Tracking how dependently-typed functions use their arguments

> Stephanie Weirich University of Pennsylvania Philadelphia, USA

Collaborators

Yiyun Liu Jonathan Chan Jessica Shi Pritam Choudhury Richard Eisenberg Harley Eades III Antoine Voizard Pedro Henrique Avezedo de Amorim Anastasiya Kravchuk-Kirilyuk

Let's talk about constant functions

id : \forall (A : **Type**) \rightarrow A \rightarrow A id = λ A x. x

id = λ _ x. x

Erasure semantics for type polymorphism

```
data List (A : Type) : Type where
  Nil : List A
   Cons : A \rightarrow List A \rightarrow List A
map : \forall (A B : Type) \rightarrow (A \rightarrow B) \rightarrow List A \rightarrow List B
map = \lambda A B f xs.
            case xs of
              Nil \rightarrow Nil
              Cons y ys \Rightarrow Cons (f y) (map A B f ys)
```

Erasure semantics for polymorphism

data Nil Cons

Erasure in dependently-typed languages

```
data Vec (n:Nat) (A:Type) : Type where
```

- Nil : Vec Zero A
- Cons : $\Pi(m:Nat) \rightarrow A \rightarrow (Vec m A) \rightarrow Vec (Succ m) A$

```
\begin{array}{l} \mathsf{map} : \forall (\mathsf{A} \ \mathsf{B} : \mathsf{Type}) \rightarrow \forall (\mathsf{n} : \mathsf{Nat}) \rightarrow (\mathsf{A} \rightarrow \mathsf{B}) \\ \rightarrow \mathsf{Vec} \ \mathsf{n} \ \mathsf{A} \rightarrow \mathsf{Vec} \ \mathsf{n} \ \mathsf{B} \\ \mathsf{map} = \lambda \ \mathsf{A} \ \mathsf{B} \ \mathsf{n} \ \mathsf{f} \ \mathsf{v}. \\ & \mathsf{case} \ \mathsf{v} \ \mathsf{of} \\ & \mathsf{Nil} \Rightarrow \mathsf{Nil} \\ & \mathsf{Cons} \ \mathsf{m} \ \mathsf{x} \ \mathsf{xs} \Rightarrow \\ & \mathsf{Cons} \ \mathsf{m} \ (\mathsf{f} \ \mathsf{x}) \ (\mathsf{map} \ \mathsf{A} \ \mathsf{B} \ \mathsf{m} \ \mathsf{f} \ \mathsf{xs}) \end{array}
```

Erasure in dependently-typed languages

```
data Vec (n:Nat) (A:Type) : Type where
  Nil : Vec Zero A
  Cons : \forall(m:Nat) \rightarrow A \rightarrow (Vec m A) \rightarrow Vec (Succ m) A
                        Frasable data
map : \forall (A B : Type) \rightarrow \forall (n : Nat) \rightarrow (A \rightarrow B)
     \rightarrow Vec n A \rightarrow Vec n B
map = \lambda A B n f v.
           case v of
              Nil \rightarrow Nil
              Cons m x xs ⇒
                    Cons m (f x) (map A B m f xs)
```

Erasure in dependently-typed languages

type EvenNat = { n : Nat | isEven n } Erasable proof plusIsEven : $\Pi(m n : Nat) \rightarrow (isEven m) \rightarrow (isEven n)$ $\rightarrow (isEven (m + n))$ plusIsEven = λ m n p1 p2. ...

Erasable code is irrelevant

- Not all terms are needed for computation: some function arguments and data structure components are present only for type checking
- Especially common in dependently-typed programming
- We call such code *irrelevant*

Why care about irrelevance?

- 1. The compiler can produce faster code
 - Erase arguments and their computation
- 2. The type checker can run more quickly
 - Comparing types for equality requires reduction, which can be sped up by erasure
- 3. Verification is less work for programmers
 - Proving that terms are equal may not require reasoning about irrelevant components
- 4. More programs type check
 - Sound to ignore irrelevant components when checking type equality

Less work for verification: proof irrelevance

type EvenNat = { n : Nat | isEven n }

-- prove equality of two EvenNats congEvenNat : (n m : Nat) All proofs of equal \rightarrow (np : isEven n) properties are equal \rightarrow (mp : isEven m) \rightarrow (n = m) -- no need for proof of np = mp \rightarrow ((n, np) = (m, mp) : EvenNat) $congEvenNat = \lambda n m en em p. ...$

More programs type check

...when more terms are equal, by definition

```
type tells us that f is a constant function
```

example :
$$\forall (f : \forall (x : Bool) \rightarrow Bool)$$

 $\rightarrow (f True = f False)$
example = $\lambda f \cdot Refl$
Sound for the type checker to
decide that these terms are equal

Proof of equality comes directly from type checker

Why care about irrelevance?

- 1. The compiler can produce faster code
 - Erasure / Run-time irrelevance
- 2. The type checker can run more quickly
 - Type checker optimizations
- 3. Verification is less work for programmers
 - Proof irrelevance, propositional irrelevance
- 4. More programs type check
 - Compile-time irrelevance, definitional proof irrelevance

Type checkers for dependently-typed languages should identify irrelevant code

But how?

How should type checkers for dependently-typed languages identify irrelevant code?

- 1. Erasure
- 2. Modes
- 3. Dependency

Core dependent type system

$\Gamma \vdash$	a	•	A
-----------------	---	---	---

	Ы	ABS
VAR	$\Gamma \vdash A: \star$	$\Gamma, x: A \vdash b: B$
$x: A \in \Gamma$	$\Gamma, x: A \vdash B: \star$	$\Gamma \vdash \Pi x \colon A \cdot B : \star$
$\overline{\Gamma \vdash x:A}$	$\overline{\Gamma \vdash \Pi x {:} A.B : \star}$	$\overline{\Gamma dash \lambda x\!:\!A.\;b:\Pix\!:\!A.B}$

$$\begin{array}{l} \text{APP} \\ \Gamma \vdash b : \Pi x : A.B \\ \hline \Gamma \vdash a : A \\ \hline \Gamma \vdash b a : B[a/x] \end{array}$$

 $\begin{array}{c} \Gamma \vdash a : A \\ \hline \Gamma \vdash B : \star \quad \vdash A \equiv B \\ \hline \Gamma \vdash a : B \end{array}$

Erasure

You can't use something that is not there

Miquel, TLCA 01 Barras and Bernardo, FoSSaCS 2008 Trellys [Kimmel et al. MSFP 2012] Dependent Haskell [Weirich et al. ICFP 2018]

ICC: Implicit Calculus of Constructions

• Extend core language with irrelevant (implicit) abstractions

E-ABS`
$$\Gamma, x : A \vdash b : B$$
 $E-APP$ $\Gamma \vdash \forall x : A. B : \star$ $\Gamma \vdash b : \forall x : A. B$ $x \notin fv|b|$ $\Gamma \vdash a : A$ $\Gamma \vdash \lambda x :^{\mathbf{I}} A. b : \forall x : A. B$ $\Gamma \vdash b a^{\mathbf{I}} : B[a/x]$

ICC: Implicit Calculus of Constructions

- Extend core language with irrelevant (implicit) abstractions
- Annotations enable decidable type checking

$$\begin{array}{lll} \text{E-ABS} & & \\ & \Gamma, x : A \vdash b : B \\ & \Gamma \vdash \forall x : A. B : \star \\ & x \not\in \mathsf{fv}|b| \\ \hline \Gamma \vdash \lambda x :^{\mathbf{I}} A. b : \forall x : A. B \end{array} \xrightarrow{\text{E-APP}} & \\ & \Gamma \vdash b : \forall x : A. B \\ & \Gamma \vdash b : \forall x : A. B \\ \hline \Gamma \vdash b a^{\mathbf{I}} : B[a/x] \end{array}$$

ICC: Implicit Calculus of Constructions

- Extend core language with irrelevant (implicit) abstractions
- Annotations enable decidable type checking
- Irrelevant parameters must not appear *relevantly*
- Erasure operation |a| removes irrelevant terms

$$\begin{array}{lll} \text{E-ABS} & & \\ & \Gamma, x : A \vdash b : B \\ & \Gamma \vdash \forall x : A. \ B : \star & \\ \hline x \not\in \mathsf{fv}|b| & & \Gamma \vdash b : \forall x : A. \ B \\ \hline \Gamma \vdash \lambda x :^{\mathbf{I}} A. \ b : \forall x : A. \ B & & \\ \hline \Gamma \vdash b \ a^{\mathbf{I}} : B[a/x] \end{array}$$

Erasure during conversion

- Conversion between *erased* types
- Compile-time irrelevance: erased parts ignored when comparing types for equality

$\frac{\Gamma \vdash a : A}{\Gamma \vdash a : B} \quad \begin{array}{c} \Gamma \vdash B : \star \\ \Gamma \vdash a : B \end{array} \quad \begin{array}{c} \left| B \right| \\ \end{array}$

Erasure: Implicit Calculus of Constructions

- Benefits
 - Simple!
 - Orthogonal: new features independent from the rest of the system
 - Directly connects to erasure in compilation
- Drawbacks
 - Direct implementation inefficient
 - Can't add irrelevant projections

```
filter : \forall(A:Type) \rightarrow (A \rightarrow Bool) \rightarrow (List A) \rightarrow (List A)
filter = \lambda A f v.
     case v of
        Nil \rightarrow Nil
        Cons x xs \Rightarrow
                                                       Computed only
            let r = filter A f xs in
                                                       when needed
            if f x
                 then (Cons x r)
                 else r
```

```
Example:
take 3 (filter isEven nats) → [0;2;4]
```

Pattern matching : too strict!

```
vfilter : \forall(A:Type) \rightarrow \forall(n:Nat)
           \rightarrow (A \rightarrow Bool) \rightarrow (Vec n A) \rightarrow \exists(m:Nat) \times (Vec m A)
vfilter = \lambda A n f v.
     case v of
        Nil \Rightarrow (0, Nil)
        Cons m x xs ⇒
             case vfilter A m f xs of
                 (m', r) \Rightarrow if f x
                                     then (Succ m', Cons m' x r)
                                    else (m', r)
```

Irrelevant projections preserve laziness

Distinguish relevant and irrelevant abstractions through *modes*

Pfenning, LICS 01Mishra-Linger and Sheard, FoSSaCS 08DDC, Choudhury and Weirich, ESOP 22Abel and Scherer, LMCS 12DE, Liu and Weirich, ICFP 23

Modal types and modes

- Modal type marks irrelevant code: $\Box A$
- Type system controlled by modes: $m := \mathbf{R} \mid \mathbf{I}$
 - Variable annotated in Γ , only R tagged usable

 $\Gamma ::= \varepsilon \mid \Gamma, \ x :^{m}A$

- Resurrection (Γ^m): replace all m tags with R
- Uniformity in abstractions: $\Pi x:^{m}A.B$ unifies $\Pi x:A.B$ and $\forall x:A.B$

Modal types for irrelevance

Only relevant variables can be used		$\frac{X : \mathbf{R}}{X : \mathbf{R}} A \in \Gamma}{\Gamma \vdash x : A}$		
$\begin{array}{c} \text{M-Box} \\ \Gamma^{\mathbf{I}} \vdash a : A \end{array}$	$\begin{array}{c} \text{M-LetBo:} \\ \Gamma \vdash a : \Box \end{array}$		$\Gamma, x:^{\mathbf{I}}A \vdash b:B$	$\Gamma \vdash B: \star$
$\overline{\Gamma \vdash \mathbf{box} \; a : \Box A}$	$\Gamma \vdash \mathbf{unbox} \ x = a \ \mathbf{in} \ b : B$			
Modal types mark irrelevant		The contents of the box are		

MI MAN

Modal types mark irrelevant subterms. *Resurrection* means that any variable can be used inside a box. The contents of the box are accessible only in other boxes.

Modes annotate functions

Only relevant variables can be used	Π-bound variables always relevant in the type		Types checked with "resurrected"	
call be used	M-PI	M-ABS	context	
M-VAR	$\Gamma \vdash A: \star$	$\Gamma^{I} \vdash$	$\Pi x:^m A.B:\star$	
$x:^{\mathbf{R}}A\in\Gamma$	$\Gamma, x :^{\mathbf{R}} A \vdash B$	$\cdot \star \qquad \Gamma, x$	$:^m A \vdash b : B$	
$\overline{\Gamma \vdash x:A}$	$\overline{\Gamma \vdash \Pi x :^m A.B}$	$\vdots \star \qquad \overline{\Gamma \vdash \lambda x :^n}$	$A.a:\Pi x:^{m}A.B$	
M-App			n П-type determines n the context	
$\Gamma \vdash b: \Pi$:	$x:^m A.B$	M-Conv		
$\Gamma^m \vdash$	a:A	$\Gamma \vdash a : A \vdash$	$A \equiv B$	
$\overline{\Gamma \vdash b \; a^m}$: B[a/x]	$\Gamma \vdash a : B$		
	rguments checked cted context		Conversion ignores irrelevant arguments	

Compile-time irrelevance

- Usual rules for beta-equivalence, plus
 - compare arguments marked R
 - ignore arguments marked I or inside a box

$$\begin{array}{l} \text{Eq-Rel} \\ \vdash b_1 \equiv b_2 \\ \hline \vdash a_1 \equiv a_2 \\ \vdash b_1 a_1^{\mathbf{R}} \equiv b_2 a_2^{\mathbf{R}} \end{array} \begin{array}{l} \text{Eq-IRR} \\ \vdash b_1 \equiv b_2 \\ \hline \vdash b_1 a_1^{\mathbf{I}} \equiv b_2 a_2^{\mathbf{I}} \end{array}$$

Modes for irrelevance

- Benefits
 - Modes identify patterns in the semantics: don't need two different functions
 - More direct implementation: mark variables when introduced in the context, mark the context for resurrection
- Drawbacks
 - Still no irrelevant projections
 - Formation rule for Π-types looks a bit strange
- Conjecture: equivalent to ICC*

Dependency

Track when outputs depend on inputs

DCC, Abadi et al., POPL 99

DDC, Choudhury and Weirich, ESOP 22 DCOI, Liu, Chan, Shi, Weirich, POPL 24

Dependency tracking

- Type system parameterized by ordered set of levels
 - Relevance (R < I)
 - Other examples: Security levels (Low < Med < High)
 Staged computation (0 < 1 < 2...)
- Typing judgment ensures that low-level outputs do not depend on high-level inputs

$$x:^{H} Bool \vdash a:^{L} Int$$

Input level x can only be used when observer level is $\geq H$ Observer level a can only use variables whose levels are $\leq L$

Typing rules with dependency levels $\Gamma \vdash a :^{\ell} A$

$$\begin{array}{c} \text{Variable usage}\\ \text{Testricted by}\\ \text{observer level}\\ \hline x:^m A \in \Gamma & m \leq \ell\\ \hline \Gamma \vdash x:^\ell A \end{array}$$

D-Pi

$$\Gamma \vdash A :^{\ell} \star$$
 and types
 $\Gamma, x :^{m} A \vdash B :^{\ell} \star$
 $\overline{\Gamma \vdash \Pi x :^{m} A . B :^{\ell} \star}$

D-ABS $\Gamma, x :^{m} A \vdash b :^{\ell} B$ $\Gamma \vdash \Pi x :^{m} A . B :^{\ell_{1}} \star$ Terms do not observe types, level unimportant

$$\Gamma \vdash \lambda x :^{m} A. \ b :^{\ell} \Pi x :^{m} A. B$$

Π-types record the dependency levels of their arguments

 $\begin{array}{c}
\text{D-APP} \\
\Gamma \vdash b :^{\ell} \Pi x :^{m} A.B \\
\hline \Gamma \vdash a :^{m} A \\
\hline \Gamma \vdash b a^{m} :^{\ell} B[a/x]
\end{array}$

Application requires compatible dependency levels

```
Type is checked with I-observer
vfilter : (A: I Type) \rightarrow (n: I Nat)
            \rightarrow (A \rightarrow Bool) \rightarrow (Vec n A) \rightarrow (m:<sup>I</sup> Nat) × (Vec m A)
vfilter = \lambda A n f v.
      case v of
                                       Definition checks with R observer, but
         Nil \Rightarrow (0<sup>I</sup>, Nil)
                                       contains I-marked subterms
         Cons m<sup>I</sup> x xs ⇒
             let p = vfilter A<sup>I</sup> m<sup>I</sup> f xs in
             if f x
                  then ((Succ p.1)<sup>I</sup>, Cons p.1<sup>I</sup> x p.2)
                  else p
                                       First projection allowed in
                                       I-marked subterms only
```

Indistinguishability: indexed definitional equality

$$\vdash a \equiv^{\ell} b$$
 Observer cannot distinguish between terms

If observer has a higher level than the argument, arguments must agree

 $\begin{array}{c} \text{Eq-D-App-Dist} \\ \vdash b_0 \equiv^{\ell} b_1 \\ \hline \\ \frac{\vdash a_0 \equiv^{\ell} a_1}{\vdash b_0 a_0^{\ell_0} \equiv^{\ell} b_1 a_1^{\ell_0}} \end{array}$

If observer does not have a higher level, arguments are ignored

EQ-D-APP-INDIST

$$\vdash b_0 \equiv^{\ell} b_1 \qquad \ell_0 \nleq \ell$$

$$\vdash b_0 a_0^{\ell_0} \equiv^{\ell} b_1 a_1^{\ell_0}$$

Conversion can be used at **any** observer level

$$\frac{\Gamma \vdash a :^{\ell} A \qquad \Gamma \vdash B :^{\ell_0} \star \qquad \vdash A \equiv^{\ell_0} B}{\Gamma \vdash a :^{\ell} B}$$

Type system is **sound** because we **cannot** equate types with different head forms at *any* dependency level

DCOI: Dependent Calculus of Indistinguishability

- Liu, Chan, Shi and Weirich. *Internalizing Indistinguishability with Dependent Types.* POPL 2024
 - PTS version
 - Key results: Syntactic type soundness, noninterference
- Liu, Chan and Weirich. *Work in progress*
 - Predicative universe hierarchy
 - Observer-indexed propositional equality, J-eliminator
 - Key results: Consistency, normalization and decidable equality
- All results mechanized using Coq/Rocq proof assistant

DCOI: Dependent Calculus of Indistinguishability

- Benefits
 - Irrelevant projection is sound!
 - General mechanism for dependency: applications besides irrelevance
 - Can reason about *indistinguishability* as a proposition
- Drawbacks (Future work)
 - Unknown compatibility with type-directed equality
 - Unknown compatibility with inductive datatypes
 - Unknown language ergonomics
 - Dependency level inference?
 - Dependency level quantification?

Related work on Irrelevance

- Erasure-based
 - Miquel 2001, Barras & Bernardo 2008
- Mode-based
 - Pfenning 2001, Mishra-Linger & Sheard 2008, Abel & Scherer 2012
- Dependency tracking
 - Type theory in color: Bernardy & Moulin 2013
 - Two level type theories: Kovács 2022, Annenkov et al. 2023
- sProp (Definitional proof irrelevance)
 - Gilbert et al. 2019
- Quantitative Type Theory
 - McBride 2016, Atkey 2018, Abel & Bernardy 2020, Choudhury et al. 2021, Moon et al. 2021

Conclusions

- In dependent type systems, identifying irrelevant computations is important for *efficiency* and *expressivity*
- Type systems can track more than "types", they can also tell us what happens during computation
- Dependency analysis is a powerful hammer in type system design