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Information retrieval nowadays
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Database server

Client

“Where to stay 
at Evanston”

“IHG Hotel”
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Top 10 queries 
on Google starting with
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Top 10 queries 
on Google starting with



Private information retrieval (PIR) [CGKS95, KO97]

Database server

Client

“Where to stay 
at Evanston”

“IHG Hotel”

I get the answer 
“IHG Hotel”

I know nothing 
about the query
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Private information retrieval (PIR) [CGKS95, KO97]

Database server has 𝑥 = 0, 1 𝑛

Client wants to get the entry 𝑥𝑖

without revealing the index 𝑖 

Query Answer
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The trivial solution is expensive

Database server has 𝑥 = 0, 1 𝑛

Client wants to get the entry 𝑥𝑖

without revealing the index 𝑖 

Download the whole database 
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Database server has 𝑥 = 0, 1 𝑛

Client wants to get the entry 𝑥𝑖

without revealing the index 𝑖 

Query Answer
We want small communication

Our efficiency goals
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We want fast server computation



How far are we from the goals?
8GB database: 218 entries of 32KB (size of a pdf document of a few pages)
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High computation

High communication

Our goal

Non-private setting



Background: PIR in two flavors

Information-theoretic

• Secure against unbounded adversaries 

Computational

• Secure against poly-time adversaries
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Security

Single-server IT PIR is only possible when we 
allow 𝑛 bits of communication [CGKS95]



Background: PIR in two flavors

Information-theoretic

• Secure against unbounded adversaries 

• Enforce non-collusion among the 
database servers

Computational

• Secure against poly-time adversaries

• No need for non-colluding assumption 
on the database server

Hard to ensure 
when data is held by 

a single entity

11

Security

System 
assumption



Background: PIR in two flavors

Information-theoretic

• Secure against unbounded adversaries 

• Enforce non-collusion among the 
database servers

• Require database replication across 
multiple servers

• Often efficient in practice (no 
cryptographic operations)

Computational

• Secure against poly-time adversaries

• No need for non-colluding assumption 
on the database server

• No database replication, a single server 
suffices

• Expensive server cost because of 
cryptogaphic operations
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Security

System 
assumption

Efficiency
(storage)

Efficiency
(comp.)

Faster response Slower response



Background: PIR in two flavors

Information-theoretic Computational

13

1 0 0 0 1 0 1 0 0 0 1 0

𝑛 bits
𝑛 by 𝑛

0 0 1 0

Query = Share 1 + Share 2

Share 2 of queryShare 1 of query

Server 1 Server 2



Background: PIR in two flavors

Information-theoretic Computational
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1 0 0 0 1 0 1 0 0 0 1 0

0 0 1 0

Share 2 of queryShare 1 of query

Server 1 Server 2

Additive HE

Query = Share 1 + Share 2

𝑛 bits
𝑛 by 𝑛



Best of both worlds?

Information-theoretic

• Secure against unbounded adversaries 

• Enforce non-collusion among the 
database servers

• Require database replication across 
multiple servers

• Often efficient in practice (no 
cryptographic operations)

Computational

• Secure against poly-time adversaries

• No need for non-colluding assumption 
on the database server

• No database replication, a single server 
suffices

• Expensive server cost because of 
cryptogaphic operations

Security

System 
assumption

Efficiency
(storage)

Efficiency
(comp.)

Do we have a sweet spot between security, efficiency and system assumption?
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• Security must hold for even a single client 

• New hope: relaxed security by considering multiple clients

PIR in the shuffle model

The shuffle model [IKOS06]
Component 1: Many clients make queries simultaneously
Component 2: The queries are shuffled before reaching the server

“The standard model”

16



• Purpose: anonymization

• A popular model in
• Anonymous communication, e.g., [HLZZ15]

• Differential privacy, e.g., [BBGN20]

The shuffle model

Server

Shuffler

17



• Purpose: anonymization

• A popular model in 
• Anonymous communication, e.g., [HLZZ15]

• Differential privacy, e.g., [BBGN20]

• In our PIR setting: 
• We assume it is two-way

• Can be instantiated by, e.g., Tor

• Or can be viewed as a second shuffle server
who does not hold the database 

The shuffle model

Server

Shuffler
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Permute (…)
InversePermute(…)

A hybrid model between 
single-server and two-server



PIR in the shuffle model: Our results

• Result 1: Single-server IT secure PIR with sublinear communication is 
theoretically feasible in the shuffle model

• Impossibility result [CGKS95]: For single-server IT-PIR in the standard model, the 
only way out is requiring 𝑛 bits communication
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PIR in the shuffle model: Our results

• Result 1

Theorem (Informal).
For every 𝛾 > 0, there is a single-server PIR in the shuffle model such that, on 
database size 𝑛, has 𝑂(𝑛𝛾) per-query communication and computation with 
1/poly(𝑛) statistical security (assuming one-time preprocessing), as long as 
poly(𝑛) clients simultaneously accessing the database.

Throughout this talk, we omit polylog 𝑛 factors.
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PIR in the shuffle model: Our results

• Result 1: Single-server IT secure PIR with sublinear communication is 
theoretically feasible in the shuffle model

   Drawback of result 1: requiring too many clients querying at the same time

• Result 2: Single-server computationally secure PIR in the shuffle 
model that has concretely small communication and computation, 
and requires a reasonable number of simultaneously querying clients

21

[IKOS06] initialized the study of PIR from anonymity, but their construction relies on 
non-standard computational assumptions and is not concretely efficient.



Our result 2: a new design space
8GB database: 218 entries of 32KB (size of a pdf document of a few pages)
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Non-private setting

Our result 2



• Construction backbone: “Split and mix”

• Result 1: A generic construction of IT-PIR in the shuffle model

• Result 2: PIR from computationally secure split-and-mix

• An interesting orthogonal problem: hiding record size without 
padding

• Discussion and open questions

Rest of this talk

23



Anonymization does not trivialize the PIR problem

24

The shuffler hides who sends which message, 
but does not hide the message itself



What we want for security 

𝑉𝑖𝑒𝑤 𝑖1, 𝑖2, … , 𝑖𝐶 𝑉𝑖𝑒𝑤 𝑖1
′ , 𝑖2

′ , … , 𝑖𝐶
′

𝑖1
′ 𝑖2

′  … 𝑖𝐶
′𝑖1 𝑖2  … 𝑖𝐶
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The split-and-mix paradigm [IKOS06]

5 1 0 3 8

4+10+11   6+14+1  16+2+2  14+2+7  17+2+9

Take a large enough 𝑝, each client 
splits its inputs into 𝑘 shares in ℤ𝑝

E.g., 𝑝 = 20, 𝑘 = 3

26

A secure sum 
problem



The split-and-mix paradigm [IKOS06]

5 1 0 3 8

4+10+11   6+14+1  16+2+2  14+2+7  17+2+9

Take a large enough 𝑝, each client 
splits its inputs into 𝑘 shares in ℤ𝑝

Shuffle all the shares

Sum up all the shares 
in ℤ𝑝
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A secure sum 
problem



Security formalization of split-and-mix

1 1 1 1 1 5 0 0 0 0

Each input is split into 𝑘 shares

Any two different sets of 
inputs with equal sum
Any two different sets of 

inputs with equal sum

Each input is split into 𝑘 shares

280 1 p-1 0 1 p-1

𝑉𝑖𝑒𝑤(1,1,1,1,1)



Security formalization of split-and-mix

1 1 1 1 1 5 0 0 0 0

Each input is split into 𝑘 shares

Any two different sets of 
inputs with equal sum
Any two different sets of 

inputs with equal sum

Each input is split into 𝑘 shares

290 1 p-1 0 1 p-1

𝑉𝑖𝑒𝑤(1, 1, 1, 1, 1) 𝑉𝑖𝑒𝑤(5, 0, 0, 0, 0)

≈



Split-and-mix as a tool 

5 1 0 3 8

4+10+11   6+14+1  16+2+2  14+2+7  17+2+9

Take a large enough 𝑝, each client 
splits its inputs into 𝑘 shares in ℤ𝑝

Shuffle all the shares

30

Split-and-mix provides privacy against the 
observer, subject to leaking only the sum



• Construction backbone: “Split and mix”

• Result 1: A generic construction of IT-PIR in the shuffle model

• Result 2: PIR from computationally secure split-and-mix

• An interesting orthogonal problem: hiding record size without 
padding

• Discussion and open questions

Rest of this talk
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Split each query into 
additive shares?

Answer to each share  

IT-PIR from split-and-mix

𝑞1 𝑞2𝑞1 𝑞2 𝑞1 𝑞2 𝑞1 𝑞2 𝑞1 𝑞2

𝑞 𝑞 𝑞 𝑞 𝑞 
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Permute (…)
InversePermute(…)

The key idea is to view the multi-server PIR 
in the additive sharing paradigm



• Sub-queries are additive shares

• Answer algorithm is simply 𝑃𝑥(share)

IT-PIR from split-and-mix

The sub-queries 𝑞1, 𝑞2 are 
additive shares of (the encoding of) index 𝑖

𝑎2𝑎1

𝑎1 ← 𝑃𝑥(𝑞1) 𝑎2 ← 𝑃𝑥(𝑞2)

𝑥 = 0, 1 𝑛 𝑥 = 0, 1 𝑛

𝑞2
𝑞1

𝑖 ∈ [𝑛]

33

[BIK04]
𝑂(log 𝑛) query size
𝑂( 𝑛) answer size



Query using the two-server 
“additive PIR” protocol

Only learns the sum of all 
sub-queries but nothing else 

IT-PIR from split-and-mix

𝑞1 𝑞2𝑞1 𝑞2 𝑞1 𝑞2 𝑞1 𝑞2 𝑞1 𝑞2

𝑞 𝑞 𝑞 𝑞 𝑞 
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Are we done?



• 2-share is not enough to provide privacy: a simple example in ℤ2 

All clients with input 0  v.s.  All clients with input 1

            0 can be split to 0+0  or  1+1           1 can only be split to 0+1

IT-PIR from split-and-mix

Exactly equal #0s and #1s 
in the shares!

#0s and #1s may not be 
exactly equal

Similar attack also 
generalizes to ℤ𝑝

35



• Can we split to more shares? Yes, but worse efficiency:

The 𝑘-server “additive PIR” in [BIK04] gives communication 𝑂(𝑛
𝑘−1

𝑘 )

      

IT-PIR from split-and-mix

Our technique:
Randomize the query index for the “additive PIR” 

using an outer layer of PIR

Communication 𝑂(𝑛
1

2 polylog(𝑛))
36



General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3

Recall the problem

∈ [𝑛]

When 𝑖1, 𝑖2, … , 𝑖𝐶  and 𝑖1
′ , 𝑖2

′ , … , 𝑖𝐶
′  are far apart,  e.g., 1 1 1 1 1 v.s. 2 2 2 2 2

𝑉𝑖𝑒𝑤 𝑖1, 𝑖2, … , 𝑖𝐶   and 𝑉𝑖𝑒𝑤 𝑖1
′ , 𝑖2

′ , … , 𝑖𝐶
′  are also far apart

Given any set of query indices

Learns nothing 
(except the sum)

37



General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3

A step forward

∈ [𝑛]

If we can make 𝑖1, 𝑖2, … , 𝑖𝐶  and 𝑖1
′ , 𝑖2

′ , … , 𝑖𝐶
′  closer, e.g., 1 2 3 4 4 v.s. 1 2 3 4 5

Would 𝑉𝑖𝑒𝑤 𝑖1, 𝑖2, … , 𝑖𝐶   and 𝑉𝑖𝑒𝑤 𝑖1
′ , 𝑖2

′ , … , 𝑖𝐶
′  be close?

Given any set of query indices

Learns nothing 
(except the sum)

Our proof technique

1 1 1 1 1 v.s. 2 2 2 2 2
$

Our construction technique
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General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3How to randomize the indices?

𝑞1
𝑞2 𝑞3

Let 𝒬 be the space that consists of all 
possible sub-queries

An important observation

Consider PIR query algorithm:
 (𝑞1, 𝑞2, 𝑞3) ← 𝑄𝑢𝑒𝑟𝑦(𝑖; 𝑟)

For any given 𝑖 ∈ [𝑛], each sub-query e.g., 
𝑞1 is uniformly random over 𝒬

∈ [𝑛]

“Outer PIR”

39



General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3

𝑖1
∗ 𝑖2

∗ 𝑖3
∗ 𝑖1

∗ 𝑖2
∗ 𝑖3

∗ 𝑖1
∗ 𝑖2

∗ 𝑖3
∗

∈ [𝑛]

Run outer PIR query algorithm

What we get from outer PIR

𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 ∈ 𝒬

How to randomize the indices?

Sort all sub-queries in 𝒬

A list with size 𝑛∗ = |𝒬|

Interpret as indices

0000  0001  0010  0011       …                                                                  1111    

0001

2

1        2         3        4           …                                                                     𝑛∗  

Outer PIR with O(log 𝑛) 
query size

Each random in 𝒬

Each random in [𝑛∗] ∈ [𝑛∗]

40



General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3

𝑖1
∗ 𝑖2

∗ 𝑖3
∗ 𝑖1

∗ 𝑖2
∗ 𝑖3

∗ 𝑖1
∗ 𝑖2

∗ 𝑖3
∗

∈ [𝑛]

Run outer PIR query algorithm 𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 ∈ 𝒬

How to randomize the indices?

𝑃𝑥(0000)

Inner PIR with random query indices

Inner PIR database size 𝑛∗ = |𝒬| 

∈ [𝑛∗]

𝑃𝑥(1111)𝑃𝑥(0001) … 

Use the two-server “additive” PIR

Recall: not secure if doing 
”additive PIR” directly here 

Answers in outer PIR

41



General constructions: an “inner-outer” paradigm

𝑖1 𝑖2 𝑖3

𝑖1
∗ 𝑖2

∗ 𝑖3
∗ 𝑖1

∗ 𝑖2
∗ 𝑖3

∗ 𝑖1
∗ 𝑖2

∗ 𝑖3
∗

∈ [𝑛]

Run outer PIR query algorithm 𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 𝑞1 𝑞2 𝑞3 ∈ 𝒬

On any query indices

∈ [𝑛∗]

Use inner PIR for retrieve answers;
Inner PIR sub-queries are shuffled

A brief summary

Interpret as indices for inner PIR

𝑃𝑥(0000) 𝑃𝑥(1111)𝑃𝑥(0001) … Size 𝑛∗ The server prepares this in advance

Outer PIR: sub-query size 𝑂(log 𝑛)

Inner PIR: The two-
server “additive PIR”

A single server!
42



General constructions: an “inner-outer” paradigm

Theorem (Informal).
On any database size 𝑛, the “inner-outer” construction with any outer PIR and the 
two-server additive inner PIR, gives a single-server PIR in the shuffle model that 
has 1/poly(𝑛) statistical security and 𝑂( 𝑛) per-query communication, assuming 
poly(𝑛) clients simultaneously accessing the database. 

Corollary (Informal).
Using fancier inner PIR (“CNF PIR”), on any database size 𝑛, for every constant 𝛾, 
there is a PIR construction that has
• Per-query communication and computation 𝑂 𝑛𝛾 ,
• Server storage 𝑂 𝑛1+𝛾 ,
assuming one-time preprocessing.
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• Construction backbone: “Split and mix”

• Result 1: A generic construction of IT-PIR in the shuffle model

• Result 2: PIR from computationally secure split-and-mix

• An interesting orthogonal problem: hiding record size without 
padding

• Discussion and open questions

Rest of this talk
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• Prior works only study statistical security [IKOS06, GMPV20, BBGN20]

#Clients 100 1000 10000

#Shares 𝑘 (IT. 40 bits) 6317 3856 2775

Each client input: a vector 215 ×  𝔽2

45

≈𝑉𝑖𝑒𝑤(1, 1, 1, 1, 1) 𝑉𝑖𝑒𝑤(5, 0, 0, 0, 0)

Recall the security of split-and-mix



New: computational security for split-and-mix

• Prior works only study statistical security [IKOS06, GMPV20, BBGN20]

• This work studies computational security, aiming to reduce the #shares 𝑘 
(and hence improving concrete efficiency) 

#Clients 100 1000 10000

#Shares 𝑘 (IT. 40 bits) 6317 3856 2775

#Shares 𝑘 (Comp. 128 bits) 405 88 37

Each client input: a vector 215 ×  𝔽2

46

≈𝑉𝑖𝑒𝑤(1, 1, 1, 1, 1) 𝑉𝑖𝑒𝑤(5, 0, 0, 0, 0)



Our results from computational split-and-mix

47

Computational security for split-and-mix based on SD, MDSD

Single-server secure aggregation 
in the shuffle model 

Single-server PIR 
in the shuffle model 

Up to 25X savings for communication 
compared to the best statistical split-
and-mix baseline

Up to 22X improvement of throughput (in the 
batch setting) over SimplePIR [HHCMV23] with 
comparable communication cost

(Even giving advantage to the baseline 
by compressing the shares)



Split-and-mix based on Syndrome Decoding (SD)

48

• The SD assumption (dual-LPN [BFKL94, AIK07])
𝐻: a random matrix
𝑦: a target vector (e.g., a client’s input)

𝐻

Computationally hard to find low-weight vector 𝑒 such that 𝐻 ⋅ 𝑒 = 𝑦

𝑦



Split-and-mix based on Syndrome Decoding (SD)

49

• “Multi-Disjoint” Syndrome Decoding
𝐻: a random matrix
𝑌 = [𝑦1, 𝑦2, … ]: multiple target vectors (e.g., multiple client inputs)

𝐻

Computationally hard to find “low-weight” 𝐸 such that 𝐻 ⋅ 𝐸 = 𝑌 

𝑦2

We generalize SD to 
Multi-Disjoint Syndrome Decoding 

to handle multiple clients

𝑦1

The positions of 1 in E’s 
columns are disjoint



Starting point: a classic multi-server PIR 

…

0 0 1 0
Query vector 𝑣

Database 𝐷

𝑣 ⋅ 𝐷 = 𝑞1 + ⋯ + 𝑞𝑘 ⋅ 𝐷
              = 𝑞1 ⋅ 𝐷 + ⋯ + 𝑞𝑘 ⋅ 𝐷
              ≔ 𝑎1 + ⋯ + 𝑎𝑘

𝑞1

𝑞2
𝑞𝑘

𝑎1 𝑎2

𝑎𝑘

50



Single-server computationally PIR from split-and-mix

𝑣1 𝑣2 𝑣𝑐

…

51

A share vector

Note: no inner-outer paradigm 
here, just one PIR scheme



Single-server computationally PIR from split-and-mix

…

Two-way 
anonymous channel

…

𝐷, = 
52



Single-server computationally PIR from split-and-mix

𝑎 𝑎 𝑎
…

Two-way 
anonymous channel

…

53



Performance 
8GB database, large records (218 entries of 32KB)

Assuming 100K or 1K clients 
query at the same time

Assuming 100K or 1K clients 
query at the same time

54

Left bottom is better



• Construction backbone: “Split and mix”

• Result 1: A generic construction of IT-PIR in the shuffle model

• Result 2: PIR from computationally secure split-and-mix

• An interesting orthogonal problem: hiding record size without 
padding

• Discussion and open questions

Rest of this talk
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• Two database servers                 vs.     one database server + shuffler

Discussion

1. Easier to enforce
2. No storage overhead

56



Discussion

• We are in the situation of exploiting tradeoffs: making assumptions, 
altering models (different types of preprocessing, relaxed security, etc.)

• Meanwhile, guaranteeing different assumptions does not require the 
same amount of effort: system efforts, law efforts, etc.

• The likelihood of assumptions being compromised in real-world 
scenarios may vary

57



Backup slides

58



• To deploy PIR in real-world applications…

PIR with variable-sized records

Database records in practiceDatabase entries of PIR in theory

Often assume the same 
size, mostly 0, 1 𝑛

They have 
different lengths

59



• To deploy PIR in real-world applications…

PIR with variable-sized records

Database records in practiceDatabase entries of PIR in theory

Often assume the same 
size, mostly 0, 1 𝑛

They have 
different lengths

To retrieve privately, it is necessary to hide record size

60



• Padding solves the problem: how about efficiency?

   

   

PIR with variable-sized records

Database records in practice

The discrepancy between the smallest and the largest record can be huge
Majority of the records are small
Most users access the small records much more often than the large records

Features

61



• Padding solves the problem: how about efficiency?

   

   

PIR with variable-sized records

Database records in practice

The discrepancy between the smallest and the largest record can be huge
Majority of the records are small
Most users access the small records much more often than the large records

Waste of server storage 
(though can virtually store)

Features Client who retrieves the small record has to 
pay the cost of retrieving the largest record
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• In the “standard” model, there is no way out

• In the shuffle model: yes, we can
• No server storage overhead

• Client communication proportional to the length of the retrieved record

• Leak only the total size of all queried records

PIR with variable-sized records

63



• A toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database

𝑇 database records

64



• A toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database
Query a size-ℓ record: 
Make ℓ PIR queries, 

each for one bit

𝑇 database records

65



• A toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database
Query a size-ℓ record: 
Make ℓ PIR queries, 

each for one bit

𝑇 database records No server storage overhead

Communication is proportional to 
the queried length instead of the 

maximum length
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• A toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database
Query a size-ℓ record: 
Make ℓ PIR queries, 

each for one bit

𝑇 database records No server storage overhead

Communication is proportional to 
the queried length instead of the 

maximum length

Can we do better?
Yes, from ℓ PIR queries to polylogℓ PIR queries

67



• Revisit the toy protocol

PIR with variable-sized records

Concatenate

An 𝑛-bit database
Query a size-ℓ record: 
Make ℓ PIR queries, 

each for one bit

𝑇 database records Why not retrieve more bits
in each PIR query?

68



• Splitting records to the powers of two

PIR with variable-sized records

The 𝑛-bits concatenated database

Secure or not?

Deterministic splitting is not secure
(unless split down to 1)

69

Server (logically) preprare log 𝑛 databases: 
the 𝑗-th database is partitioned to 2𝑗  bits per entry



• Splitting records to the powers of two

PIR with variable-sized records

Consider 5   1   1   1                             v.s.                          2   2   2   2 

70



• Our approach: recursive splitting

PIR with variable-sized records

The 𝑛-bits concatenated database

For each block, toss a coin
Head: stay
Tail: split
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• Our approach: recursive splitting

PIR with variable-sized records

The 𝑛-bits concatenated database

For each block, toss a coin
Head: stay
Tail: split
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• Our approach: recursive splitting

PIR with variable-sized records

The 𝑛-bits concatenated database
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• Our approach: recursive splitting

PIR with variable-sized records

The 𝑛-bits concatenated database

For each block, toss a coin
Head: stay
Tail: split

The final blocks that the client will retrieve (using PIR)
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• A complication of recursive splitting: fully split the highest log 𝐶 levels 

PIR with variable-sized records

Consider 5   1   1   1                             v.s.                          2   2   2   2 

With 1/2 probability, there will be a block
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• A complication of recursive splitting: fully split the highest log 𝐶 levels 

PIR with variable-sized records

Consider M-3   1    1    1                      v.s.          M/4    M/4    M/4   M/4 
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As long as there are sufficient number 
of blocks at this level



• Splitting records to the power of two

PIR with variable-sized records

= + +

The multi-set of record lengths 
from all clients will not leak any 

individual queried length

= +

The largest block ≥ maximum record size/2
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