
Efficient Filtering of XML Documents for Selective Dissemination
of Information �

Mehmet Altınel
Department of Computer Science

University of Maryland

altinel@cs.umd.edu

Michael J. Franklin
EECS Computer Science Division

University of California at Berkeley

franklin@cs.berkeley.edu

Abstract

Information Dissemination applications are gaining in-
creasing popularity due to dramatic improvements in
communications bandwidth and ubiquity. The sheer
volume of data available necessitates the use of selec-
tive approaches to dissemination in order to avoid over-
whelming users with unnecessaryinformation. Existing
mechanisms for selective dissemination typically rely
on simple keyword matching or “bag of words” infor-
mation retrieval techniques. The advent of XML as a
standard for information exchangeand the development
of query languages for XML data enables the develop-
ment of more sophisticated filtering mechanisms that
take structure information into account. We have devel-
oped several index organizations and search algorithms
for performing efficient filtering of XML documents for
large-scale information dissemination systems. In this
paper we describe these techniques and examine their
performance across a range of document, workload, and
scale scenarios.

1 Introduction
The proliferation of the Internet and intranets, the develop-
ment of wireless and satellite networks, and the availabil-
ity of asymmetric, high-bandwidth links to home have fu-
eled the development of a wide range of new dissemination-
based (or Selective Dissemination of Information (SDI))
applications. These applications involve timely distribu-
tion of data to a large set of customers, and include stock
and sports tickers, traffic information systems, electronic
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personalized newspapers, and entertainment delivery. The
execution model for these applications is based on con-
tinuously collecting new data items from underlying data
sources, filtering them against user profiles (i.e., user inter-
ests) and finally, delivering relevant data to interested users.

In order to effectively target the right information to the
right people, SDI systems rely upon user profiles. Cur-
rent SDI systems typically use simple keyword matching
or “bag of words” Information Retrieval (IR) techniques
to represent user profiles and match them against new data
items. These techniques, however, often suffer from limited
ability to express user interests, thereby raising the potential
that the users receive irrelevant data while not receiving the
information they need. Moreover, work on IR-based mod-
els has largely focused on the effectiveness of the profiles
rather than the efficiency of filtering. In the Internet envi-
ronment, where huge volumes of input data and large num-
bers of users are typical, efficiency and scalability are key
concerns.

Recently, XML (eXtensible Markup Language) [BPS98,
Cov99] has emerged as a standard information exchange
mechanism on the Internet. XML allows the encoding of
structural information within documents. This information
can be exploited to create more focused and accurate pro-
files of user interests. Of course such benefits come at a
cost, namely, an increase in the complexity of matching
documents to profiles.

We have developed a document filtering system, named
XFilter, that provides highly efficient matching of XML
documents to large numbers of user profiles. In XFilter,
user interests are represented as queries using the XPath
language [CD99]. The XFilter engine uses a sophisticated
index structure and a modified Finite State Machine (FSM)
approach to quickly locate and examine relevant profiles.
In this paper we describe these structures along with an
event-based filtering algorithm and several enhancements.
We then evaluate the efficiency, scalability, and adaptabil-
ity of the approaches using a detailed experimental frame-
work that allows the manipulation of several key character-
istics of document and user profiles. The results indicate
that XFilter performs well and is highly scalable. Thus, we
believe our techniques represent a promising technology for
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the deployment of Internet-scale SDI systems.
The remainder of the paper is organized as follows: In

Section 2, we give an overview of an XML-based SDI sys-
tem and the XPath language, which is used in our user pro-
file model. Related work is discussed in Section 3. In Sec-
tion 4, we present the profile index structures and an event-
based XML filtering algorithm. Enhancements to this algo-
rithm are provided in Section 5. We discuss the experimen-
tal results in Section 6. Section 7 concludes the paper.

2 Background

In this section we first present a high-level architecture of
an XML-based information dissemination system. We then
describe the XPath language, which we use to specify user
profiles in XFilter.

2.1 An XML-based SDI Architecture

The process of filtering and delivering documents based on
user interests is sometimes referred to as Selective Dissem-
ination of Information (SDI). Figure 1 shows a generic ar-
chitecture for an XML-based SDI system. There are two
main sets of inputs to the system: user profiles and data
items (i.e., documents). User profiles describe the informa-
tion preferences of individual users. In most systems these
profiles are created by the users, typically by clicking on
items in a Graphical User Interface. In some systems, how-
ever, these profiles can be learned automatically by the sys-
tem through the application of machine learning techniques
to user access traces. The user profiles are converted into
a format that can be efficiently stored and evaluated by the
Filter Engine. These profiles are “standing queries”, which
are (conceptually) applied to all incoming documents.

XML 
Conversion

XML
Documents

SDI Filter
Engine

User Profiles

Filtered
Data

Data Sources

Users
Figure 1: Architecture of an XML Based SDI System

The other key inputs to an SDI system are the documents
to be filtered. Our work is focused on XML-encoded doc-
uments. XML is a natural fit for SDI because it is rapidly
gaining popularity as a mechanism for sharing and deliver-
ing information among businesses, organizations, and users
on the Internet. It is also achieving importance as a means
for publishing commercial content such as news items and
financial information.

XML provides a mechanism for tagging document con-
tents in order to better describe their organization. It allows
the hierarchical organization of a document as a root ele-
ment that includes sub-elements; elements can be nested to
any depth. In addition to sub-elements, elements can con-
tain data (e.g., text) and attributes. A general set of rules
for a document’s elements and attributes can be defined in
a Document Type Definition (DTD). A DTD specifies the el-
ements and attributes names and the nature of their content
in the document.

In an SDI system, newly created or modified XML doc-
uments are routed to the Filter Engine. When a document
arrives at the filter engine, it is matched against the user pro-
files to determine the set of users to whom it should be sent.
As SDI systems are deployed on the Internet, the number of
users for such systems can easily grow into the millions. A
key challenge in such an environment is to efficiently and
quickly search the potentially huge set of user profiles to
find those for which the document is relevant. XFilter is
aimed at solving exactly this problem. Before presenting
the solutions used in XFilter, however, we first describe a
model for expressing user profiles as queries of XML doc-
uments.

2.2 XPath as a Profile Language

The profile model used in XFilter is based on
XPath [CD99], a language for addressing parts of an
XML document that was designed for use by both the XSL
Transformations (XSLT) [Cla99b] and XPointer [DDM99]
languages. XPath provides a flexible way to specify path
expressions. It treats an XML document as a tree of nodes;
XPath expressions are patterns that can be matched to
nodes in the XML tree. The evaluation of an XPath pattern
yields an object whose type can be either a node set (i.e.,
an unordered collection of nodes without duplicates), a
boolean, a number, or a string.

Paths can be specified as absolute paths from the root
of the document tree or as relative paths from a known lo-
cation (i.e., the context node). A query path expression
consists of a sequence of one or more location steps. In
the simplest and most common form, a location step spec-
ifies a node name (i.e., an element name).1 The hierar-
chical relationships between the nodes are specified in the
query using parent-child (”/”) operators (i.e., at adjacent
levels) and ancestor-descendant (”//”) operators (i.e., sep-
arated by any number of levels). For example the query
/catalog/product//msrp addresses all msrp element
descendants of all product elements that are direct chil-
dren of the catalog (root) element in the document. XPath
also allows the use of a wildcard operator (”*”), which
matches any element name, at a location step in a query.

Each location step can also include one or more filters to
further refine the selected set of nodes. A filter is a predi-
cate that is applied to the element(s) addressed at that loca-
tion step. All the filters at a location step must evaluate to

1The full XPath specification [CD99] contains many more options. We
do not list them all here due to space considerations.
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TRUE in order for the evaluation to continue to the descen-
dant location steps. Filter expressions are enclosed by ”[”
and ”]” symbols. The filter predicates can be applied to the
text of the addressed elements or the attributes of the ad-
dressed elements and may also include other path expres-
sions. Any relative paths in a filter expression are evalu-
ated in the context of the element nodes addressed in the
location step at which they appear. For example, consider
the query: //product[price/msrp<300]/name. This
query selects the name elements of the XML document if
the msrp of the product is less than 300. Here, the path ex-
pression price/msrp in the filter is evaluated relative to
the product elements. This example also shows how ele-
ment contents can be examined in the queries.

In XFilter, XPath is used to select entire documents
rather than parts of documents. That is, we treat an XPath
expression as a predicate applied to documents. If the
XPath expression matches at least one element of a docu-
ment then we say that the document satisfies the expression.

An alternative to using XPath would be to use one of
the query languages that have been proposed for semi-
structured data such as UnQl [BDHS96], Lorel [AQM+97]
or XML-QL [DFF+98]. We chose to use XPath in our
work for two reasons: First, we did not need the full func-
tionality of such query languages for our document filter-
ing purposes. In particular, XFilter examines one docu-
ment at a time, so only path expressions over individual
documents are needed. Secondly, the XPath specification
is a World Wide Web Consortium (W3C) recommendation,
which means W3C considers it appropriate for widespread
deployment. In contrast, the standardization process for
XML Query Languages is still in progress. Be that as it
may, the techniques described in this paper are largely ap-
plicable to path expressions in general, and thus, we believe
that they can be adapted to suit other languages as the need
arises.

3 Related Work

User profile modeling and matching have been extensively
investigated by the Information Retrieval community in the
context of Information-Filtering(IF) and SDI research (e.g.,
[AAB+98, FZ98, FD92]). IR-style user profiles are in-
tended for unstructured text-based systems and typically
use sets of keywords to represent user interests.2 In gen-
eral, IR profile models can be classified as either Boolean or
Similarity-based. The former use an “exact match” seman-
tics over queries consisting of keywords connected with
boolean operators. The latter use a “fuzzy match” seman-
tics in which the profiles and documents are assigned a
similarity value. A document whose similarity to a pro-
file exceeds a certain threshold is said to match the pro-
file. The Vector Space Model [CFG00, Sal89] and statis-
tical approaches (e.g., [BC92]) are examples of similarity-

2Several recent text retrieval methodsaim to take structure information
into account for text databases [BN96]. These methods, however, are not
as mature as the ones described above and they have not been studied in
the context of SDI.

based techniques. The Stanford Information Filtering Tool
(SIFT) [YM94, YM95] is a text filtering system for Internet
News articles that is based on keywords. SIFT originally
used Boolean profiles but was later changed to use a Vector
Space approach.

Our profile model differs from the IR-based work in SDI
in the following ways:

� The application domain of IR-based SDI systems in-
volves only text documents, whereas our system can
work for any application domain in which data is
tagged using XML.

� Our profile language takes advantage of embedded
schema information in the XML documents, provid-
ing more precise filtering than is available using only
keywords.

� With the notable exception of the SIFT project, work
on IR-based models has largely focused on the effec-
tiveness of the profiles rather than the efficiency of
filtering [VH98]. For an Internet-scale filtering sys-
tem, efficiency and scalability are of paramount impor-
tance.

Query-based profile models have also been studied by
the database community in the context of Continuous
Queries (CQ), which are standing queries that allow users
to get new results whenever an update of interest occurs in
a database. Early work on CQ for relational databases was
done by Terry et al. [TGNO92]. More recently, OpenCQ
[LPT99] and NiagaraCQ [CDTW00] have been proposed
for information delivery on the Internet. The scalability of
these systems is fundamentally limited because they apply
all standing queries (or at least all non-equivalent ones) to
delta increments or to the updated database for each update
that arrives at the system. For Internet-scale systems with
potentially millions of users, such approaches are simply
not feasible. NiagaraCQ provides some measure of scala-
bility by grouping exactly equivalent queries, but does lit-
tle to improve the efficiency of matching XML documents
to profiles beyond that optimization.

The key insight to building high-performance, scalable
SDI systems is that in such systems, the roles of queries
and data are reversed [YM94]. In a database system large
numbers of data items are indexed and stored, and queries
are individually applied. In contrast, in SDI systems, large
numbers of queries are stored, and the documents are in-
dividually matched to the queries. Thus, in an SDI sys-
tem, it is necessary to index the queries. XFilter is unique
in that it combines the scalable SDI approach of index-
ing queries with the ability to reference document structure
(i.e., schema information) leading to scalable but precise fil-
tering of documents for Internet-scale systems.

Triggers [SJGP90, WF89, MD89] in traditionaldatabase
systems are similar to CQ. However, triggers are a more
general mechanism which can involve predicates over
many data items and can initiate updates to other data items.
Thus, trigger solutions are typically not optimized for fast
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matching of individual items to vast numbers of relatively
simple queries. Some recent work has addressed the issue
of scalability for simple triggers [HCH+99], however, this
work has not addressed the XML-related issues that XFilter
handles.

Finally, the C3 project [CAW98] is related to XFilter in
that a query subscription service is provided to subscribe
to changes in semi-structured information sources. To date
this work has focused on developing semantics and basic
mechanisms for querying the changes in semi-structured
data, rather than on the efficient evaluation of new data
items against large numbers of user profiles.

4 XFilter Implementation

In this section, we describe the basic data structures and
algorithms used to implement XFilter. We begin by pre-
senting an overview of the XFilter architecture. This ar-
chitecture, which is depicted in Figure 2, follows the ba-
sic SDI architecture presented earlier. The major compo-
nents include: 1) an event-based parser for incoming XML-
encoded documents; 2) an XPath parser for user profiles;
3) the filter engine, which performs the matching of doc-
uments and profiles; and 4) the dissemination component,
which sends the filtered data to the appropriate users.

XPath Parser
(SAX Based)
XML Parser

XML
Document

Element
Events

User Profiles
(XPath Queries)

Data
Dissemination

Filtered
Data

Users

Filter Engine

Path
Nodes

Profile
Info

and Filtered Data
Successful Profiles

Succesful
Queries Profile

Base

Profiles &
Successful

Filtered Data

Element
Events

Query Index
Path Nodes

Filter Engine Profile Info

Figure 2: Architecture of XFilter

The heart of the system is the Filter Engine, which uses
a sophisticated index structure and a modified Finite State
Machine (FSM) approach to quickly locate and check rel-
evant profiles. We first describe the Filter Engine and how
it stores the profile information it receives from the XPath
parser. The process of checking profiles is driven by an
event-based XML parser. When an XML document ar-
rives at the system, it is run through the parser, which sends
“events” that are responded to by handlers in the filter en-
gine. This process is described in Section 4.2.

Once the matching profiles have been identified for a
document, the document must be sent to the appropriate
users. The current implementation of XFilter simply uses

unicast delivery and sends the entire document to each in-
terested user. Our future work involves the integration of a
variety of delivery mechanisms as investigated in our previ-
ous work [AAB+98, AAB+99], and the delivery of partial
documents. These issues are beyond the scope of this cur-
rent paper and so are not addressed further here.

4.1 Filter Engine

An XML-based profile model needs efficient algorithms for
structure and data filtering to achieve high performance in
a large-scale environment such as the Internet. As a re-
sult, profile grouping and indexing are crucial for large-
scale XML document filtering. For this purpose, similar
to traditional SDI systems, the Filter Engine component of
XFilter contains an inverted index [Sal89], called the Query
Index (See Figure 2). The Query Index is used to match
documents to individual XPath queries. Our implementa-
tion also allows for user profiles to be expressed as boolean
combinations of XPath queries rather than being restricted
to a single XPath query. Such composite profiles are han-
dled by post-processing the matching results at the Profile
Base to check the boolean conditions. In this paper, due to
space limitations, we focus on profiles consisting of a single
XPath query.

Filtering XML documents using a structure-oriented
path language such as XPath (as opposed to keyword
matching) introduces several new problems that must be ad-
dressed:

1. Checking the order of the elements in the profiles.

2. Handling wildcards and descendant operators in path
expressions.

3. Evaluating filters that are applied to element nodes.

In order to handle these problems efficiently, XFil-
ter converts each XPath query to a Finite State Machine
(FSM). The events that drive the execution of the Filter En-
gine are generated by the XML Parser (as described in the
followingsection). In the XFilter execution model, a profile
is considered to match a document when the final state of its
FSM is reached. The Query Index is built over the states of
the XPath queries.

For ease of exposition, we initially describe a solution
that addresses the first two problems above (i.e., order
checking and wildcard/descendant operators), but only par-
tially addresses the third problem (element node filters). As
described in Section 2.2, node filters can themselves contain
path expressions, resulting queries with nested path expres-
sions. The handlingof element node filters that contain path
expressions incurs significant additional complexity. Thus,
we first describe a solution that works for filters that do not
contain path expressions (e.g., predicates on attributevalues
or node contents) and postpone the discussion of our solu-
tion to handle nested path expressions until Section 4.3.

The main structures used in the Filter Engine are de-
picted in Figure 3. Each XPath query is decomposed into a
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Figure 3: Path Node Decomposition and the content of the
Query Index

set of path nodes by the XPath parser. These path nodes rep-
resent the element nodes in the query and serve as the states
of the FSM for the query. Path nodes are not generated for
wildcard (“*”) nodes. A path node contains the following
information:

QueryId: A unique identifier for the path expression
to which this path node belongs (generated by the XPath
Parser).

Position: A sequence number that determines the loca-
tion of this path node in the order of the path nodes for the
query. The first node of the path is given position 1, and the
following nodes are numbered sequentially.

RelativePos: An integer that describes the distance in
document levels between this path node and the previous (in
terms of position) path node. This value is set to 0 for the
first node if it does not contain a ”Descendant” (’//’) oper-
ator. A node that is separated from the previous one by a
descendant operator is flagged with a special RelativePos
value of -1. Otherwise, the RelativePos value of a node is
set to 1 plus the number of wildcard nodes between it and
its predecessor node.

Level: An integer that represents the level in the XML
document at which this path node should be checked. Be-
cause XML does not restrict element types from appearing
at multiple levels of a document and because XPath allows
queries to be specified using “relative” addressing, it is not
always possible to assign this value during query parsing.
Thus, unlike the previous three items, this information can
be updated during the evaluation of the query.

The level value is initialized as follows: If the node is
the first node of the query and it specifies an absolute dis-
tance from the root (i.e., it is either applied to the root node
or is a fixed number of wildcard nodes away from the root
node), then the level for that node is set to 1 plus its dis-
tance from the root. If the RelativePos value of the node is
-1, then its level value is also initialized to -1. Otherwise,

the level value is set to 0.
Filters: If a node contains one or more filters, these are

stored as expression trees pointed to by the path node.
NextPathNodeSet: Each path node also contains

pointer(s) to the next path node(s) of the query to be eval-
uated. In the restricted case where filters do not include
path expressions, there is at most one pointer. Nested path
expressions may raise the need for pointers to additional
nodes.

Figure 3(a) shows how five example XPath expressions
are converted into path nodes by the XPath parser. These
nodes are then added to the Query Index. As shown in Fig-
ure 3(b), the Query Index is organized as a hash table based
on the element names that appear in the XPath expressions.
Associated with each unique element name are two lists of
path nodes: the Candidate List and Wait List.

Since each query can only be in a single state of its FSM
at a time, each query has a single path node that represents
its current state. We refer to this node as the “current node”.
The current node of each query is placed on the Candidate
List of the index entry for its respective element name. All
of the path nodes representing future states are stored in the
Wait Lists of their respective element names. A state tran-
sition in the FSM of a query is represented by promoting a
path node from the Wait List to the Candidate List.

The initial distribution of the path nodes to these lists
(i.e., which node of each XPath query is initially placed on
a Candidate List) is an important contributor to the perfor-
mance of the XFilter system. We have developed two such
placement techniques, which are described in Section 5.
Figure 3(b) shows the most straightforward case, where the
path nodes for the initial states are placed on the Candidate
Lists.

4.2 XML Parsing and Filtering

When a document arrives at the Filter Engine, it is run
through an XML Parser which then drives the process of
checking for matching profiles in the Index. We use an
XML parser that is based on the SAX interface, which is a
standard interface for event-based XML parsing [Meg98].
We developed the parser using the expat toolkit [Cla99a],
which is a non-validating XML processor.

The SAX event-based interface reports parsing events
(such as encountering the start or end tag of an element)
directly to the application through callbacks, and does not
usually build an internal tree. To use the SAX interface, the
application must implement handlers to deal with the dif-
ferent events, much like handling events in a graphical user
interface. For our application, we use the events to drive
the profile matching process. Figure 4 shows an example
of how a SAX event-based interface breaks the structure of
an XML document down into a linear sequence of events.

For XFilter, we implemented callback functions for the
parsing events of encountering: 1) a begin element tag; 2)
an end element tag; or 3) data internal to an element. All of
the handlers are passed the name and document level of the
element for (or in) which the parsing event occurred. Ad-
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An XML Document SAX API Events

<?xml version=”1.0”>
<doc>
<para>
Hello, world!
</para>
</doc>

start document
start element: doc
start element: para
characters: Hello, world!
end element: para
end element: doc
end document

Figure 4: SAX API Example

ditional handler-specific information is also passed as de-
scribed below.

Start Element Handler: When an element tag is en-
countered by the parser, it calls this handler, passing in the
name and level of the element encountered as well as any
XML attributes and values that appear in the element tag.
The handler looks up the element name in the Query Index
and examines all the nodes in the Candidate List for that en-
try. For each node, it performs two checks: a level check
and an attribute filter check.

The purpose of the level check is to make sure that the
element appears in the document at a level that matches the
level expected by the query. If the path node contains a non-
negative level value, then the two levels must be identical in
order for the check to succeed. Otherwise, the level for the
node is unrestricted, so the check succeeds regardless of the
element level. The attribute filter check applies any simple
predicates that reference the attributes of the element.

If both checks succeed and there are no other filters to
be checked, then the node passes. If this is the final path
node of the query (i.e., its final state) then the document is
deemed to match the query. Otherwise, if it is not the fi-
nal node, then the query is moved into its next state. This is
done by copying the next node for the query from its Wait
List to its corresponding Candidate List (note that a copy
of the promoted node remains in the Wait List). If the Rel-
ativePos value of the copied node is not -1, its level value
is also updated using the current level and its RelativePos
values to do future level checks correctly.

End Element Handler: When an end element tag is en-
countered, the corresponding path node is deleted from the
Candidate List in order to restore that list to the state it was
in when the corresponding start element tag was encoun-
tered. This “backtracking” is necessary to handle the case
where multiple elements with the same name appear at the
different level in the document.

Element Characters Handler: This handler is called
when the data associated with an element is encountered.
The data is passed in to the handler as a parameter. It works
similarly to the Start Element Handler except that it per-
forms a content filter check rather than an attribute filter
check. That is, it evaluates any filters that reference the ele-
ment content. Like the Start Element Handler, this handler
can also cause the query to move to its next state.

4.3 Handling Nested Path Expressions

Recall that the description above was simplified by exclud-
ing the processing of element node filters that contain path
expressions. Such nested path expressions complicate the
filtering process because they introduce non-linearity into
the paths. Our implementation of XFilter fully supports
such nested path expressions. Due to space limitations,
however, we only outline the basic approach to how such
expressions are handled.

When the XPath parser encounters an element node fil-
ter in a query, it converts it to an expression tree and stores
it in the current path node. If the filter contains an XPath
query, then that nested query is treated like a separate query
from the one it is embedded in. That is, the XPath parser de-
composes it into series of path nodes and assigns it a Query
ID. A leaf node for the nested query is created in the ex-
pression tree of the filter so that its result can be used to
evaluate the filter expression. If the filter query starts with
an absolute path (i.e. ’/’ or ’//’), that is all that needs to be
done. Otherwise, its first path node has to be inserted into
the NextPathNodeSet of the current path node to provide
relative execution. By doing so, the filter query will be ex-
amined relative to current node since its first path node will
be copied to Candidate List after the current path node is
processed.

If, when evaluating a filter, the result of a nested path ex-
pression in that filter is not yet known, we allow the execu-
tion for the current path node to continue as if the filter suc-
ceeded. At the same time, the filter is marked to be reevalu-
ated when the XML document parsing is finished as the re-
sults of all the queries are available at that point. If a query
contains nested path expressions that must be evaluated in
this manner, it is not considered successful until all of its
marked filters are determined to be successful. Likewise, if
a query fails after marking a filter, this filter mark is cleared
by the system so that the filter need not be reevaluated.

5 Enhanced Filtering Algorithms

In this section we describe several enhancements to the ba-
sic filtering algorithm described in Section 4. As described
in that section, XFilter’s basic approach is actually far from
“basic” as it incorporates sophisticated indexing and FSM-
based evaluation mechanisms. These mechanisms are not
strictly necessary to perform SDI filtering, but rather, were
developed solely to enhance performance and scalability.
Thus, before extending the basic approach it is important to
highlight its potential benefits over other, perhaps simpler
approaches.

There are two fairly obvious brute force strategies that
could be employed for performing SDI filtering of XML
documents. The first strategy, which is similar to the
method used by the database-oriented CQ systems, is to
store each profile (query) in an unindexed fashion. When an
XML document arrives at the Filter Engine, the document
is parsed and indexed. The CQ tool then iterates over all of
the profiles, matching them against the document using the
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document index. This approach is easy to implement and
has the benefit of using existing XML search tools, but it is
obviously inappropriate for a system with many users, as all
profiles must be examined for each new document.

A second brute force strategy applies previous work on
keyword-based filtering such as [YM94, YM95] and in-
dexes the profiles using the text, element names, and at-
tribute names that appear in them as keywords. When a
new document arrives, this index is used to locate candi-
date profiles that may possibly be satisfied by the document.
These profiles are then checked against the document (i.e.,
for ordering constraints, etc.) sequentially in a second pass.
While this approach is likely to perform better than the first
brute force approach, it suffers from the need to perform ex-
pensive checks of the document for all candidate profiles.

The main drawback of the brute force methods is that
for each input document, they must invoke the profiles in-
dividually. XFilter avoids the pitfalls of the brute force ap-
proaches by being more careful in the identification of can-
didate profiles using specialized indexing structures and by
more efficiently evaluating those candidate profiles. We
now describe two enhancements to the basic XFilter ap-
proach: List Balancing and Prefiltering. The performance
of XFilter and these enhancements is then examined in Sec-
tion 6.

5.1 List Balancing

In the basic approach, the Query Index is constructed by
simply placing the first path node of each XPath query in
the Candidate List for its corresponding element name, and
placing the remaining path nodes in the Wait Lists as was
shown in Figure 3. For many situations, however, such
an approach can be inefficient, as the first elements in the
queries are likely to have poorer selectivity due to the fact
that they address elements at higher levels in the documents
where the sets of possible element names are smaller. In
the resultingQuery Index, the lengths of the Candidate Lists
would become highly skewed, with a small number of very
long Candidate Lists that do not provide much selectivity.
Such skew hurts performance as the work that is done on the
long lists may not adequately reduce the number of queries
that must be considered further.

Based on the above observation, we developed the List
Balance method for choosing a path node to initially place
in a Candidate List for each query. This simple method at-
tempts to balance the initial lengths of the Candidate Lists.
When adding a new query to the index the element node of
that query whose entry in the index has the shortest Candi-
date List is chosen as the “pivot” node for the query. This
pivot node is then placed on its corresponding Candidate
List, making it the first node to be checked for that query
for any document.

This approach, in effect, modifies the FSM of the query
so that its initial state is the pivot node. We accomplish this
by representing the portion of the FSM that precedes the
pivot node as a “prefix” that is attached to that node. When
the pivotnode is activated, the prefix of the query is checked

as a precondition in the evaluation of the path node. If this
precondition fails, the execution stops for that path node. In
order to handle prefix evaluation, List Balance uses a stack
which keeps track of the traversed element nodes in the doc-
ument. We use this stack for fast forward execution of the
portion of FSM corresponding to the prefix.

Figure 5 shows example path nodes and a modified
Query Index for the List Balance algorithm. Notice that the
lengths of the Candidate Lists are the same for each entry of
the Query Index. The tradeoff of this approach is the addi-
tional work of checking prefixes for the pivot nodes when
activated. As we will see in the experiments that follow, this
additional cost is far outweighed by the benefits of List Bal-
ancing.
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Figure 5: Path Nodes and the content of the Query Index in
List Balance

5.2 Prefiltering

Another potential problem with the basic approach is that
it proceeds through a path expression one level at a time.
Therefore, a considerable amount of unnecessary work may
be done for queries that fail due to missing elements late
in the evaluation of the path. The idea of Prefiltering is to
eliminate from consideration, any query that contains an el-
ement name that is not present in the input document. Pre-
filtering is implemented as an initial pass that is performed
before order and filter checking. Thus, in this technique,
each incoming document is parsed twice.

Fortunately, previous algorithms developed for the filter-
ing of plain text documents can be used for this purpose.
We employed Yan and Garcia-Molina’s Key Based algo-
rithm [YM94] since it has been shown to be efficient and
it fits well with the existing structures used in XFilter. In
this method, each query, when initiallyparsed, is assigned a
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“key” element name chosen from the element names it con-
tains. In XFilter the key element is chosen using the same
algorithm described above for choosing initial nodes in List
Balancing.

When a document arrives, an occurrence table is con-
structed, which is a hash table containing an entry of each
element name that appears in the document. The entry for
an element name in an occurrence table contains a list of
all queries whose key is that element name. Once the table
has been constructed, the queries referenced by the table are
checked to see if all of the element names they contain are
in the document. Then, the successful queries are checked
further using the normal Basic or List Balance algorithm.
That is, the document is parsed a second time during which
only queries that have passed the prefiltering step are con-
sidered.

The Prefiltering pass introduces an additional cost to the
query processing, but can reduce the number of profiles
checked by the basic or List Balancing algorithms. The
benefits of the Prefiltering method depend on the selectiv-
ity of the first step. When the first step discards only small
number of profiles, then the advantage of having prefiltering
can turn into a disadvantage. We examine the performance
of Prefiltering in the next section.

6 Performance Analysis
In this section we evaluate the performance of the basic fil-
tering algorithm and its enhancements. We examine four al-
gorithms: basic, list balance, basic with prefiltering, and list
balance with prefiltering.

6.1 Experimental Environment

We implemented XFilter using Gnu C++ version 2.8.1. The
experiments were conducted on a Sun Ultra-5 workstation
with 128MB memory runningSolaris 2.6. All structures are
kept in memory in the experiments.

We created our benchmark using the NITF (News In-
dustry Text Format) DTD [Cov99]. The NITF DTD is in-
tended for news copy production, press releases, wire ser-
vices, newspapers, broadcasters, and Web-based news or-
ganizations. It was developed as a joint standard by news
organizations and vendors worldwide, and it is supported
by most of the world’s major news agencies. It is already
in use in several commercial applications. For example, the
NewsPack product by Wavo corporation [New00] delivers
real-time news and information over the Internet in XML
format using NITF. The NITF DTD contains 158 elements
organized in 7 levels with 588 attributes.

We generated XML documents for our experiments us-
ing IBM’s XML Generator tool [IBM99], which is a Java
program designed to automate creating test cases for XML
applications. This tool generates random instances of valid
XML documents from a single input DTD according to
user-provided constraints. In order to create user profiles,
we implemented a query generator that takes a DTD as in-
put and creates set of XPath queries based on input parame-
ters similar to IBM’s XML Generator. We describe our use

of these tools for workload generation in the following sec-
tion. In the experiments each user profile contains a single
XPath query.

We created different workloads by changing the param-
eters of the document and query generators. For each ex-
periment, we first generated a set of profiles and created the
Query Index and other structures from them. Then, we ran
the XML generator to produce a random XML document
and submitted that document to the system. We measured
the “filter time” as the total time to find all matching pro-
files — the costs of creating the document and profiles and
of sending the document to the users are not included in this
metric. For each experimental setting we generated and fil-
tered XML documents until the 90% confidence intervals
for the measured filter times were within plus or minus 3%
of the mean.

6.2 Workload Parameters

Descriptions of the parameters used in the experiments and
their value ranges are shown in Table 1. P denotes the num-
ber of profiles in the Query Index, which is used to measure
the scalability of the system in terms of number of users.
The maximum depth (i.e., the level number of the lowest
level) of the XML document and XPath queries is denoted
by D. For a given experiment, D is set to the same value for
both documents and queries. However, due to differences
in the way the generators work, the actual number of lev-
els in the documents and queries tends to be different. The
document generator always starts from the root of the DTD,
while the query generator may start at any level depending
on which element node it initially chooses. Also, the docu-
ment generator always includes elements that are identified
as “required” in the DTD, so it sometimes generates docu-
ments that are deeper than the maximum depth. Thus, for a
given value of D the average depths of the documents tend
to be larger than the average depths of the queries. Table 2
shows the mean depth values of the documents and queries
with various D values. Note that the average depth of a doc-
ument is 2 for input level 1 due to the presence of required
elements at level 2 in the NITF DTD.

Parameter Range Description
P 1,000 to 100,000 Number of Profiles
D 1 to 10 Maximum depth of the

XML document and
queries

W 20% to 80% Probability of a wildcard
(’*’) in the element nodes
of the queries

F 0 to 3 Level of the element node
filter in the queries. 0
means there is no element
node filter.

S 1% to 100% Selectivity of the element
node filter

� 0 and 1 Skewedness of element
names in query generation

Table 1: Workload Parameters
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Input Max
Depth

Avg Doc
Depth

Avg Query
Depth

(Uniform)

Avg Query
Depth

(Skewed)
1 2 1 1
2 2 2 2
3 2.99 2.65 2.64
4 3.63 3.04 2.96
6 4.36 3.34 3.21
8 4.76 3.4 3.23

10 5.09 3.42 3.24

Table 2: Mean Depth of Workload Document and Queries

Four additional parameters are used to help shape the
query workload. W is the probability that a given element
node in a query will be a wildcard operator. F and S are
used to control the presence and characteristics of filters
in the queries. F determines which level of a query (if
any) will contain a filter, and S specifies the selectivity of
such a filter if it does exist. Finally � is the parameter of
the zipf distribution [Zip49] that is used to determine the
skewedness of the choice of element names at each level in
query generation. When it is 0, each element name in the
query is selected randomly from the set of element names
allowed at its level with a uniform distribution, whereas at
a setting of 1, the choice is highly skewed. Note that all of
the documents are generated with a uniform distribution of
element names as provided by the IBM’s XML generator.

6.3 Analysis of Experimental Results

We now describe the results of four experiments that
investigate the performance of the filtering algorithms
for varying 1) number of profiles; 2) depth of queries
and documents; 3) probability of wildcards; and 4) filter
placement and selectivity.

Experiment 1: Varying P (D=5, W=0, F=0)
In this set of experiments we measure the filter time of the
algorithms as the number of profiles in the system is in-
creased. For the results shown we fixed the maximum depth
of the input XML documents and queries to 5. Figure 6
shows the results when element names used in queries are
chosen with a uniform distribution. As expected, the Basic
method has the lowest performance. List Balance provides
some improvement, but Prefiltering dramatically improves
the performance of both algorithms since most of the pro-
files are filtered out in the prefiltering step. In this experi-
ment, on average, 2.6% of profiles matched a given docu-
ment. By itself, the Basic algorithm examined about 12% of
the profiles in order to find these. In contrast, when prefilter-
ing was applied, only 3.5% of the profiles were examined in
the second phase. In this case (and in virtually all others we
have studied) the combination of List Balance and Prefilter-
ing provided the best performance. Here, with 100,000 pro-
files in the system, that combination was over 5 times faster
than the basic approach.3

3Note that we were able to run experiments on our (very modest) hard-
ware configuration with at most 100,000 queries since increasing beyond
that point led to swapping, which distorted the results.

The results of running this experiment with the skewed
selection of elements are shown in Figure 7. In this case,
the execution times are higher for all of the algorithms
since more profiles are examined and more match the
document due to the element skew. In this case the benefits
of Prefiltering are less dramatic than in the uniform case
and in fact, List Balance performs substantially better than
the combination of Prefiltering and Basic. With element
selection skew, the profiles tend to be more similar so the
selectivity of prefiltering is lower. In contrast, the List
Balance enhancement is highly effective here, as it evens
out the distribution of profiles to Candidate Lists. Again in
this case, the combination of List Balance and Prefiltering
performs the best, although here there is only a slight
advantage over List Balance.

Experiment 2: Varying D (P=50,000, W=0, F=0)
The depth of the XML documents and queries in user pro-
files varies according to application characteristics. In this
experiment we evaluated the performance of the algorithms
as the maximum depth is varied. Here, we fixed the number
of profiles at 50,000 and varied the maximum depth of the
XML document and queries from 1 to 10. At each step, the
same depth value is used in generating the document and
queries.

Figure 8 shows the filter time as D is increased in the
case that the element names in queries are selected uni-
formly. The filter time increases for all the algorithms be-
cause the input document contains more elements with each
additional level resulting in more checking of path nodes,
and because the queries become larger. Again, Basic per-
forms worst while the combination of List Balance and Pre-
filtering performs best. One interesting aspect of this graph
is that beyond a depth of 8, the List Balance and Basic with
Prefiltering lines cross. This happens because the increase
in levels decreases the effectiveness of prefiltering (more
opportunities for element names to appear in queries) while
List Balancing benefits slightly by having more choices for
the pivot elements.

For the skewed case (Figure 9), there is a sharp increase
in the filtering time of Basic because as the number of levels
increases, more and more popular elements appear in the
document, boosting the filtering time. List Balance has a
smaller increase compared to Basic, thanks to the presence
of less popular elements in the queries which can be used as
pivot nodes. After level 4, the presence of element names
in the queries does not change much because of skewed
distribution, hence the workload characteristics remain
similar. As a result, the filtering times of the algorithms
increase just slightly. At level 1 and 2 prefiltering discards
virtually none of the profiles, so the prefiltering algorithms
have worse performance than the others at these points.
Starting from level 3, prefiltering becomes more effective
due to the presence of less popular elements in queries
resulting in better filter time. These experiments indicate
that the combination of List Balance and Prefiltering can
adapt well to different workload characteristics.
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Figure 6: Uniform Dist. Varying P
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Figure 7: Skewed Dist. Varying P
(D=5, �=1, W=0, F=0)
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Figure 8: Uniform Dist. Varying D
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Figure 9: Skewed Dist. Varying D
(P=50,000, �=1, W=0, F=0)

Experiment 3: Varying W (P=50,000, D=6, F=0)
In this experiment we evaluate the effect of the number
of wildcards (’*’) that are likely to occur in the queries.
We performed this experiment for 50,000 profiles, and
set the maximum depth of queries and documents to 6.
In each step of the experiment, we varied the probability
that an element node may be a wildcard. Figure 10 shows
the filtering times of the algorithms as the probability
of wildcards is increased. The important result in this
experiment is that, with Prefiltering, the algorithms are rel-
atively insensitive to wildcards, while without prefiltering,
they are quite sensitive to them. This is because as more
wildcards are introduced, the selectivity of prefiltering
drops, but the work done in the second step also decreases.
List Balance has slightly better performance than List
Balance with Prefiltering when the wildcard probability is
very high (>60%), but it is unlikely that many profiles will
have such a high proportion of wildcards.

Experiment 4: Varying F and S (P=50,000, D=6, W=0)
We performed two experiments to find out the effect of el-
ement node filters in the queries. In particular, we exam-
ined the effect of the level of the filter and its selectivity on
filter time. For this purpose, we modified the NITF DTD
and added a fixed attribute named dummy to every element.
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Figure 10: Varying Wildcard Probability
(P=50,000, D=6, �=0, F=0)

Then, in the queries we created a simple element node filter
containing only that fixed attribute. We adjusted the selec-
tivityof the element node filters by changing the appearance
probability of dummy in the input document using a param-
eter (called fixedOdds) of the XML document generator.

In the first experiment, we placed a single element node
filter in different levels of the query and fixed the query se-
lectivity at 10%. We performed the experiment with 50,000
profiles a maximum depth of 6; No wildcards were used in
the queries. The results of this experiment are shown in Fig-
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ure 11. All the algorithms benefit from the element node
filter when it is in the upper levels of the queries as in such
cases most of the queries are filtered out in their early level
checks. As we move the element node filter to deeper lev-
els, its effect diminishes because the path length of some
queries is less than the filter level (so they do not have a fil-
ter).
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Figure 11: Varying Filter Level
(P=50,000, D=6, �=0, W=0, S=10)

In the second experiment, we fixed the element node
filter at level 2 and varied its selectivity. We assigned
selectivity values in logarithmic scale to focus on the be-
havior of the algorithms when the filter is highly selective.
As shown in Figure 12, the selectivity of the element node
filter has a relatively small effect on the algorithms and
affects all of them to almost the same degree. The slope
of the Basic algorithm is a bit sharper than others as it has
much worse performance than the others when the effect
of the filter diminishes.
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Figure 12: Varying Filter Selectivity
(P=50,000, D=6, �=0, W=0, F=2)

Summary of Results:
These experiments demonstrate the scalability of the XFil-
ter approach and show that the extensions we proposed for
Basic provide substantial improvements to the performance
in different document, workload and scale scenarios. In
particular, List Balance with Prefiltering has the best fil-
tering performance in virtually all cases. List Balance is

also effective by itself when the distribution of elements in
queries is highly skewed. Since many SDI applications ex-
hibit such skew, and because List Balance is simpler and re-
quires less space than List Balance with Prefiltering, it may
be preferable in many practical cases.

7 Conclusions
In this paper, we have proposed an XML document filter-
ing system, called XFilter, for Selective Dissemination of
Information (SDI). XFilter allows users to define their in-
terests using the XPath query language. This approach en-
ables the construction of more expressive profiles than cur-
rent IR-based profile models by exploiting the structural in-
formation available in XML documents.

We developed indexing mechanisms and matching algo-
rithms based on a modified Finite State Machine (FSM) ap-
proach that can quickly locate and evaluate relevant pro-
files. By converting XPath queries into a Finite State Ma-
chine representation, XFilter is able to (1) handle arbitrary
regular expressions in queries, (2) efficiently check element
ordering and evaluate filters in queries, and (3) cope with
the semi-structured nature of XML documents. We de-
scribed a detailed set of experiments that examined the per-
formance of the basic XFilter approach and its extensions.
The experiments showed that XFilter is effective for differ-
ent document, workload and scale scenarios, which makes
it suitable for use in Internet-scale SDI systems.

XFilter has been implemented in the context of
the Dissemination-Based Information Systems (DBIS)
project [AAB+99]. This project is developing a toolkit for
constructing adaptable, application-specific middleware
that incorporates multiple data delivery mechanisms in
complex networked environments. We intend to integrate
XFilter as the primary filtering mechanism for the toolkit.
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