Γ � label c′1 = b′.

Now we can apply the mutual induction hypothesis for the chain r∗, to get Γ′ � c′1 = c′2.

Finally, apply transitivity (CCPTRANS) twice to conclude Γ′ � a ′ = b′ as required.

The only case for pC is when the evidence term is a use of congruence, congF p1 .. pi . The only rule that applies is CCPCONG, so the
assumed derivation is

∀k . label Γ′ `L pk : ak = bk

label Γ′ `L congF p1 .. pi : F ai = F bi

By assumption we know that (F ai) = (label a ′) and (F bi) = (label b′).

From the assumption Γ ` a ′ = b′ : Type we know a ′ and b′ are well typed, so by lemma 35 we know that for every ak there exists a well
typed a ′k such that ak = label a ′k , and similarly for bk .

So from IH for pk we know ∀k . Γ′ � a ′k = b′k .

By lemma 29 we know that |a ′| = |{unlabel a1/x1} ... {unlabel ai/xi}F |. Since unlabel is inverse to label (lemma 28) this means
|a ′| = |{a ′1/x1} ... {a ′i/xi}F |. Similarly, |b′| = |{b′1/x1} ... {b′i/xi}F |. Finally, we know that Γ′ ` a ′ = b′ : Type by the assumption to
the theorem.

So by TCCCONGRUENCE, Γ′ � a ′ = b′ as required.

The cases for p∗ are:

The empty chain (refl) The only rule that can apply is CCPREFL, so we know that (label a ′) = (label b′). By lemma 31 this implies that
|a ′| = |b′|. We know as an assumption to the lemma that Γ′ ` a ′ = b′, apply TCCERASURE to conclude Γ′ � a ′ = b′ as required.

A chain consisting of a single term, p The evidence term p must be either a checkable are a synthesizable term. In the case when it is a pC
we directly appeal to the mutual IH.

In the case when it is a pS , by the mutual IH we know that there are a ′′ and b′′ such that a = label a ′′ and b = label b′′ and
label Γ′ � a ′′ = b′′.

Since label a ′ = label a ′′, by lemma 31 we know |a ′| = |a ′′|, and similarly |b′′| = |b′|. So by two uses each of TCCERASURE and
TCCTRANS we get label Γ′ � a ′ = b′, as required.

A chain of length > 1, starting with synthesizable term, pS ; q∗ The only rule that applies is CCPTRANS, so we must have

label Γ′ `L p : a = c
label Γ′ `L q∗ : c = b

From the mutual IH for pS we know that there is some a ′′ and c′′ such that a = label a ′′, c = label c′′, and label Γ′ � a ′′ = c′′. By
reasoning as in the previous case we also know that label Γ′ � a ′ = a ′′.

Now by the IH for q∗ we know label Γ′ � c′′ = b′.

So by transitivity (TCCTRANS) we get label Γ′ � a ′ = b′′ as required.

A chain of length > 1, starting with a checkable term, pC ; qS ; r∗ The definition of chains stipulates that there must never be two adja-
cent pC s, so we know that the second evidence term in the chain, qS , is synthesizable.

The only rule that applies is CCPTRANS, so we must have

label Γ′ `L pC : a = c1

label Γ′ `L qS : c1 = c2

label Γ′ `L r∗ : c2 = b

By the mutual IH for qS we get suitable c′1 and c′2. Then apply the IHs for pC and r∗.

The cases for p∗R are similar to the reasoning for general chains p∗.

Lemma 38 (Core proof terms for Γ � a = b). If Γ � a = b, then there exists some value v in the annotated core language such that
Γ ` v : a = b.

Proof. Induction on the judgement Γ � a = b.

TCCERASURE The assumed derivation looks like
|a| = |b| Γ ` a : A Γ ` b : B

Γ � a = b
TCCERASURE

From the regularity assumptions Γ ` a : A and Γ ` b : B we know Γ ` a = b : Type. So the equation follows from a use of join:

|a|;0
cbv |a| |b|;0

cbv |a| Γ′ ` a = b : Type

Γ′ ` join;cbv00:a=b : a = b

TCCREFL Similar to the previous case.

TCCSYM By IH we get Γ ` v : a = b. From regularity (lemma 24) we know that a is typeable, so Γ ` a = a : Type. then we can prove
b = b using TCAST, TSUBST and TJOINC, as follows:

Γ ` v : a = b
Γ ` join∼v=a : (a = a) = (b = a)

Γ ` a = a : Type

Γ ` join;cbv00:a=a : a = a

Γ ` join;cbv00:a=a.join∼v=a
: b = a

TCCTRANS The assumed derivation looks like
Γ � a = b Γ � b = c

Γ � a = c
TCCTRANS

The IHs are Γ ` v1 : a = b and Γ ` v2 : b = c. We can then prove a = c using TJCAST and TJSUBST:

Γ ` v1 : a = b

Γ ` v2 : b = c

Γ ` joina=∼v2
: (a = b) = (a = c)

Γ ` v.joina=∼v2
: a = c

TCCASSUMPTION The assumed derivation looks like
x : A ∈ Γ Γ � A = (a = b)

Γ � a = b
TCCASSUMPTION

The IH gives Γ ` v : A = (a = b), so Γ ` x.v : a = b.

TCCCONGRUENCE The assumed derivation looks like
Γ ` A = B : Type ∀k . Γ � ak = bk
|A = B | = |{a1/x1} ... {aj/xj} c = {b1/x1} ... {bj/xj} c|

Γ � A = B
TCCCONGRUENCE

The IH gives vi such that ∀k . Γ ` vk : ak = bk . By the regularity assumption to the rule we know that the equation is well-typed. So by
TJSUBST we have

Γ ` join{∼v1/x1} ... {∼vj /xj }c:A=B : A = B

as required.

TCCINJDOM From the IH we have Γ ` v : ((x :A1)→ B1) = ((x :A2)→ B2). So apply TJINJDOM to get Γ ` joininjdom v : A1 = A2

as required.

TCCINJRNG, TCCIINJDOM, TCCIINJRANGE, TCCINJEQ Similar to the TCCINJDOM case.

Theorem 39 (Typed CC from untyped CC). Suppose Γ ` a = b and Γ ` a = b : Type. Then Γ � a = b, and furthermore Γ ` v : a = b
for some v .

Proof. From Γ ` a = b, by lemma 34 we get Γ ` label a = label b. By evidence simplification (lemma 27) we get Γ `L p∗ : label a =
label b. From this, and the fact that Γ ` a = b : Type, by lemma 37 we get Γ � a = b as required. Finally, by lemma 38 there is some v
such that Γ ` v : a = b.

Lemma 40. If Γ � a = b then Γ ` a = b.

Proof. Induction on Γ � a = b.

TCCREFL,TCCERASURE By CCREFL.

TCCSYM,TCCTRANS,TCCASSUMPTION By IH, then using CCSYM, or CCTRANS CCASSUMPTION.

TCCCONGRUENCE The given derivation looks like

Γ ` A = B : Type ∀k . Γ � ak = bk
|A = B | = |{a1/x1} ... {aj/xj} c = {b1/x1} ... {bj/xj} c|

Γ � A = B
TCCCONGRUENCE

From the IHs we know ∀k . Γ ` ak = bk , so by applying CCCONGRUENCE j times we get

Γ ` {a1/x1} ... {aj/xj} c = {b1/x1} ... {bj/xj} c
Then use CCREFL and CCTRANS to get Γ ` a = B .

TCCINJRNG The IH gives Γ ` (A1 → B1) = (A2 → B2). Then apply CCINJRNG.

TCCINJDOM,TCCIINJDOM,TCCIINJRNG,TCCINJEQ Similar to previous case.

Putting together two lemmas we get this version which is quoted in the paper:

Corollary 41 (TCC implies LCC). If Γ � a = b then label Γ `L label a = label b.

Proof. By lemma 40 we have Γ ` a = b, then by lemma 34 we get label Γ `L label a = label b.

Lemma 42 (Untyped CC ignores annotations in Γ). If Γ ` a = b and |Γ| = |Γ′| then Γ′ ` a = b.

Proof. By induction on Γ ` a = b. All the cases are immediate by IH except CCASSUMPTION, were we are given

x : A ∈ Γ Γ ` A = (a = b)

Γ ` a = b
CCASSUMPTION

By the IH we know Γ′ ` A = (a = b). From the assumption |Γ| = |Γ′| we know that there is some x : A′ ∈ Γ′ with |A′| = |A|. By
CCREFL we have Γ′ ` A′ = A, so by CCTRANS we know Γ ` A′ = (a = b). Then conclude by CCASSUMPTION.

Lemma 43 (Untyped CC ignores annotations). If Γ ` a = b and |Γ| = |Γ′| and |a| = |a ′| and |b| = |b′|, then Γ′ ` a ′ = b′.

Proof. By lemma 42 we know Γ′ ` a = b, and by CCREFL we know Γ′ ` a ′ = a and Γ′ ` b = b′. Then conclude by CCTRANS.

Lemma 44 (CC doesn’t look at type annotations). Suppose Γ � a = b, and |Γ′| = |Γ|, |a ′| = |a| and |b′| = |b|, and Γ′ ` a ′ : A′ and
Γ′ ` b′ : B ′. Then Γ′ � a ′ = b′.

Proof. From Γ � a = b by lemma 40, we get Γ ` a = b. By lemma 43 we get Γ′ ` a ′ = b′. Then by theorem 39 we get Γ′ � a ′ = b′.

D. The untyped congruence closure algorithm and its correctness

The following section gives a precise mathematical definition of our algorithm to decide the Γ `L a = b relation, and a correctness proof.
The algorithm was described informally in Section 7.2.

D.1 Flattening

Developing the main rewriting algorithm is easier if the input problem is in a simple, restricted form. So following Nieuwenhuis and
Oliveras [23] we first “flatten” the problem by introducing a fresh name for each subterm that occurs in it. We assume that we have an
infinite set of atomic constants ci available. The basic idea is that for any context Γ, we can construct an equivalent context with named
subterms, e.g. a given assumption h : f(g a) = b can be replaced with the set of assumptions

h1 : f = c1
h2 : g = c2
h3 : a = c3
h4 : c2 c3 = c4
h5 : c1 c4 = c5
h6 : b = c6
h : c5 = c6

In the ZOMBIE implementation, the flattening pass works directly on core language expressions. Constants are just integers, and the output
of the flattening pass consists of a list of equations in the following Haskell datatype:

data EqConstConst = EqConstConst Constant Constant

data EqBranchConst = EqBranchConst Label [Constant] Constant

type Equation = Either EqConstConst EqBranchConst

In addition, there is a table keeping track of additional information about each constant—in particular, whether that constant represents a
type which is inhabited by a variable in the context. This is needed to handle the “assumption up to congruence” rule.

In order to reason about the correctness of this process, we need to formalize the input and output of the flattening. We aim to verify
the algorithm, not the implementation, so we abstract away from the exact datastructures and instead represent the flattening stage as a
transformation from contexts to context. The input is a context where each member is a labelled term (as defined in section C.1). The output
is a context containing all the equations (the hs above), and also variable declarations encoding the information about being inhabited. For
simplicitly, whenever a constant is marked as inhabited we assume that there is an inhabitant for both the constant and the expression that
it names. (When generating core language proofs all constants are replaced with the original core language expressions they named). For a
more complete example, the labelled context

x : F ab
y : F a b = G

will be transformed into the flat context
h1 : a = c1
h2 : b = c2
h3 : F c1 c2 = c3
h4 : G = c4
h5 : (c3 = c4) = c5
x1 : c3
x2 : F c1 c2
y1 : c5
y2 : (c3 = c4)

where the hi represent the list of equations that the algorithm outputs, and the xi and yi represent the information that c3 and c5 are inhabited.

The treatment of flattening is a bit more subtle than in previous work about first-order logic. In first-order systems, terms and equations are
syntactically distinct categories, and one can maintain the invariant that every non-atomic subterm appearing in the flat context has a name.
But in our setting there are two sources of equations in the flat context and only some of them have names; in the above example the equation
x from the input context has been given the name c5, but the flat context also contains the new assumptions hi, and we do not allocate
constants naming them (which would lead to infinite regress).

To be precise, the output of the flattening phase is a flat context, in the sense of the following definiton.

Definition 45 (Flat term). A term is flat if it is either an atom a, or a label application F ai such that each ai is an atom.

Definition 46 (Flat term over Γ). Let Γ be a context. We say that a term a is flat over Γ if a is either an atom, or it is a label applied to a list
of atoms F ai which is the left-hand-side of an equation in Γ.

Definition 47 (Flat context). A context Γ is flat if each variable binding in it is either:

• x : a where a is a flat term over Γ.

• x : a = b where a and b are atoms.

• x : F ai = b, where ai and b are atoms, and satisfying the following property: there exists a variable y : F ai ∈ Γ iff there exists a
variable z : b ∈ Γ.

In the above example, the first bullet point corresponds to the xi and yi, and the second two bullet points correspond to the hi.

Given any context Γ we can create an equivalent flat context Γ′ by repeatedly picking a subexpression b which is is not yet a left-hand-side
of an equation, picking a fresh name x for it, and replacing b with x throughout the context and goal. This procedure is exactly the same as
the one by Nieuwenhuis and Oliveras.

However, the proof of its correctness is slightly more complicated. The following lemmas show that this this operation does not change
what equations are provable. But in addition, we sharpen the result slightly to specify what the proofs look like: the new equations (the hi
in the above example) can be used as-is as assumptions, there is no need to for the more general assumption-up-to-CC rule. We need the
sharpened result to justify that the flattening algorithm is complete even though it only works on the original input context, and does not go
on to recursively flatten the new equations that it introduced.

Lemma 48. For any labelled context Γ, and any labelled terms a and b, we have Γ, h : x = b `L p : a = {b/x} a . Furthermore, every use
of h in the evidence term p is of the form h.refl.

Proof. Induction on the structure of a.

• It is the variable x (a nullary label application). By CCPASSUMPTION we have Γ, h : x = b `L h.refl : x = b, as required.

• It is some other application F ai. Then {b/x} (F ai) = F {b/x} ai . By IH we get Γ, h : x = b `L pi : ai = {b/x} ai and hence by
congruence we have Γ, h : x = b `L congF pi

i : F ai = {b/x} (F ai).

Lemma 49 (Naming subterms). Suppose that x does not occur in b, and h is completely fresh. Then there exists p such that {b/x}Γ `L p :
{b/x} a1 = {b/x} a2 iff there exists p′ such that Γ, h : x = b `L p′ : a1 = a2. Futhermore, any use of h in p′ is of the form h.refl.

Proof. We prove the two directions by separate inductions. For the the “⇒” direction, the cases are:

CCPREFL We know that {b/x} a1 ≡ {b/x} a2. Apply lemma 48 to get Γ, h : x = b `L p1 : a1 = {b/x} a1 and Γ, h : x = b `L p2 :
{b/x} a2 = a2, then conclude by transitivity.

CCPSYM, CCPTRANS Directly by IH.

CCPASSUMPTION We are given the derivation

y : {b/x}A ∈ {b/x}Γ {b/x}Γ `L q : {b/x}A = ({b/x} a1 = {b/x} a2)

{b/x}Γ `L y.q : {b/x} a1 = {b/x} a2

(Where y : A ∈ Γ). By the IH, we have Γ, h : x = b `L q ′ : A = (a1 = a2). Then apply CCPASSUMPTION again.

CCPCONG We are given derivation {b/x}Γ `L congF pk
k : {b/x} (F ai) = {b/x} (F bi). Note that {b/x} (F ai) ≡ F{b/x}ai, then

apply the IHs for the pk .

CCPINJ Similar to the previous case.

The cases for the “⇐” direction are:

CCPREFL Directly by CCPREFL.

CCPSYMM, CCPTRANS Immediate from IH.

CCPASSUMPTION We are given the the derivation

y : A ∈ (Γ, h : x = b) Γ, h : x = b `L q : A = (a1 = a2)

Γ, h : x = b `L y.q : a1 = a2

There are two cases. If x ≡ h, we know Γ, h : x = b `L q : (x = b) = (a1 = a2). By the IH we have {b/x}Γ `L q ′ : (b = b) =
({b/x} a1 = {b/x} a2) By CCPINJ we get {b/x}Γ `L q1 : b = {b/x} a1 and {b/x}Γ `L q2 : b = {b/x} a2. Then conclude by
symmetry and transitivity.

Otherwise, y : A ∈ Γ. By the IH we have {b/x}Γ `L q ′ : {b/x}A = ({b/x} a1 = {b/x} a2), so {b/x}Γ `L y.q′ : {b/x} a1 =
{b/x} a2, as required.

CCPCONG,CCPINJ From IH, using the fact that {b/x} (F ai) ≡ F{b/x}ai.

In the assumption case for the, we are given that a1 = a2 ∈ (Γ, h : x = b). If the equation used was h itself we must prove
{b/x} x = {b/x} b which is certainly true.

Otherwise, we have (a1 = a2) ∈ Γ, and we must prove {b/x}Γ ` {b/x} a1 = {b/x} a2; this follows directly by the assumption rule.

Lemma 50 (Redundant equal assumptions). If Γ `L b1 = b2, then Γ, x1 : b1 ` a1 = b2 iff Γ, x1 : b1, x2 : b2 ` a1 = a2

Proof. The “⇐” direction is a trivial induction. The “⇒” direction is by induction on Γ, x1 : b1 ` a1 = b2. The only interesting case is the
assumption case, in the case when x2 is the used assumption. Then we are given the derivation

Γ, x1 : b1, x2 : b2 ` b2 = (a1 = a2)

Γ, x1 : b1, x2 : b2 ` a1 = a2

By IH we get Γ, x1 : b1 ` b2 = (a1 = a2). Then by transitivity we have Γ, x1 : b1 ` b1 = (a1 = a2), and conclude by using assumption
x1.

Lemma 51 (Flattening contexts). For any triple (Γ, a1, a2), we can find a triple (Γ′, a ′1, a
′
2), where Γ′ contains two sets of assumptions xi

and hi, which satisfies the following:

1. For all xi : A ∈ Γ′, the expression A is a flat term over Γ′.

2. For all hi : A ∈ Γ′, A is an equation of the form mentioned in one of the second two bullet points of definition 47.

3. There exists some p such that Γ `L p : a1 = a2 if and only if there exists some p′ such that Γ′ `L p′ : a ′1 = a ′2. Furthermore, every use
in p′ of an assumption from the set hi has the form hi.refl (i.e. the conversion is just refl).

In particular, (1) and (2) implies that Γ′ is a flat context.

Proof. We begin with the context Γ, and let the assumptions in it be the original set of assumptions x. Then we repeatedly use lemma 49 to
add additional equations h until properties (1) is satisfied, while maintaining (2) and (3) as invariants. We write Γ0, Γ1, . . . for the intermediate
contexts.

The original context Γ0 ≡ Γ trivially satisfies (2) and (3), since the set of assumptions hi is empty.

Now let Γk be some intermediate context. If all the assumptions xi : A ∈ Γk are already over flat terms over Γk then we are done. Otherwise,
A is a labelled term, so we pick a subterm of it of the form b ≡ F ai with ai atomic, pick a fresh atom c, and replace all occurances of b with
c everywhere in Γk , a1 and a2. Call the resulting context Γ′k , so that Γk ≡ {b/c}Γ′k . The next context is then Γk+1 ≡ Γ′k , h : b = c, x ′ : b
if b occured as an assumption in Γk , and bΓk+1 ≡ Γ′k , h : b = c otherwise. We check that Γk+1 still satisfies the invariants. For (1), x′

is indeed a flat term over the context (thanks to h). For (2), the new equation is of the application-constant form, and either neither side is
inhabited, or x and x′ inhabit the two sides.

For (3), we consider the case where Γk+1 ≡ Γ′k , h : b = c, x ′ : b (the case when there is no assumption x′ is simpler). We need to show

There exists some p such that Γk `L p : a1 = a2 if and only if there exists some p′ such that Γ′k , h : b = c, x ′ : b `L p′ : a ′1 = a ′2
(with uses of hs restricted).

Lemma 49 gives us that Γk `L p : a1 = a2 iff Γ′k , h : b = c `L p′ : a ′1 = a ′2. And lemma 50 gives Γ′k , h : b = c `L p′ : a ′1 = a ′2 iff
Γ′k , h : b = c, x ′ : b `L p′ : a ′1 = a ′2, because x : c ∈ Γ′k .

D.2 Main Algorithm

The state of the algorithm consists of:

• A list E of pending equations to be processed.

• A representatives table, which maps each constant c to its Union-Find representative c′ = r(c). Along which each representative, we
store information about that equivalence class:

The equality list, Q(c). The set of pairs of constants (a, b) such that a = b is in this equivalence class of c′.

The injectivity list, I(c). The set of tuples (Ax1, . . . xn) such that A is injective and A x1 . . . xn is in the equivalence class of c′.

The use list, U(c): the set of input equations y = A x1 . . . xn such that c′ is the representative of one of the xi.

The assumption flag, A(c). A Boolean tracking any member of the equivalence class that was inhabited by a variable in the context.

We will overload notation slightly to let Q(a) mean Q(r(a)) when a is not the representative of its class, and similar for I , U , and A.

• The lookup table (a.k.a signature table), S: maps tuples (A, x1, . . . xn) to an input equation y = A x1 . . . xn, if such an equation exists,
or to the undefined value ⊥ otherwise.

Of these, I(c), Q(c), and A(c) are additions which were not in the Nieuwenhuis-Oliveras algorithm.

The algorithm is initialized as follows:

E0 = All the given equations in Γ
r0(c) = c for all constants c in the problem
Q0(c) = ∅ for all constants c
I0(c) = ∅ for all constants c
U0(c) = ∅ for all constants c
A0(c) = true iff x : c ∈ Γ
S0(F, a1, . . . , an) = ⊥ for all labels and constants

The algorithm then proceeds by considering the pending equations one by one, updating the state and sometimes adding additional pending
equations. We can show it symbolically as a transition system between tuples containing the state. (In the “merge” rule, we show the case
where a rather than b is picked as the representative by the union operation, but this choice does not affect correctness, and in practice the
implementation will choose one or the other depending on the size of the equivalence classes).

TRIVIAL (E ∪ {a = b}, r,Q, I, U,A, S)
=⇒ (E, r,Q, I, U,A, S)

when r(a) = r(b) already

MERGE (E ∪ {a = b}, r,Q, I, U,A, S)
=⇒ (E ∪ {ai = bi | (F a1 . . . an) ∈ I(a) and (F b1 . . . bn) ∈ I(b)}

∪U(b)
∪{c = c′ | (c, c′) ∈ Q(a) ∧A(b) ∧ ¬A(a))}
∪{c = c′ | (c, c′) ∈ Q(b) ∧A(a) ∧ ¬A(b))},

r′, Q′, I ′, U,A′, S)
where r′(b) = r(a), Q′(a) = Q(a) ∪Q(b), I ′(a) = I(a) ∪ I(b), and A′(a) = A(a) ∨A(b)

UPDATE1 E ∪ {F a1 . . . an = a}, r,Q, I, U,A, S)
=⇒ (E′, r,Q′, I ′, U ′, A, S′)

where S′(F, a1, . . . , an) = (F a1 . . . an = a)
when S(F, a1, . . . , an) = ⊥

UPDATE2 (E ∪ {F a1 . . . an = a}, r,Q, I, U,A, S)
=⇒ (E′ ∪ {a = b}, r,Q′, I ′, U ′, A, S)

when S(F, a1, . . . , an) = (F b1 . . . bn = b)

Where in the UPDATE1 and UPDATE2 rules,

E′ = E ∪ {ai = bi | (F b1 . . . bn) ∈ I(a)} ∪ {c = c′ | if F a1 . . . an is c = c′ and A(a) }
Q′(a) = Q(a) ∪ {c = c′ | if F a1 . . . an is c = c′}
I ′(a) = I(a) ∪ {F a1 . . . an | if F is injective}
U ′(ai) = U(ai) ∪ (F a1 . . . an = a) for 1 ≤ i ≤ n

D.3 Soundness

Lemma 52 (Invariants for soundness). Suppose (E0, r0, Q0, I0, U0, A0, S0) is the initial state correponding to a flat context Γ, and
(E0, r0, Q0, I0, U0, A0, S0) =⇒∗ (E, r,Q, I, U,A, S). Then

1. If (a = b) ∈ E, then Γ `L a = b.

2. If r(a) = b, then Γ `L a = b.

3. If (a = b) ∈ Q(c), then Γ `L c = (a = b).

4. If F ai ∈ I(c), then Γ `L c = (F ai) and F is injective.

5. If U(c) = (F ai = a), then Γ `L F ai = a .

a ≈E a
EQREFL

a ≈E b
b ≈E c

a ≈E c
EQTRANS

a = b ∈ E

a ≈E b
EQASSUMPTION

a ≈E b

b ≈E a
EQSYMM

Figure 17. The equivalence relation generated by a set of equations E

6. If S(F, a1, . . . , an) = (F bi = b), then Γ `L F bi = b and Γ `L F ai = b.

7. If A(c) = true, then there exists some x : A ∈ Γ such that Γ `L c = A.

Proof. We first check that all then invariants hold in the initial state (E0, r0, Q0, I0, U0, A0, S0). (1) is true because each equation in E0 is
a hypothesis from Γ. (2) is true because r0 is just the reflective relation. (3–6) are vacuously true since the sets Q,I ,U and S are all empty.
And (7) holds because of how A was initialized.

Next, we check that all the transitions of the algorithm preserves the invariants. In the TRIVIAL transition the only component of the state
that changes is E, and E′ ⊂ E gets smaller so the invariant is trivially preserved. MERGE and UPDATE1/2 add additional equations, but it
is easy to see that they are justified by the Γ ` a = b relation.

(In the implementation, the datastructures forE,r and S store not only the terms a and b, but also proof terms Γ `L p : a = b. Each transition
constructs new proof terms from the old).

D.4 Completeness

The completeness proof follows the same strategy as the proof by Corbineau [11]. We prove that at the end of a run of the algorithm, the
union-find structure r has enough links to validate all the proof rules of the Γ `L a = b relation—in particular the assumption, congruence,
and injectivity rules.

The invariant properties of the relation are stated in terms of the equivalence relations generated by a sets of equations. We let the letters E
and R range over lists of equations,

E,R ::= · | E , a = b

and write a ≈E b for the equivalence relation generated by such a list. In other words, the relation defined by the rules in Figure 17.

The equivalence relations satisfies some simple properties:

Lemma 53. If b ≈(E,a=a′) b
′, then either b ≈E b′, or b ≈E a and a ′ ≈E b, or b ≈E a ′ and a ≈E b.

Proof. Induction on the judgement b ≈(E,a=a′) b
′.

Lemma 54. If a ≈E a ′, then b ≈(E,a=a′) b
′ iff b ≈E b′.

Proof. The “⇐” direction is an easy induction. For the “⇒” direction, by lemma 53 either we have b ≈E b′ (and we are done), or else the
equation was used. If the equation was used we have either b ≈E a and a ′ ≈E b, or b ≈E a ′ and a ≈E b. Either way, the conclusion
follows by transitivity and symmetry.

Lemma 55. If a ≈E b or b ≈E a , and the is is not an instance of reflexivity (i.e. a 6≡ b), then E contains some equation of the form a = c
or c = a .

Proof. Easy induction.

In a given a state (E, r,Q, I, U,A, S) of the algorithm, we write E for the set of equations occuring in the first component, and we write R
to denote the content of r and S interpreted as a a set of equations according to the following scheme:

• One equation equation c = c′ whenever r(c) = c′.

• One equation equation F ai = b whenever ∀k.r(ak) = a′k and S(F, a′1, . . . , a
′
n) = (F bi = b).

Note that R is finite, because both r and S have finite domains. We use the notation E \ E ′ to denote set-difference.

In all the following we assume that the list E has no duplicates, so we can equivocate between treating it as a set and as a list. This makes
it easier to state the invariants of the algorithm (in particular invariant 2 below). In practice, if the list does contain duplicates they will
eventually be discarded by the rule TRIVIAL, so when implementing the algorithm there is no need to preprocess the list to remove them.

Lemma 56 (Monotonicity of ≈E,R). If (E, r,Q, I, U,A, S) =⇒ (E′, r′, Q′, I ′, U ′, A′, S′) and c1 ≈E,R c2, then c1 ≈E ′,R′ c2.

Proof. We consider each of the transitions in turn.

Trivial We already had the equation a = b ∈ R, so E ∪R ≡ E′ ∪R′.

Merge We deleted the equation a = b fromE, and added the equation r(a) = r(b) to R. By transitivity we can derive a ≈ r(a) ≈ r(b) ≈ b.
Then appeal to lemma 54.

Update1 We deleted the equation F ai = a from E and added it to R, so E ∪R ≡ E′ ∪R′.

Update2 By the definition ofR, we already had F ai = b ∈ R. Now we deleted F ai = a from E, and instead added a = b. By transitivity
we can derive F ai ≈ b ≈ a. Then appeal to lemma 54.

We can now state the invariants of the algorithm.

Lemma 57 (Invariants for completeness of CC algorithm). Suppose (E0, r0, Q0, I0, U0, A0, S0) is the initial state correponding to a flat
context Γ, and (E0, r0, Q0, I0, U0, A0, S0) =⇒∗ (E, r,Q, I, U,A, S). Then

1. If x : A ∈ Γ then for all a, b, if A ≈R (a = b) then a ≈E,R b.

2. If for all 0 ≤ i < n we have ai ≈R bi , and both F ai and F bi are left-hand-sides of equations in E0 \ E , then F ai ≈E,R F bi.

3. For all ai and bi, if F ai ≈R F bi and F is injective, then ∀k.ak ≈E,R bk .

4. If F ai = b ∈ (E0 \ E), then for all 0 ≤ i < n we have (F ai = b) ∈ U(ai).

5. If F ai = a ∈ (E0 \ E) and r(ak) = a′k, then S(F ai
′) = (F bi = b) for some equation such that b ≈E,R a and bk ≈R ak . And

conversely, if S(F ai
′) = (F bi = b) , then the equation F ai = a ∈ (E0 \ E) and b ≈E,R a and bk ≈R ak .

6. If c ≈R (a = b), then (a′ = b′) ∈ Q(c), for some constants a′ and b′ such that a ≈R a ′ and b ≈R b′.

7. if c ≈R F ai for some injective label F , then F ai ∈ I(c).

8. A(c) iff c ≈R A for some A such that x : A ∈ Γ.

9. All equations in E, S and U are between flat terms. Also, if an equation has the form the form F ai = a (label application vs atomic
constant), then that equation was present in E0, and there exists a variable x : F ai ∈ Γ iff there exists a variable y : a ∈ Γ

Proof. We first must check that these invariants hold for the initial state (E0, r0, Q0, I0, U0, A0, S0).

1. In the initial state R is just the reflexive relation, so the statement simplifies to “if x : a = b ∈ Γ then a ≈E,R b”. In the initial state
corresponding to Γ, we have (a = b) ∈ E0, so this is true.

2. E0 \ E is empty, so vacuously true.

3. R is the reflexive relation, so the only case we worry about is a reflexive equation F ai ≈R F ai. Then we certainly also have ak ≈E,R ak .

4. E0 \ E is empty, so vacuously true.

5. Both E0 \ E and S are empty, so both directions are vacuously true.

6. R is the reflexive relation, so we can never have an atom ≈ a label application.

7. Similar to invariant 6.

8. R is the reflexive relation, soA(c) should be inhabited if the constant c itself is inhabited by a variable. This is exactly howA is initialized.

9. S0 and U0 are empty, so we only need to consider the equations in E0. For these, the invariant is just restating part of the assumption that
Γ is a flat context (definition 47).

Next, we check that the invariants are preserved by each transition (E, r,Q, I, U,A, S) =⇒ (E′, r′, Q′, I ′, U ′, A′, S′). The cases are:

TRIVIAL Here E = E′, a = b and R = R′. By the precondition to the rule we know a ≈R b, so by lemma 54 the relations ≈E,R and
≈E′,R′ coincide. And since R = R′ the relations ≈R and ≈R′ coincide trivially. Finally, the set of expressions F ai which appear as
left-hand sides in E0 \ E and E0 \ E ′ are the same (since the only equation that changed was an atom-atom equation). It is then easy to
see that all the invariants are preserved.

MERGE In this transition, S is unchanged and we added one link to r. So R′ = (R, b = a′), where we write a′ = r(a).

1. We are given some A, c1, c2 such that A ≈R′ (c1 = c2), and we must show c1 ≈E ′,R′ c2.

By lemma 53, there are two cases. Either the new equation was not used, i.e. A ≈R (c1 = c2). Then by the IH for the previous step
we have c1 ≈E,R c2. By monotonicity (lemma 56) c1 ≈E ′,R′ c2 as required.

Otherwise the new equation was used, so we have A ≈R b and a ′ ≈R (c1 = c2) (or the symmetric A ≈R a ′ and b ≈R (c1 = c2);
we show the first case w.l.o.g.). By invariant 8 we know that A(b) = true, and by invariant 6 we know that (c′1 = c′2) ∈ Q(a′) for
c′1 ≈R c1 and c′2 ≈R c2.

Now proceed by cases on the value of A(a′). If A(a′) = true, then by invariant 8 we know that there is some y : A′ ∈ Γ such that
A′ ≈R a ′. So by invariant 1 we have c1 ≈E,R c2. By monotonicity (lemma 56) c1 ≈E ′,R′ c2 as required.

Otherwise, A(a′) = false. We have A ≈R b, so by invariant 8 we known A(b) = true. In other words, we have A(b) ∧ ¬A(a). So
the transition rule MERGE will add the equation c′1 = c′2 to E ′. Then c1 ≈E ′,R′ c2 using that new equation.

2. We are given some F ci and F ci′ ∈ E0 \ E ′, such that ∀i.ci ≈R′ c
′
i , and we need to show F ci ≈E ′,R′ F ci

′.

Apply lemma 53 to each of the ci ≈R′ c
′
i . Suppose that all of them fall in the first the first case, so the new equation was not used and

we have ci ≈R c′i . Then by invariant 2 we have F ci ≈E,R F ci
′. By monotonicity (lemma 56) F ci ≈E ′,R′ F ci

′ as required.

Otherwise, there is at least one k such that the new equation b = a′ was used. That is, we have ck ≈R b and a ′ ≈R c′k (or the
symmetric case ck ≈R a ′ and b ≈R c′k ; we show the first case w.l.o.g.). So in particular ck and b have the same representative. Now
E0 \ E ⊇ E0 \ E ′, so F ci ∈ E0 \ E . Then by invariant 4 we have (F ci = c0) ∈ U(b). So by the transition rule MERGE we have
(F ci = c0) ∈ E′, contradicting the assumption that F ci ∈ E0 \ E ′.

3. We are given F ci ≈R′ F ci
′ and must show ck ≈E ′,R′ c

′
k . By lemma 53 we must consider two cases.

Either F ci ≈R F ci
′. Then by invariant 3 we have F ci ≈E,R F ci

′, and by monotonicity (lemma 56) F ci ≈E ′,R′ F ci
′ as required.

Otherwise we have F ci ≈R b and a ′ ≈R F ci
′ (or the symmetric case). So by invariant 7 we have F ci ∈ I(b) and F ci′ ∈ I(a). So

by the transition rule MERGE the equation ck = c′k is explicitly added to E′, and we have ck ≈E ′,R′ c
′
k as required.

4. F ai = a ∈ (E0 \ E ′). The only equation which changed was an atom-atom equation, so we also have F ai = a ∈ (E0 \ E). Then
appeal to invariant 4 for the previous state.

5. For the first direction, suppose F ai = a ∈ (E0 \ E ′). The only equation which changed was an atom-atom equation, so we also
have F ai = a ∈ (E0 \ E). Then by invariant 5 for the previous state, we have S(F ai) = (F bi = b) which are suitably ≈E,R. By
monotonicity they are still ≈E′,R.

For the converse direction, suppose that (F bi = b) is in the range of S. Since the transition rule did not change S, it must still be in
the range of S in the previous state. So by the invariant F bi = b ∈ (E0 \ E), and the subterms are suitably ≈E,R. Similar to the
previous paragraph, it must also be in (E0 \ E ′), and by monotonicity the subterms are still ≈E′,R′ .

6. We are given some atoms c, c1, c2 such that c ≈R′ (c1 = c2), and we must show c′1 = c′2 ∈ Q′(c).

By lemma 53, there are two cases. Either the new equation was not used, i.e. c ≈R (c1 = c2). Then by the IH for the previous step
we have (c′1 = c′2) ∈ Q(c) and hence in Q′(c).

Otherwise the new equation was used, so we have c ≈R b and a ′ ≈R (c1 = c2) (or the symmetric A ≈R a ′ and b ≈R (c1 = c2);
we show the first case w.l.o.g.). By invariant 6 we have (c1′ = c2′) ∈ Q(a), and hence in Q′(c) ≡ Q′(a′) ≡ Q(a) ∪Q(b).

7. Similar to invariant 6.

8. Similar to invariant 6.

9. The transition leaves S and U unchanged. The equations added to E are either atom-atom, or they came from U and therefore have
the required form by invariant 9 for the previous state.

UPDATE1 In this case
E′ = (E \ (F ai = a)) ∪ {c = c′ | if F a1 . . . an is c = c′ and A(a) }
R′ = R,F ai = a

1. We are given some A, c1, c2 such that A ≈R′ (c1 = c2), and we must show c1 ≈E ′,R′ c2.

By lemma 53, there are two cases. Either the new equation was not used, i.e. A ≈R (c1 = c2). Then by invariant 1 we have
c1 ≈E,R c2. By monotonicity (lemma 56) c1 ≈E ′,R′ c2 as required.

Otherwise the new equation was used, which can happen in two ways.

• We have A ≈R F ai and a ≈R (c1 = c2).

By lemma 55, unless A ≡ F ai that means thatRmust contain some equation mentioning F ai. However, this is impossible: each
equation in R comes either from r (but this only relates constants, not label applications) or from S (but we know as a premise to
the rule that S(F ai) = ⊥).

On the other hand, if A ≡ F ai, then the assumption says that x : (F ai) ∈ Γ, so by invariant 9 we know that x : a ∈ Γ. So by
invariant 1 we know c1 ≈E,R c2, and hence by monotonicity c1 ≈E ′,R′ c2.

• We have A ≈R a and F ai ≈R (c1 = c2).

By invariant 8 we then have A(a) = true. So by the transition rule UPDATE1 the equation c1 = c2 is explicitly added to E′, and
we have c1 ≈E ′,R′ c2 as required.

2. We are given some Gci and Gci′ ∈ E0 \ E ′, such that ∀i.ci ≈R′ c
′
i , and we need to show Gci ≈E ′,R′ Gci

′.

Apply lemma 53 to all the ci ≈R′ c
′
i . If the new equation was not used for any of them, we have ∀i.ci ≈R c′i . Using the assumption

Gci ∈ E0 \ E ′, invariant 5, and the fact that S(F ai) = ⊥ we know that Gci 6≡ F ai. This means that we must also have
Gci ∈ E0 \ E , and similar for Gci′. Hence by invariant 2 for the previous state and monontonicity we get Gci ≈E ′,R′ Gci

′.

Otherwise, the new equation F ai = a was used for at least one ck , which can happen in two ways.

• We have ck ≈R F ai and a ≈R c′k .

By lemma 55, unless A ≡ F ai that means thatRmust contain some equation mentioning F ai. However, this is impossible: each
equation in R comes either from r (but this only relates constants, not label applications) or from S (but we know as a premise to
the rule that S(F ai) = ⊥).

So we must have ck ≡ (F ai). That means that Gci has the form G c1 . . . (F ai) . . . cn. However, according to invariant 9, Gci
should be a flat term, so this also cannot happen.

• We have ck ≈R a and F ai ≈R c′k .

The reasoning in this case is similar, using c′k instead of ck .

3. We are given some injective G such that Gci ≈R′ Gci
′, and we must show ck ≈E ′,R′ c

′
k .

By lemma 53, the new equation is either used or not. If not, we have Gci ≈R Gci
′, so by invariant 3 we get ck ≈E,R c′k and hence

by monotonicity (lemma 56) ck ≈E ′,R′ c
′
k as required.

Otherwise the equation is used and we have either Gci ≈R F ai and a ≈R Gci
′, or the symmetric situation. W.l.o.g. we consider

the first case.

By lemma 55, unless Gci ≡ F ai, there must be some equation in R involving F ai. But that is impossible by invariant 5, since by
the premise to the rule UPDATE1 we know that S(F ai) = ⊥.

On the other hand, if Gci ≡ F ai, then we are given a new equation F ci = a and we know a ≈R F ci
′. So by invariant 7 we know

F ci ∈ I(a). So the transition rule UPDATE1 adds the equation ck = ck′ to E′, and we have ck ≈E ′,R′ c
′
k .

4. Supposed (Gci = c) ∈ (E0 \ E ′). The set E0 \ E contains all equations in E0 \ E ′ except for F ai = a . So there are two cases. If
(Gci = c) 6≡ (F ai = a), then we also have (Gci = c) ∈ (E0 \ E), and can appeal to invariant 4 for the previous state. MERGE
transition. Otherwise, if (Gci = c) ≡ (F ai = a), then the transition rule explicitly adds the equation to U ′.

5. For the first direction, suppose Gci = c ∈ (E0 \ E ′). The set E0 \ E contains all equations in E0 \ E ′ except for F ai = a . So
there are two cases. If (Gci = c) 6≡ (F ai = a), then we also have (Gci = c) ∈ (E0 \ E). So we can use similar reasoning
as in the corresponding case for the MERGE transition. Otherwise, if (Gci = c) ≡ (F ai = a), then in the new state we have
S′(F, a1, . . . , an) = (F ai = a). Certainly ak ≈R′ ak and a ≈E ′,R′ a , as required.

For the converse direction, suppose that (Gci = c) is in the range of S′. Again there are two cases. If is was already in the range of
S, we reason similarly to the corresponding case for the MERGE transition. Otherwise, if it is the new equation, then by invariant 9
that equation is in E0, and by the transition rule it is no longer in E ′, so it is in (E0 \ E ′) as required.

6. We are given some c ≈R′ (c1 = c2), and must show that some suitable (c′1 = c′2) ∈ Q′(c).

By lemma 53, the new equation from S′ is either used or not. If not, we have c ≈R (c1 = c2), and get (c1 = c2) ∈ Q(c) by
invariant 6 for the previous state. Otherwise the equation was used, which can happen in two ways:

• c ≈R F ai and a ≈R (c1 = c2). But we know that c and F ai are different (one is an atom and one is a label application), so by
lemma 55 that would mean that R contains an equation mentioning F ai, which is impossible since S(F ai = ⊥.

• c ≈R a and F ai ≈R (c1 = c2). By reasoning similar to the previous paragraph this can only happen if F ai ≡ (c1 = c2). In
that case we have (c1 = c2) ∈ Q′(c) ≡ Q′(a), since it was explicitly added by the transition rule UPDATE1.

7. Similar to invariant 6.

8. Similar to invariant 6.

9. We modify S and U by adding the equation F ai = a; this equation comes from E so by the invariant from the previous state it is
good. And all the new equations in E′ are atom-atom.

UPDATE2 In this transition R′ = R.

1. We are given som A, c1, c2 such that A ≈R′ (c1 = c2). So A ≈R (c1 = c2). Then by invariant 1 and monotonicity (lemma 56) we
have c1 ≈E ′,R′ c2 as required.

2. We are given some Gci and Gci′ ∈ E0 \ E ′, and we need to show Gci ≈E ′,R′ Gci
′.

By assumption we have ∀i.ci ≈R′ c
′
i . So ∀i.ci ≈R c′i .

If Gci 6≡ F ai, then we must also have Gci ∈ (E0 \ E) (since only one equation was removed from E), and similarly for Gci′. So
then by invariant 2 and monotonicity we have Gci ≈E ′,R′ Gci

′ as required.

Otherwise, we are given ∀i.ai ≈R c′i , and we need to prove F ai ≈E ′,R′ F ci
′. From the premise to the rule we know

S(F, r(a1), . . . , r(an)) = (F b1, . . . , bn = b), so by invariant 5 we know that there is some equation F bi = b ∈ (E0 \ E)
where bk ≈R ak . So by transitivity we have bk ≈R ak . Then by invariant 2 we have F bi ≈E,R F ci

′, and by monotonicity
(lemma 56) F bi ≈E,R F ci

′. By the definition of R we have F ai = b ∈ R. So by transitivity F ai ≈ b ≈ F bi ≈ F ci′ as required.

3. We are given some injective G such that Gci ≈R′ Gci
′ and we must show ck ≈E ′,R′ c

′
k . By invariant 3 we know ck ≈E,R c′k . Then

apply monotonicity (lemma 56).

4. Similar to the case for UPDATE1

5. For the first direction, suppose Gci = c ∈ (E0 \ E ′). The set E0 \ E contains all equations in E0 \ E ′ except for F ai = a . So
there are two cases. If (Gci = c) 6≡ (F ai = a), then we also have (Gci = c) ∈ (E0 \ E). So we can use similar reasoning
as in the corresponding case for the MERGE transition. Otherwise, if (Gci = c) ≡ (F ai = a), then in the new state we have
S′(F, a1, . . . , an) = (F bi = b), and we need to prove ak ≈R′ bk and b ≈E ′,R′ a . We get ak ≈R′ bk from invariant 5 for the
previous state, and we get a ≈E ′,R′ b from the equation that this transition added.

For the converse direction, suppose that (Gci = c) is in the range of S′. Since S = S′ it is was already in the range of S, we reason
similarly to the corresponding case for the MERGE transition.

6. We are given some c ≈R′ (c1 = c2), and must show that some suitable (c′1 = c′2) ∈ Q′(c).

By lemma 53, the new equation from S′ is either used or not. If not, we have c ≈R (c1 = c2), and get (c1 = c2) ∈ Q(c) by
invariant 6 for the previous state. Otherwise the equation was used, which can happen in two ways:

• c ≈R F ai and a = (c1 = c2). Then by invariant 6 for the previous state we have (c1 = c2) ∈ Q(a), and hence in Q′(c).

• c ≈R a and F ai ≈R (c1 = c2). The only equations mentioning F ai in R are those arising from S(F, a1, . . . , an), so this can
only happen in two ways. Either (F ai) ≡ (c1 = c2), in which case the transition rule explicitly adds (c1 = c2) to Q′(a). Or else
the transition was via b, i.e. we had F ai ≈R b ≈R (c1 = c2). In this case we know (c′1 = c′2) ∈ Q(b) from invariant 6 for the
previous state, and hence it is also in Q′(c).

7. Similar to invariant 6.

8. Similar to invariant 6.

9. Similar to the corresponding case for the UPDATE1 transition.

The invariants in lemma 57 shows that the equivalence relation ≈R constructed by the algorithm is “locally” complete: it satifies the
congruence rule as long as the conclusion of the rule only contains subterms from the context E0. In order to show that it is “globally”
complete, we need to know that all provable equations are provable using only subterms of the problem. One way to do that is to use the
notion of normal-form evidence terms which we introduced previously.

Lemma 58 (Completeness for normal-form evidence terms). Suppose Γ is a context of the form described in lemma 51, and let
(E0, r0, Q0, I0, U0, A0, S0) be the initial state of the algorithm for Γ, and suppose (E0, r0, Q0, I0, U0, A0, S0) =⇒∗ (·, r,Q, I, U,A, S).
Then:

• If Γ `L pS : A = B , then A and B are flat terms over Γ and A ≈R B .

• If Γ `L pC : A = B and A and B are flat terms over Γ, then A ≈R B .

• If Γ `L p∗ : A = B and A and B are flat terms over Γ, then A ≈R B .

• If Γ `L p∗R : A = B and A is a flat term over Γ, then B is a flat term over Γ and A ≈R B .

provided that every use of assumptions h in the proofs pS ,pC , p∗ and p∗R either refer to an assumption h : A ∈ Γ where A is a flat term over
Γ, or are of the form h.refl.

Proof. We proceed by induction on the structure of the given evidence term. The cases for pS are:

The evidence is x.p∗
R

From the premises to the rule we know we have x : A ∈ Γ and Γ `L p∗R : A = (a = b). By the assumptions to there
are two possibilities for A

Either A is a flat term over that context Then by the mutual IH for p∗R, a = b is flat as well (as required), and A ≈R (a = b). By
invariant 1 we have a ≈R b as required.

Or else, p∗R ≡ refl, so A ≡ (a = b). By the definition of flat context (definition 47) A can one of three things: either a flat term (so this is
a label application of the label “=”, and a and b are atoms), or an equation between atoms (so a and b are atoms), or a application-atom

equation (so a is a label application, and by virtue of this precise equation it is a flat term over Γ). In either of the three cases a and b are
flat terms over Γ as required, and by invariant 1 we have a ≈R b as required.

The evidence is (x.p∗
R
)−1 Similar to the above case we get a ≈R b, and therefore b ≈R a by symmetry.

The evidence is inj i pS By the IH for pS , we know pS proves an equation between flat terms. Since the injectivity rule applies, they must
be two label applications, Γ `L pS : F ai = F bi. So the conclusion of the rule is an equation ak = bk between two atoms, and atoms
are flat over any context.

By the IH we also know F ai ≈R F bi, so by invariant 3 we get ak ≈R bk .

The evidence is a chain p∗LR In other words, it is either a single term pS , which we dealt with in the previous cases, or it is is a chain starting
and ending with a synthesizable term, that is p∗LR is pS ; q∗; rS . In the latter case we use the IHs for pS and rS to see that two two sides
of the equation q∗ are flat terms, appeal to the mutual IH for q∗, and use transitivity to chain together the three equations.

The only case for pC is when the evidence term is a use of congruence, congF p1 .. pi . The only rule that applies is CCPCONG, so the
equation in the conclusion must be between two label applications, F ai = F bi. By assumption we know that they are flat terms over Γ, i.e.
both label applications appear as left-hand sides of equations in Γ and all the ai and bi are atoms.

Since ai and bi are atoms they are per definition flat over Γ, so the IHs apply and give ai ≈R bi .

The initial context E0 contains all equations in Γ, in particular it contains the defining equations for F ai and F bi. So by invariant 2 we get
F ai ≈R F bi as required.

The cases for p∗ are:

The empty chain (refl) We then have a ≈R a by reflexivity of ≈.

A chain consisting of a single term, p The evidence term p must be either a checkable are a synthesizable term, so we appeal to the
corresponding mutual IH.

In the case when it is a pS ,

A chain of length > 1 The definition of chains stipulates that there must never be two adjacent pC s, so we know that the either the first or
the second evidence term in the chain is a pS . This is similar to the case for p∗LR above.

The cases for p∗R are similar to the case for p∗LR above.

Lemma 59 (Termination of the CC algorithm). If (E0, r0, Q0, I0, U0, A0, S0) is the initial state corresponding to some (flat) context Γ, there
exists some final state with an empty list of pending equations such that (E0, r0, Q0, I0, U0, A0, S0) =⇒∗ (·, r,Q, I, U,A, S).

Proof. Consider the (finite) setX of all flat terms occuring in Γ. The termination metric is the lexicographic order on (Number of equivalence
classes on X induced by R)×(Number of application-atom equations in E)×(Number of atom-atom equations in E).

None of the rules can increase the number of equivalence classes. TRIVIAL leaves number of app-atom equations unchanged and decreases
atom-atom equations. MERGE adds all kinds of equations, but reduces the number of equivalence classes. UPDATE1/2 adds atom-atom
equations but decrease the number of app-atom equations.

Theorem 60 (Correctness of the CC algorithm). Suppose Γ is any context, Γ′ is the flattened version of Γ, and (E0, r0, Q0, I0, U0, A0, S0)
is the initial state of the algorithm corresponding to Γ′. Then (E0, r0, Q0, I0, U0, A0, S0) =⇒∗ (·, r,Q, I, U,A, S), and for any atomic a
and b, we have Γ ` a = b iff a ≈R b.

Proof. By lemma 59 we know the algorithm will terminate in a state with E empty. In that state, if a and b have the same r-representative
then by lemma 52 invariants 2 and 6 we know Γ ` a = b.

Conversely, suppose that Γ ` a = b, so Γ `L p : a = b for some p. By lemma 51 we know that Γ′ `L p′ : a = b for some proof p′ where
every assumption is either a flat term or plain assumption h.refl. (We know that a and b are not changed by the flattening step since they were
assumed to be atoms). By lemma 27 we have Γ′ `L p∗ : a = b for some p∗, and inspecting the proof of that lemma we see that p∗ still obeys
the restricton on assumptions. Then by lemma 58 we have a ≈R b.

Requiring a and b to be atoms is not a serious restriction: if we want to check some non-atomic terms a ′ and b′ for equality we can pick
fresh constants a and b, and add the equations a = a′ and b = b′ to the context. Also, checking whether a ≈R b is a cheap operation. Since
they are both atoms, the wanted equation is true iff in the final state of the algorithm a and b are in the same union-find class (have the same
r-representative).

` Γ

� ∅ : Γ = Γ
EESAME

� σ : Γ = Γ′

Γ ` A : Type
Γ′ � A′ = σA
Γ′ ` v : A′ = σA

� σ {x.v/x} : Γ, x : A = Γ′, x : A′
EECONS

Figure 18. Context equivalence

E. Proofs about the core language

E.1 Equivalent contexts

The next properties concern a new relation � σ : Γ = Γ′, defined in Figure 18, which uses a substitution σ as the witness to the equivalence
of two contexts.

Lemma 61 (Regularity for context equivalence). If � σ : Γ = Γ′, then ` Γ and ` Γ′.

Proof. Induction on � σ : Γ = Γ′. In the EESAME case we have this as a premise. In the EECONS case, we have Γ ` A : Type as a premise,
and get Γ′ ` A′ : Type from regularity of the congruence closure relation (lemma 24).

Lemma 62 (Variables in equivalent contexts). If y : C ∈ Γ, and � σ : Γ = Γ′, then there exists C ′ such that y : C ′ ∈ Γ′ and Γ � C ′ = σC .

Proof. Induction on � σ : Γ = Γ′. The EESAME case is trivial.

In the EECONS case, the rule looks like
� σ : Γ = Γ′

Γ ` A : Type
Γ′ � A′ = σA
Γ′ ` v : A′ = σA

� σ {x.v/x} : Γ, x : A = Γ′, x : A′
EECONS

There are two cases. If x = y, so A = C, then we can pick C′ := A′, and we have Γ′ � C ′ = σC as a premise. By weakening (lemma 23)
we have Γ′, x : A′ � C ′ = σC as required.

If x 6= y, then y : C ∈ Γ, so by IH we have y : C ′ ∈ Γ′ with Γ′ � C ′ = σC . Again, use weakening to get Γ′, x : A′ � C ′ = σC .

Lemma 63 (Context conversion preserves erasure). If � σ : Γ = Γ′, then for any expression a we have |σ a| = |a|.

Proof. Examining the definition of � σ : Γ = Γ′ we see that the substitution only adds type casts, which are erased.

Lemma 64 (Context conversion for annotated language, var case). If x : A ∈ Γ and � σ : Γ = Γ′, then Γ′ ` σ x : σA.

Proof. Induction on the length of Γ.

Γ is empty This contradicts the assumption that x ∈ Γ.

Γ is Γ0, y : B for some y 6= x Then by considering the possible derivations of � σ : Γ = Γ′ we know we have � σ0 : Γ0 = Γ′0 (and so on).
By the IH we have Γ′0 ` σ0 x : σ0 A. So by weakening (lemma 13) we have Γ′ ` σ0 x : σ0 A. Since x is a bound variable we can pick it
to not be in the domain of σ0, and since Γ0 ` A : Type we know x /∈ FV (A) . So the is equivalent to Γ′ ` σ x : σA.

Γ is Γ0, x : A By considering the possible derivations of � σ : Γ = Γ′ we know that we must have

� σ : Γ = Γ′

Γ ` A : Type
Γ′ � A′ = σA
Γ′ ` v : A′ = σA

� σ {x.v/x} : Γ, x : A = Γ′, x : A′
EECONS

So in particular we know σ x is x.v , which by TCAST has the type σA.

Lemma 65 (Context conversion for annotated language).
If Γ ` a : A and � σ : Γ = Γ′, then Γ′ ` σ a : σA.

Proof. Induction on Γ ` a : A.

TVAR By lemma 64.

TTYPE Trivial.

TPI The IH for A gives Γ′ ` σA : Type.

By TCCREFL we have Γ′ � σA = σA, and it is easy to pick some identify proof v such that Γ′ ` v : σA = σA. Then by EECONS,
� σ {x.v/x} : Γ, x : σA = Γ′, x : σA.

So by the IH, we get Γ′, x : σA ` σB : Type.

Now apply TPI to get Γ′ ` (x :σA)→ σB : Type as required.

TIPI Similar to the previous case.

TREC By the IH we get Γ′ ` (x :σA1)→ σA2 : Type.

By reasoning similar to the TPI case we get

� σ {f.v1/f } {x.v2/x} : Γ, f : (x :σA1)→ σA2, x : σA1 = Γ′, f : (x :σA1)→ σA2, x : σA1

and hence by IH we get Γ′, f : (x :σA1)→ σA2, x : σA1 ` σ a : σA2.

Now apply TREC to get Γ′ ` rec f(x:σA1)→σA2
x .σ a : (x :σA1)→ σA2 as required.

TIREC Similar to the previous case.

TDAPP By the IHs for a and v we get Γ′ ` σ a : σ (x :A)→ B and Γ′ ` σ v : σA. Then apply TDAPP.

TAPP,TIDAPP, TEQ Similar to the previous case.

TJOINC By the IH we get Γ′ ` σ a = σ b : Type. Context equivalences preserve erasure (lemma 63), so |σ a| = |a|, and therefore we still
have |σ a|;i

cbv c. Similarly, |σ b|;i
cbv c. Then apply TJOINC.

TJOINP Similar to the previous case.

TJINJDOM By the IH we have Γ′ ` σ v : ((x : σA1) → σB1) = ((x : σA2) → σB2). Then by TJINJDOM we do indeed have
Γ′ ` joininjdomσ v : σA1 = σA2

TJINJRNG,TJIINJDOM,TJIINJRNG. TINJEQ Similar to the previous case.

TJSUBST The IHs give ∀k . Γ′ ` σ vk : σ ak = σ bk and Γ′ ` σB : Type. Since context equivalence preserves erasure (lemma 63) the
premise |B | = |({a1/x1} ... {aj/xj} c = {b1/x1} ... {bj/xj} c)| is unchanged. Then apply TJSUBST.

TCAST The IHs give Γ′ ` σ a : σA and Γ′ ` σ v : σA = σB and Γ′ ` σB : Type. Then by TCAST we have Γ′ ` (σ a).σ v : σB as
required.

Lemma 66 (Context conversion for congruence closure). If � σ : Γ = Γ′, then Γ � a = b implies Γ′ � σ a = σ b.

Proof. By induction on Γ � a = b. The cases are

TCCREFL By context conversion for the annotated language (lemma 65), we have Γ′ ` σ a : σA. Then apply TCCREFL again.

TCCERASURE By context conversion for the annotated language (lemma 65), σ a and σ b are well-typed in Γ′. And applying a context
equivalence σ does not affect the erasure of a term (lemma 66). Then apply TCCERASURE again.

TCCSYM Direct by IH.

TCCTRANS Direct by IH.

TCCASSUMPTION The rule looks like
Γ � C = (a = b) y : C ∈ Γ

Γ � a = b

By the IH we know Γ′ � σC = σ (a = b).

By lemma 62 there exists y : C ′ ∈ Γ′ with Γ′ � C ′ = σC . So by transitivity (TCCTRANS) we have Γ′ � C = σ (a = b). Note that
σ (a = b) ≡ (σ a = σ b) Apply TCCASSUMPTION.

TCCCONGRUENCE The given rule looks like

Γ ` A = B : Type ∀k . Γ � ak = bk
|A = B | = |{a1/x1} ... {aj/xj} c = {b1/x1} ... {bj/xj} c|

Γ � A = B
TCCCONGRUENCE

By IH we know ∀k . Γ′ � σ ak = σ bk .

By context conversion for the annotated language (lemma 65) we know Γ′ ` σA = σB : Type. And since context equivalences do not
affect the erasure of terms (lemma 63) we still have

|σA = σB | = {σ a1/x1} ... {σ aj/xj} c = {σ b1/x1} ... {σ bj/xj} c.
Now apply TCCCONGRUENCE.

TCCINJDOM, TCCINJRNG, TCCIINJDOM, TCCIINJRNG,TCCINJEQ Direct by IH.

Lemma 67 (Symmetry of context equivalence). If � σ : Γ = Γ′, then there exists ρ such that � ρ : Γ′ = Γ.

Proof. By induction on the judgement � σ : Γ = Γ′. The EESAME case is trivial.

In the EECONS case we are given
� σ : Γ = Γ′

Γ ` A : Type
Γ′ � A′ = σA
Γ′ ` v : A′ = σA

� σ {x.v/x} : Γ, x : A = Γ′, x : A′
EECONS

By IH we have � ρ : Γ′ = Γ.

Using that ρ to apply context conversion (lemma 66) to the premise Γ′ � A′ = σA, we get Γ � ρA′ = ρ (σA).

By regularity of the context equivalence relation (lemma 61) we know Γ ` A : Type, and since context equivalence preserves erasure
(lemma 63) we know |ρ (σA)| = |A|. So by TCCERASURE, we have Γ � ρA′ = A. By TCCSYM we get Γ � A = ρA′.

Furthermore, by lemma 38 this equation is witnessed by some value Γ ` v : A = ρA′. Now pick ρ {x.v/x} as the witnessing
substitution.

Lemma 68 (Context equivalence symmetry is an inverse). If � σ : Γ = Γ′ and � ρ : Γ′ = Γ and Γ ` a : A, then Γ � ρ σ a = a .

Proof. Since the substitutions only change erased parts of the term (lemma 63), |ρ σ a| = |a|. And by applying context conversion (lemma 65)
twice we have Γ ` ρ σ a : ρ σA. So by TCCERASURE, Γ � ρ σ a = a .

Lemma 69 (Contexts are equivalent if they are equal up to erasure). If ` Γ and ` Γ′ and |Γ| = |Γ′|, then there exists σ such that � σ : Γ = Γ′.

Proof. Induction of the length of the contexts. (We know that Γ and Γ′ have the same length since they erase to the same thing).

• Two empty contexts are trivially equivalent.

• Suppose the contexts are Γ, x : A and Γ′, x : A′. By inversion on ` Γ, x : A we get ` Γ and Γ ` A : Type, and similarly we get ` Γ′

and Γ′ ` A′ : Type. And we know |Γ| = |Γ′| and |A| = |A′|.

By the IH we know that there exists some σ such that � σ : Γ = Γ′. By context conversion (lemma 65) we have Γ′ ` σA : Type.
And since context equivalences do not affect erasure, the |σA| = |A|. Thus, A′ and σA are two well-typed terms which are equal up to
erasure, so by TCCERASURE we have Γ′ � A′ = σA.

Finally, picking the term v = join;cbv00:A′=σA, we have Γ′ ` v : A′ = σA.

So applying EECONS we have
� σ {x.v/x} : Γ, x : A = Γ′, x : A′

as we wanted to prove.

Lemma 70 (Context conversion for injrng). If Γ � injrngA for v and � σ : Γ = Γ′, then Γ′ � injrng σA for σ v .

Proof. We only show the case when A is (x :A1)→ A2; the case when A is •(x :A1)→ A2 is similar.

We are given that for all B1,B2, if Γ � ((x : A1) → A2) = ((x : B1) → B2) and Γ ` v0 : A1 = B1 is the corresponding proof
term, then Γ � {v/x}A2 = {v.v0/x}B2. We must show that for all B ′1,B ′2, if Γ′ � ((x : σA1) → σA2) = ((x : B ′1) → B ′2) and
Γ′ ` v ′0 : σA1 = B ′1, then Γ � {σ v/x}σA2 = {(σ v).v′0

/x}B2.

So consider some B ′1,B
′
2, v
′
0 satisfying the hypothesis.

Let ρ be such that � ρ : Γ′ = Γ (using lemma 67).

Then by context conversion (lemma 66) we have Γ � ((x : ρ σA1) → ρ σA2) = ((x : ρB ′1) → ρB ′2). By lemma 68 and transitivity this
equation is equivalent to Γ � ((x :A1)→ A2) = (x :ρB ′1)→ ρB ′2. Suppose the proof term for this equation is Γ ` v00 : A1 = ρB ′1. By
assumption we have Γ � {v/x}A2 = {(ρ v).v00/x} ρB

′
2. Now by context conversion again, Γ′ � σ {v/x}A2 = σ {v.v00/x} ρB ′2.

Since x was a bound variable, we can pick it so it is not in the domain of σ or ρ, so the above equation is equivalent to Γ′ � {σ v/x}σA2 =
{σ ((ρ v).v00)/x}σ ρB ′2. Since σ and ρ cancel (lemma 68), this equation is equivalent to Γ′ � {σ v/x}σA2 = {(σ v).σ v00

/x}B ′2.

By inversion on Γ � ((x : A1) → A2) = ((x : B ′1) → B ′2) (lemmas 24 and 15) we know Γ, x : B ′1 ` B ′2 : Type, so by substitution
(lemma 16) we have Γ ` {(σ v).v′0

/x}B2 : Type. Then since |{(σ v).σ v00
/x}B ′2| = |{(σ v).v′0

/x}B ′2|, by TCCERASURE and
TCCTRANS we have Γ′ � {σ v/x}σA2 = {(σ v).v′0

/x}B ′2 as required.

F. Properties of injrng

Lemma 71 (injrng respects CC). If Γ � injrngA for v and Γ � A = B , then Γ � injrngB for v .

Proof. By transitivity, any type which is equal to B is also equal to A.

Lemma 72 (injrng up to erasure of the value). If Γ � injrng (x :A) → B for v and Γ ` v ′ : A and |v ′| = |v |, then Γ � injrng (x :A) →
B for v ′

Proof. Let A1, B1 such that Γ � (x :A) → B = (x :A1) → B1 with the proof term Γ ` v0 : ((x :A) → B) = ((x :A1) → B1). We
need to show Γ � {v ′/x}B = {v ′.v0/x}B1.

By the injrng assumption we have Γ � {v/x}B = {v.v0/x}B1. So by regularity (lemma 24) we have Γ ` {v/x}B : Type and
Γ ` {v.v0/x}B1 : Type.

Also, by inversion on Γ � ((x : A1) → A2) = ((x : B ′1) → B ′2) (lemmas 24 and 15) we know Γ, x : A1 ` A2 : Type and
Γ, x : B ′1 ` B ′2 : Type, so by substitution (lemma 16) we have Γ ` {v ′/x}A2 : Type Γ ` {v ′.v0/x}B ′2 : Type. So by TCCERASURE
Γ � {v/x}A2 = {v ′/x}A2 and {v ′.v0/x}B ′2 = {v ′/x}B ′2. Conclude by TCCTRANS.

Lemma 73 (Instantiating injrng with a different value on the right). If Γ � injrng (x :A)→ B for v and Γ � (x :A)→ B = (x :A′)→ B ′

and Γ ` v ′ : A′ and |v ′| = |v |, then Γ � {v/x}B = {v ′/x}B ′.

Proof. By the assumption Γ � injrng (x :A)→ B for v we know that Γ � {v/x}B = {v.v0/x}B ′.

By inversion on Γ � ((x :A)→ B) = ((x :A′)→ B ′) (lemmas 24 and 15) we know Γ, x : A′ ` B ′ : Type, so by substitution (lemma 16)
we have Γ ` {v ′/x}B ′ : Type. We also know |{v.v0/x}B ′| = |{v ′/x}B ′|, so by TCCERASURE we have Γ � {v.v0/x}B ′ = {v ′/x}B ′.

Then by TCCTRANS, Γ � {v/x}B = {v ′/x}B ′ as required.

G. Proofs about elaboration

In general, in the following we will use primed metavariables for fully-elaborated core language environments and terms.

This lemma states that the elaboration algorithm produces output that type checks according to the core language and differs from the input
only in the erasable parts of the term.

Lemma 74 (Soundness w.r.t. fully annotated typing).

1. If ` Γ′ and Γ′ a ⇒ a ′ : A′, then Γ′ ` a ′ : A′ and |a| = |a ′|.

2. If ` Γ′ and Γ′ ` A′ : Type and Γ′ a ⇐ A′ ; a ′, then Γ′ ` a ′ : A′ and |a| = |a ′|.

3. If Γ ; Γ′, then ` Γ′ and |Γ| = |Γ′|

Proof. Induction on the assumed typing derivations. The cases for Γ b ⇒ b′ : B are:

EITYPE Trivial.

EIVAR Trivial.

EIPI By ih. Γ′ ` A′ : Type and |A| = |A′|. Γ′, x : A′ ` B ′ : Type and |B | = |B ′|. Thus Γ′ ` (x : A′) → B ′ : Type and
|(x :A)→ B | = |(x :A′)→ B ′|.

EIIPI Similar to EIIPI.

EIDAPP

Γ a ⇒ a ′ : A1 Γ A1 =? (x : A)→ B ; v1

Γ v ⇐ A ; v ′ Γ � injrng (x :A)→ B for v ′

Γ a v ⇒ a ′.v1 v ′ : {v ′/x}B EIDAPP

By ih we have Γ′ ` a ′ : A1 where |a| = |a ′|. By assumption 19 we have Γ′ ` v1 : A1 = ((x : A) → B). By several
inversions (lemma 15) of this judgement, we can conclude Γ′ ` (x : A) → B : Type and Γ′ ` A : Type. Therefore by casting,
Γ′ ` a ′.v1 : (x : A) → B . Also by induction we have Γ′ ` v ′ : A and |v | = |v ′|. Therefore Γ′ ` a ′.v1 v ′ : {v ′/x}B and
|a ′.v1 v ′| = |a v |.

EIAPP and EIDIAPP Similar to EIDAPP.

EIEQ Directly by induction.

EIJJOINC By induction |a = b| = |a ′ = b′| and Γ′ ` a ′ = b′ : Type. Therefore, we know that the terms have the same erasure (i.e.
|a| = |a ′| and |b| = |b′|) so the same premises can used in rule TJOINC.

EIJOINP Similar to EIJOINC.

EIANNOT By induction.

The cases for Γ a ⇐ A ; a ′ are:

ECREC By assumption 19 we have Γ′ ` v1 : A = ((x :A1) → A2). By inversions of this judgement (lemma 15), Γ′ ` (x :A1) → A2 :
Type and Γ′, x : A1 ` A2 : Type. By core language weakening Γ′, f : (x :A1)→ A2, x : A1 ` A2 : Type, so the induction hypothesis
applies. Therefore Γ′, f : (x :A1)→ A2, x : A1 ` a ′ : A2 and |a| = |a ′|. By TREC, we have Γ′ ` rec f(x:A1)→A x .a ′ : (x :A1)→ A,
and by TCAST, we have Γ′ ` (rec f(x:A1)→A2

x .a ′)
.symm v1

: A. Furthermore the erasures are equal.

ECIREC Similar to ECREC.

ECREFL By assumption (analogous to 19) we have Γ′ ` v1 : A = (a = b). By inversion, Γ′ ` a = b : Type. By assumption 20, we also
have Γ′ ` v : a = b, and that |v | = join. Therefore by TCAST we conclude that Γ′ ` v.symm v1 : A and that |v.symm v1 | = |join•|.

ECINF We know that Γ′ ` B : Type. By induction we have that Γ′ ` a ′ : A where |a| = |a ′|. That means |a ′.v1 | = |a| By assumption 20,
we have Γ′ ` v1 : A = B , therefore we can use TCAST to conclude Γ′ ` a ′.v1 : B .

The cases for Γ ; Γ′ are:

EGNIL Trivial.

EGVAR By the IH we know ` Γ′. So by the mutual IH for Γ′ A ⇐ Type ; A′ we know Γ′ ` A′ : Type, and therefore ` Γ′, x : A′.
Similarly, |Γ, x : A| = |Γ′, x : A′|.

G.1 Checking is closed under CC

This next lemma says that the input type of the elaboration judgement can be replaced with an equivalent type (according to congruence
closure) and elaboration will still succeed, producing a result that differs only in typing annotations.

Lemma 75 (Admissibility of CCAST in elaboration).
If Γ′ a ⇐ A′ ; a ′ and Γ′ � A′ = B ′, then Γ′ a ⇐ B ′ ; a ′′ for some a ′′ such that |a ′′| = |a ′|.

Proof. Case analysis on Γ′ a ⇐ A′ ; a ′. Cases ECREC, ECIREC, ECREFL, ECSUBST, ECDCON, and ECCASE are all very similar, so
we show just ECREC in detail.

Here, the assumed typing derivation looks like

Γ A =? (x : A1)→ A2 ; v1

Γ, f : (x :A1)→ A2, x : A1 a ⇐ A2 ; a ′

Γ, f : (x :A1)→ A2, x : A1 � injrng (x :A1)→ A2 for x
Γ, f : (x :A1)→ A2 (x :A1)→ A2 ⇐ Type ; A0

Γ rec f x .a ⇐ A ; (rec f(x:A1)→A2
x .a ′)

.symm v1

ECREC

By assumption 18 we have Γ B =? (x :A1) → A2. Then apply ECREC again. The elaborated term only differs in the proof used by the
cast, symm v1, and this difference gets erased.

The rule ECINF instead relies on transitivity of �. We have Γ′ A
?
= B ; v1 as a premise of the rule and Γ′ � A′ = A as an assumption,

so Γ′ � A′ = B , and hence Γ′ A′
?
= B ; v2 for some v2. Then apply ECINF again; again the elaborated term only differs by the proof

of the cast.

G.2 Context conversion for elaboration

Lemma 76 (Context conversion for elaboration). Suppose � σ : Γ = Γ′. Then,

1. Γ a ⇒ a ′ : A implies Γ′ a ⇒ a ′′ : A′ for some A′ such that Γ′ � A′ = σA and some a ′′ such that |a ′′| = |a ′|.

2. Γ ` A : Type and Γ a ⇐ A ; a ′ implies Γ′ a ⇐ σA ; a ′′ for some a ′′ such that |a ′′| = |a ′|.

Proof. Induction on the assumed derivations. The cases for Γ b ⇒ b′ : B are:

EITYPE Pick A′ := Type.

EIVAR By the variable lookup lemma (lemma 62) we have x : A′ ∈ Γ with Γ′ � A′ = σA, as required. The elaborated term is still x, so it
is equal up to erasure as required.

EIPI By the mutual IHs we have Γ′ A ⇐ Type ; A′′ and Γ′ B ⇐ Type ; B ′′. Then re-apply EIPI. By IH the subterms of the
elaborated term are equal up to erasure, so the entire elaborated term is also equal up to erasure.

EIIPI Similar to EIIPI.

EIAPP By the IH for the first premise we know Γ′ a ⇒ a ′′ : A′1 for some type A′1 such that Γ′ � A′1 = σA1.

From the premise Γ A1 =? (x : A) → B ; v1 and context conversion (lemma 66) we get Γ′ � σA1 = (x : σA) → σB . So
by transitivity, Γ′ � A′1 = (x : σA) → σB . So the search Γ′ A′1 =? (x : A′) → B ′ ; v ′1 will succeed for some arrow type
(x :A′)→ B ′ and proof v ′1, since these exists at least one such arrow type.

Now note that by TCCTRANS and TCCINJDOM, we have Γ′ � A′ = σA. From the IH for b we know Γ′ b ⇐ σA ; b′′. So by
casting the return type (lemma 75) we get Γ′ b ⇐ A′ ; b′′′.

Now apply EIAPP to get Γ′ a b ⇒ a ′′ b′′′ : B ′. By TCCINJRNG we have Γ′ � B ′ = σB as required.

EIDAPP By the IH for the first premise, we know Γ′ a ⇒ a ′′ : A′1 for some type A′1 such that Γ′ � A′1 = σA1.

From the premise Γ A1 =? (x : A) → B ; v1 and context conversion (lemma 66) we get Γ′ � σA1 = (x : σA) → σB . So
by transitivity, Γ′ � A′1 = (x : σA) → σB . So the search Γ′ A′1 =? (x : A′) → B ′ ; v ′1 will succeed for some arrow type
(x :A′)→ B ′ and proof v ′1, since these exists at least one such arrow type.

Now note that by TCCTRANS and TCCINJDOM, we have Γ′ � A′ = σA. From the IH for v we know Γ′ v ⇐ σA ; v ′′. So by
casting the return type (lemma 75) we get Γ′ v ⇐ A′ ; v ′′′.

By context conversion for injrng (lemma 70) we get Γ′ � injrng (x :σA)→ σB for σ v ′. Now by correctness of elaboration (lemma 74)
we know Γ′ ` v ′′′ : A′ and also |v | = |v ′′′|. The latter also implies |v ′′′| = |σ v ′|, so since injrng respects type equality and erasure
(lemmas 71, 72) we then have Γ′ � injrng (x :A′)→ B ′ for v ′′′

Then apply EIDAPP again, to get Γ′ a v ⇒ a ′.v′1 v ′′′ : {v ′′′/x}B ′ .

From Γ′ � injrng (x : A′) → B ′ for v ′′′ we get Γ′ � {v ′′′/x}B ′ = {σ v ′/x}σB . Since we can pick the bound variable so that
x /∈ FV (B) , that is the same as Γ′ � {v ′′′/x}B ′ = σ {v ′/x}B , as required. Also as required, |a ′ v ′| = |a ′′ v ′′′| since the subterms
are equal up to erasure.

ottdrulenameEIdiapp Similar to EIDAPP.

EIEQ By the IHs we get Γ′ a ⇒ a ′′ : A0 and Γ′ b ⇒ b′′ : B0, then apply EIEQ again.

EIJJOINC By the mutual IH we get Γ′ a = b ⇐ Type ; a ′′ = b′′. Since a′ and a′′ erase to the same thing we know |a| ;i
cbv c (and

similarly for b′′), so applying EIJOINC again we get Γ′ join;cbvi j :a=b ⇒ join;cbvi j :a
′′=b′′ : a ′′ = b′′.

By soundness (lemma 74) and regularity (lemma 17) we know a ′′ = b′′ is well-typed, so by TCCERASURE we have Γ′ � (a ′ = b′) =
(a ′′ = b′′) as required.

EIJOINP Similar to EIJOINC.

EIANNOT By the mutual IH we get Γ′ A⇐ Type ; A′′ and Γ′ � A′′ = σA′. Again by mutual IH we have Γ′ a ⇐ σA′ ; a ′′. So
by casting (lemma 75) we have Γ a ⇐ A′′ ; a ′′′.

Then apply EIANNOT again, to get Γ aA ⇒ a ′′′ : A′′. We have |a ′′′| = |a ′′| = |a ′| as required.

The cases for Γ a ⇐ A ; a ′ are:

ECREC By context conversion for CC (lemma 66) we know Γ′ � σA = (x :σA1)→ σA2. So the search Γ′ A =? (x : A′1)→ A′2 ;
v ′1 will succeed for some arrow type (x :A′1)→ A′2 and proof v ′1, since there exists at least one such arrow type.

By regularity of CC (lemma 24) and inversion for type well-formedness we know Γ, x : A1 ` A2 : Type, and so by weakening
(lemma 13) Γ, f : (x :A1)→ A2, x : A1 ` A2 : Type. So the induction hypothesis for the a premise is available.

By TCCTRANS and TCCINJDOM, we have Γ′ � (x : A′1) → A′2 = (x : σA1) → σA2 and Γ′ � A′1 = σA1. So
� σ′ : Γ, f : (x : A1) → A2, x : A1 = Γ′, f : (x : A′1) → A′2, x : A′1, where σ′ is the substitution σ suitably extended. So by
IH, Γ′, f : (x :A′1)→ A2, x : A′1 a ⇐ σ′A2 ; a ′′.

Because injrng respects context conversion (Lemma 70) we have Γ′, f : (x : σA1) → σA2, x : σA1 � injrng (x : σA1) →
σA2 for σ x . Since it respects CC (lemma 71) that implies Γ′, f : (x : σA1) → σA2, x : σA1 � injrng (x : A′1) → A′2 for σ x .
Also, using the CC judgements we proved above, we can construct a ρ such that � ρ : Γ′, f : (x : σA1) → σA2, x : σA1 =
Γ′, f : (x : A′1) → A′2, x : A′1. So by lemma 70 again, we have Γ′, f : (x : A′1) → A′2, x : A′1 � injrng (x : ρA′1) →
ρA′2 for ρ σ x . The variables f and x were bound, so we can pick them to not appear in the arrow type, so this is the same as
Γ′, f : (x :A′1)→ A′2, x : A′1 � injrng (x :A′1)→ A′2 for ρ σ x . Finally, since injrng respects erasure (lemma 72) we can conclude that
Γ′, f : (x :A′1)→ A′2, x : A′1 � injrng (x :A′1)→ A′2 for x .

By weakening of CC (lemma 23) we have Γ′, f : (x :A′1) → A′2, x : A′1 � (x :A′1) → A′2 = (x : σA1) → σA2. So by the injrng
assumption we know that Γ′, f : (x :A′1)→ A′2, x : A′1 � A′2 = σA2.

So by casting (lemma 75) we have Γ′, f : (x :A′1)→ A′2, x : A′1 a ⇐ A′2 ; a ′′′.

Now apply ECREC to get Γ′ rec f x .a ⇐ σA ; (rec f x .a ′′′).symm v′1
as required.

ECIREC Similar to ECREC.

ECREFL By context conversion for CC (lemma 66) we know Γ′ � σA = σ (a = b). Therefore, Γ′ σA =? (a1 = b1) ; v ′1 will
succeed for some a1 = b1 such that Γ′ � σ (a = b) = (a1 = b1). By TCCINJEQ, that implies Γ′ � σ a = a1 and Γ′ � σ b = b1.

We know Γ′ � (σ a) = (σ b) by context conversion for CC.

So by transitivity (TCCTRANS) we have Γ′ � a1 = b1.So Γ′ a1
?
= b1 ; v ′ will also succeed.

Then apply ECREFL again. By assumption 18 we know |v.symm v1 | = |v ′.symm v′1
| = join, so the elaborated terms are equal up to erasure

as required.

ECINF By the mutual IH we have Γ′ a ⇒ a ′′ : A′ with Γ′ � σA = A′. And by context conversion for CC (lemma 66) we have
Γ′ � σA = σB . By transitivity, Γ′ � A′ = σB , so Γ′ A′

?
= σB ; v ′1 succeeds for some v ′1. Then apply ECINF again.

G.3 Completeness of elaboration

Note: in the following lemma statement and proof we use the convention that metavariables with primes (A′, B′. . .) are expressions in the
fully annotated language, and metavariables without primes are in the surface language.

The first completeness lemma says that if the surface language CC judgement is derivable, then the target CC judgement is also derivable
after elaborating the context and terms.

Lemma 77 (Completeness of CC). If Γ �∃ a = b and Γ ; Γ′ and Γ′ a ⇒ a ′ : A′ and Γ′ b ⇒ b′ : B ′ then Γ′ � a ′ = b′

Proof. The proof follows from the fact that typing annotations don’t matter to congruence closure (Lemma 44). By inversion of Γ �∃ a = b
we have some Γ′1, a ′1 and b′1 such that Γ′1 � a ′ = b′ and |Γ′1| = |Γ|, |a ′1| = |a|, and |b′1| = |b|. By translation soundness (Lemma 74), we
also have |Γ′| = |Γ|, |a ′| = |a|, and |b′| = |b|, with Γ′ ` a ′ : A′ and Γ′ ` b′ : B ′. This is all that we need to use the lemma.

Likewise, we need to know that the surface language injrng judgement also describes when the corresponding fully annotated version is
derivable.

Lemma 78 (Completeness of injrng). If Γ �∃ injrng (x :A) → B for v and Γ ; Γ′ and Γ′ (x :A) → B ⇐ Type ; (x :A′) → B ′

and Γ′ v ⇐ A′ ; v ′ then Γ′ � injrng (x :A′)→ B ′ for v ′.

Proof. Consider A1, B1 such that Γ′ � (x :A′)→ B ′ = (x :A1)→ B2 with the proof term Γ′ ` v0 : ((x :A′)→ B ′) = ((x :A1)→ B2).
We must show Γ′ � {v ′/x}B ′ = {v ′.v0/x}B1.

By inversion and substitution, we know that Γ′ ` {v ′/x}B ′ : Type and Γ′ ` {v ′.v0/x}B1 : Type.

Now instantiation the assumption Γ �∃ injrng (x :A)→ B for v with A1 and B1. We have Γ �∃ {vA/x}B = {vA1/x}B1. That is, there
are some Γ′′, a ′′ and b′′ such that |Γ′′| = |Γ| and |a ′′| = |{vA/x}B | and |b′′| = |{vA1/x}B1| and Γ′′ � a ′′ = b′′.

Since elaboration produced terms which are equal up to erasure, we also have |Γ′′| = |Γ′| and |a ′′| = |{v/x}B ′| and |b′′| = |{v.v0/x}B1|.
So since CC doesn’t care about annotations (lemma 44) we have Γ′ � {v ′/x}B ′ = {v ′.v0/x}B1 as required.

We next prove the completeness of the entire system using mutual induction on the three judgements of the surface language. For convenience,
we use an alternative (“regularized”) version of the typing rules, written Γ `reg a ⇒ A, that adds additional regularity assumptions to the
typing judgement. For example, in the RIDAPP rule we add the premise Γ ` (x : A) → B ⇐ Type. The typing rules for that system are
shown in Figure 19.

To justify the addition of these premises, we show the following regularity lemma about the inference judgement.

Lemma 79. If Γ ` a ⇒ A then Γ ` A⇐ Type.

Proof. Proof is by case analysis of Γ ` a ⇒ A.

ITYPE Holds by ITYPE and CINF.

IVAR Holds by premise of the rule.

IPI Holds by ITYPE and CINF.

IDAPP Holds by premise of the rule.

IIDAPP Holds by premise of the rule.

IAPP Holds by premise of the rule.

IEQ Holds by ITYPE and CINF.

IJOINC Holds by premise of the rule.

IJOINP Holds by premise of the rule.

IANNOT Holds by premise of the rule.

ICAST Holds by premise of the rule.

Lemma 80 (Completeness, with strengthened invariants). 1. If `reg Γ⇐ then Γ ; Γ′.

2. If Γ `reg a ⇒ A and `reg Γ⇐ and Γ ; Γ′ and Γ′ A⇐ Type ; A′, then Γ′ a ⇒ a ′ : A′′ and Γ′ � A′ = A′′

3. If Γ `reg a ⇐ A and `reg Γ⇐ and Γ ; Γ′ and Γ′ A⇐ Type ; A′, then Γ′ a ⇐ A′ ; a ′.

Proof. Mutual induction on the derivations. The cases for Γ `reg a ⇒ A are:

ITYPE Pick A′ := Type.

IVAR By soundness of elaboration (lemma 74) applied to the assumption Γ ; Γ′, there is some x : A′′ ∈ Γ′ with |A′′| = |A| and
Γ′ ` A′′ : Type. By soundness of elaboration applied to the assumption Γ′ A⇐ Type ; A′, we know Γ′ ` A′ : Type.

Now by EIVAR we have Γ′ x ⇒ x : A′′, and by TCCERASURE Γ′ � A′ = A′′ as required.

IPI We know Γ′ Type⇐ Type ; Type. So by the mutual IH for the A premise, Γ′ A⇐ Type ; A′.

Then by GVAR we have ` Γ, x : A ⇐, and by GFVAR we have Γ, x : A ; Γ′, x : A′. So by the mutual IH for the B premise,
Γ′, x : A′ B ⇐ Type ; B ′.

Now apply EIPI to get Γ′ (x :A)→ B ⇒ (x :A′)→ B ′ : Type.

IIPI Similar to IPI.

IDAPP The given typing derivation looks like
Γ `reg (x :A)→ B ⇐ Type
Γ `reg a ⇒ (x :A)→ B
Γ `reg v ⇐ A
Γ �∃ injrng (x :A)→ B for v
Γ `reg {vA/x}B ⇐ Type

Γ `reg a v ⇒ {vA/x}B
RIDAPP

In the regularized type system, we have Γ ` (x : A) → B ⇐ Type as a premise to the given rule. So by IH, Γ′ (x : A) → B ⇐
Type ; B ′1 for some type B ′1, where Γ′ � (x :A)→ B = B ′1. In fact there is only one rule for elaborating arrow types, so by inversion
of that judgement, we get Γ′ (x :A) → B ⇐ Type ; (x :A′) → B ′, where B ′1 is (x :A′) → B ′ and Γ′ A ⇐ Type ; A′ and
Γ′, x : A′ B ⇐ Type ; B ′. By soundness, this also means that |(x :A)→ B | = |(x :A′)→ B ′|.

From the IH for the a premise we know Γ′ a ⇒ a ′ : A′0 with Γ′ � A′0 = (x :A′)→ B ′.

Γ `reg a ⇒ A Γ `reg a ⇐ A

Γ `reg a ⇒ A Γ �∃ A = B
Γ `reg A⇐ Type
Γ `reg B ⇐ Type

Γ `reg a ⇒ B
RICAST

Γ `reg a ⇐ A
Γ � A = B
Γ `reg B ⇐ Type

Γ `reg a ⇐ B
RCCAST

Γ `reg A⇐ Type
Γ `reg a ⇐ A

Γ `reg aA ⇒ A
RIANNOT

Γ `reg a ⇒ A

Γ `reg a ⇐ A
RCINF

Γ `reg A⇐ Type
Γ `reg B ⇐ Type
Γ `reg a ⇒ A
Γ `reg b ⇒ B

Γ `reg a = b ⇒ Type
RIEQ

Γ �∃ a = b

Γ `reg join⇐ a = b
RCREFL

Γ `reg a1 = a2 ⇐ Type
|a1|;i

p b |a2|;j
p b

Γ `reg join;pi j :a1=a2
⇒ a1 = a2

RIJOINP

Γ, f : (x :A1)→ A2, x : A1 `reg a ⇐ A2

Γ, f : (x :A1)→ A2 `reg A1 ⇐ Type
Γ, f : (x :A1)→ A2, x : A1 `reg A2 ⇐ Type
Γ, f : (x :A1)→ A2, x : A1 �∃ injrng (x :A1)→ A2 for x

Γ `reg rec f x .a ⇐ (x :A1)→ A2
RCREC

Γ `reg a1 = a2 ⇐ Type
|a1|;i

cbv b |a2|;j
cbv b

Γ `reg join;cbvi j :a1=a2
⇒ a1 = a2

RIJOINC

Γ `reg Type⇒ Type
RITYPE

`reg Γ⇐ x : A ∈ Γ Γ `reg A⇐ Type

Γ `reg x ⇒ A
RIVAR

Γ `reg A⇐ Type
Γ, x : A `reg B ⇐ Type

Γ `reg (x :A)→ B ⇒ Type
RIPI

Γ `reg B ⇐ Type
Γ `reg A→ B ⇐ Type
Γ `reg a ⇒ A→ B
Γ `reg b ⇐ A

Γ `reg a b ⇒ B
RIAPP

Γ `reg (x :A)→ B ⇐ Type
Γ `reg a ⇒ (x :A)→ B
Γ `reg v ⇐ A
Γ �∃ injrng (x :A)→ B for v
Γ `reg {vA/x}B ⇐ Type

Γ `reg a v ⇒ {vA/x}B
RIDAPP

∀A′ B ′.((Γ �∃ ((x :A)→ B) = ((x :A′)→ B ′)) implies Γ �∃ {v/x}B = {v/x}B ′)
Γ �∃ injrng (x :A)→ B for v

EIRPI

Γ `reg A⇐ Type
Γ, x : A `reg B ⇐ Type

Γ `reg •(x :A)→ B ⇒ Type
RIIPI

Γ, f : •(x :A1)→ A2, x : A1 ` a ⇐ A2

x /∈ FV (|a|)
Γ, f : •(x :A1)→ A2, x : A1 �∃ injrng • (x :A1)→ A2 for x
Γ, f : •(x :A1)→ A2 ` •(x :A1)→ A2 ⇐ Type

Γ ` rec f •.a ⇐ •(x :A1)→ A2
CIREC

Γ `reg •(x :A)→ B ⇐ Type
Γ `reg a ⇒ •(x :A)→ B
Γ `reg v ⇐ A
Γ �∃ injrng • (x :A)→ B for v
Γ `reg {vA/x}B ⇐ Type

Γ `reg a •v ⇒ {vA/x}B
RIIDAPP

Figure 19. Bidirectional typing rules for surface language, with added extra regularity premises

So, by Assumption 21 the search Γ′ A′0 =? (x : A′′) → B ′′ ; v1 through the equivalence class of A′0 will terminate successfully
with some arrow type (x :A′′)→ B ′′ and proof v1, since there exists at least one such arrow type, and by Assumption 19 we know that
Γ′ ` v1 : (A′0 = ((x :A′′)→ B ′′)).

As a result, we have Γ′ � (x :A′)→ B ′ = (x :A′′)→ B ′′, By TCCINJDOM we know Γ′ � A′ = A′′.

Now by the IH for the v premise, we get Γ′ v ⇐ A′ ; v ′ and, by lemma 74, that |v | = |v ′|. By casting (lemma 75) this implies
Γ′ v ⇐ A′′ ; v ′′. Again by soundness (lemma 74), we have Γ′ ` v ′′ : A′′ and |v | = |v ′′|.

The algorithmic injrng premise of EIDAPP, namely Γ′ � injrng (x :A′′)→ B ′′ for v ′′ is satisfied by Lemma 78.

Now apply EIDAPP, to get Γ′ a v ⇒ a ′ v ′′ : {v ′′/x}B ′′.

We know by assumption that Γ′ {vA/x}B ⇐ Type ; B0. The lemma also requires showing Γ′ � B0 = {v ′′/x}B ′′. By instantiating
the injrng premise at v ′ (lemma 73), it suffices to show that Γ′ � B0 = {v ′/x}B ′. We derive this equality via TCCERASURE,
as Γ′ ` B0 : Type (via soundness), Γ′ ` {v ′/x}B ′ : Type (via substation for annotated language), and |B0| = |{v ′/x}B ′|.
This last equality holds because, by |B | = |B ′| and |vA| = |v ′| and the fact that substitution commutes with erasure we know that
|{vA/x}B | = |{v ′/x}B ′|. Furthermore by soundness, we have |{vA/x}B | = |B0|.

IIAPP, IAPP Similar to the previous case.

IEQ By the IHs for the (added) premises Γ `reg A ⇐ Type and Γ `reg B ⇐ Type, we know Γ′ A ⇐ Type ; A′ and
Γ′ B ⇐ Type ; B ′.

Then by the IHs for the premises for a and b we know Γ′ a ⇒ a ′ : A′′ and Γ′ b ⇒ b′ : B ′′. Now apply EIEQ to get
Γ′ a = b ⇒ a ′ = b′ : Type.

IJOINC,IJOINP By the IH for the premise Γ ` a1 = a2 ⇐ Type we know Γ′ a1 = a2 ⇐ Type ; A0. There is only one rule for
elaborating equality types, so by inversion on that judgement we in fact have Γ′ a1 = a2 ⇐ Type ; a ′1 = a ′2 and Γ′ a1 ⇒ a ′1 : A′1
and Γ′ a2 ⇒ a ′2 : A′2.

By soundness of elaboration 74 we know |ai | = |a ′i |, so the the reduction behavior is the same. So apply EIJOINC to get Γ′

join;cbvi j :a1=a2
⇒ join;cbvi j :a

′
1=a′2

: a ′1 = a ′2. Also by soundness of elaboration we know a ′1 = a ′2 is well-typed, so by TCCREFL

Γ′ � (a ′1 = a ′2) = (a ′1 = a ′2) as required.

IANNOT By the IH for the premise Γ ` A ⇐ Type we get Γ′ A ⇐ Type ; A′. Then by the IH for Γ ` a ⇐ A, we get
Γ′ a ⇐ A′ ; a ′. Now by EIANNOT, Γ′ aA ⇒ a ′ : A′.

By soundness of elaboration 74 we know A′ is well-typed, so Γ′ � A′ = A′ as required.

ICAST By the IH for the (added) premise Γ `reg A⇐ Type, we have Γ′ A⇐ Type ; A′ (and |A| = |A′| by soundness). Then by the
IH for Γ ` a ⇒ A, we know Γ′ a ⇒ a ′ : A′′ with Γ′ � A′ = A′′. Likewise, by the IH for the (added) premise Γ `reg B ⇐ Type,
we have Γ′ B ⇐ Type ; B ′ (and |B | = |B ′| by soundness).

By the definition of �∃ we know there are Γ1, A1,B1 such that Γ1 � A1 = B1 where |Γ1| = |Γ|,|A1| = |A| and |B1| = |B |, so by
lemma 44 we have Γ′ � A′ = B ′. So by TCCTRANS Γ′ � A′′ = B ′, as required.

The cases for Γ ` a ⇐ A are:

CREC The rule is
Γ, f : (x :A1)→ A2, x : A1 `reg a ⇐ A2

Γ, f : (x :A1)→ A2 `reg A1 ⇐ Type
Γ, f : (x :A1)→ A2, x : A1 `reg A2 ⇐ Type
Γ, f : (x :A1)→ A2, x : A1 �∃ injrng (x :A1)→ A2 for x

Γ `reg rec f x .a ⇐ (x :A1)→ A2
RCREC

To apply the induction hypothesis to the first premise, we need to know how the type A2 elaborates in both the context Γ′ and in that
context extended with f .

There is only one rule for elaborating arrow types. So by inversion on the hypothesis Γ′ (x : A1) → A2 ⇐ Type ; A, we in fact
have Γ′ (x :A1)→ A2 ⇐ Type ; (x :A′1)→ A′2 and Γ′ A1 ⇐ Type ; A′1 and Γ′, x : A′1 A2 ⇐ Type ; A′2 for some A′1
and A′2 such that Γ′ A1 ⇐ Type ; A′1 and Γ′, x : A′1 A2 ⇐ Type ; A′2.

Using the fact that (x :A1)→ A2 elaborates to (x :A′1)→ A′2, we know Γ, f : (x :A1)→ A2 ; Γ′, f : (x :A′1)→ A′2. So by the
IH for the first regularity premise we have Γ, f : (x :A′1)→ A′2 A1 ⇐ Type ; A′′1 for some A′′1 .

Similarly, using that A1 elaborates to A′′1 we know Γ, f : (x :A1) → A2, x : A1 ; Γ′, f : (x :A′1) → A′2, x : A′′1 . So by the IH for
the second regularity premise we have Γ, f : (x :A′1)→ A′2, x : A′′1 A2 ⇐ Type ; A′′2 for some A′′2 .

Now by the IH for the first premise of the rule, we get Γ, f : (x :A′1)→ A′2, x : A′′1 a ⇐ A′′2 ; a ′ for some a ′.

By soundness of elaboration we know (x :A′1) → A′2 is a well-formed type, so Γ′ � (x :A′1) → A′2 = (x :A′1) → A′2. So the search
Γ′ (x :A′1)→ A′2 =? (x : A′′′1)→ A′′′2 ; v1 will succeed for some arrow type (x :A′′′1)→ A′′′2 , since there exists at least one.

By TCCINJDOM, we also know Γ′ � A′1 = A′′′1 . Furthermore, by soundness of elaboration (lemma 74) we know that both
A′1 and A′′1 are well-formed types in the context Γ′, f : (x : A′1) → A′2, and that they erase to the same thing. So we have
Γ′, f : (x : A′1) → A′2 � A′1 = A′′1 . By symmetry and transitivity, Γ′, f : (x : A′1) → A′2 � A′′′1 = A′′1 . Let v2 be a proof of
that fact. Then using these two proofs, we can produce a proof of equivalence of the contexts.

� {f.v1/f } {x.v2/x} : Γ′, f : (x :A′1)→ A′2, x : A′′1 = Γ′, f : (x :A′′′1)→ A′′′2 , x : A′′′1 .

So by context conversion (lemma 76) we know Γ′, f : (x :A′′′1)→ A′′′2 , x : A′′′1 a ⇐ {f.v1/f } {x.v2/x}A′2 ; a ′′. By soundness of
elaboration Γ′, x : A′1 ` A′2 : Type, so f /∈ FV (A′2) and the above statement simplifies to Γ′, f : (x :A′′′1) → A′′′2 , x : A′′′1 a ⇐
{x.v2/x}A′2 ; a ′′.

By completeness of injrng (lemma 78), we know that Γ′, f : (x : A′1) → A′2, x : A′1 � injrng (x : A′1) → A′2 for x . By weakening
the judgement Γ′ � (x : A′1) → A′2 = (x : A′′′1) → A′′′2 (lemma 23), and because injrng respects CC (lemma 71), we get
Γ′, f : (x : A′1) → A′2, x : A′1 � injrng (x : A′′′1) → A′′′2 for x . By the CC-equivalences proved above we can find a context
equivalence � ρ : Γ′, f : (x : A′1) → A′2, x : A′1 = Γ′, f : (x : A′′′1) → A′′′2 , x : A′′′1 . So since injrng respects context conversion
(lemma 70) we have Γ′, f : (x :A′′′1) → A′′′2 , x : A′′′1 � injrng ρ (x :A′′′1) → A′′′2 for ρ x . We can pick the bound variables f and x to
not be free in (x :A′1) → A′2, so this is the same as Γ′, f : (x :A′′′1) → A′′′2 , x : A′′′1 � injrng (x :A′′′1) → A′′′2 for ρ x . And because
injrng respects erasure (lemma 72), we have Γ′, f : (x :A′′′1)→ A′′′2 , x : A′′′1 � injrng (x :A′′′1)→ A′′′2 for x , which is what we need as
a premise to ECREC.

By TCCERASURE we know Γ′, x : A′′′1 � {x.v2/x}A′2 = A′′′2 . By weakening (lemma 23) thus Γ′, f : (x : A′′′1) → A′′′2 , x : A′′′1 �
{x.v2/x}A′2 = A′′′2 . So by casting (lemma 75), we have Γ′, f : (x :A′′1)→ A′′2 , x : A′′1 a ⇐ A′′2 ; a ′′′.

Now apply ECREC to get Γ rec f x .a ⇐ (x :A1)→ A2 ; (rec f(x:A′′1)→A′′2
x .a ′′′)

.symm v1
.

CIREC Similar to CREC.

CREFL There is only one rule for elaborating equality types, so by inversion on the hypothesis Γ′ a = b ⇐ Type ; A′ we know that in
fact Γ′ a = b ⇐ Type ; a ′ = b′ and Γ′ a ⇒ a ′ : a ′0 and Γ′ b ⇒ b′ : b′0. So by soundness of elaboration (lemma 74) we know
a ′ and b′ are well-typed terms, and therefore by lemma 44 and the premise Γ �∃ a = b, we have Γ′ � a ′ = b′.

So the search Γ (a ′ = b′) =? (a ′′ = b′′) ; v1 will terminate successfully with some equality type a ′′ = b′′ such that
Γ′ a ′′

?
= b′′ ; v , since there exists at least one such type.

Then apply ECREFL to get Γ join⇐ a ′ = b′ ; v.symm v1 as required.

CINF By the mutual IH we have Γ a ⇒ a ′ : A′ for some A′ such that Γ � A′ = A. By transitivity, Γ � A′ = B . Now apply ECINF.

