StlcThe Simply Typed Lambda-Calculus
The Simply Typed Lambda-Calculus
Overview
- variables
- function abstractions
- application
t ::= x variable
| \x:T1.t2 abstraction
| t1 t2 application
| true constant true
| false constant false
| if t1 then t2 else t3 conditional
| \x:T1.t2 abstraction
| t1 t2 application
| true constant true
| false constant false
| if t1 then t2 else t3 conditional
- \x:Bool. x
- (λx:Bool. x) true
- \x:Bool. if x then false else true
- \x:Bool. true
- \x:Bool. \y:Bool. x
- (λx:Bool. \y:Bool. x) false true
- \f:Bool→Bool. f (f true)
- (λf:Bool→Bool. f (f true)) (λx:Bool. false)
T ::= Bool
| T1 → T2
For example:
| T1 → T2
- \x:Bool. false has type Bool→Bool
- \x:Bool. x has type Bool→Bool
- (λx:Bool. x) true has type Bool
- \x:Bool. \y:Bool. x has type Bool→Bool→Bool
(i.e., Bool → (Bool→Bool))
- (λx:Bool. \y:Bool. x) false has type Bool→Bool
- (λx:Bool. \y:Bool. x) false true has type Bool
Inductive tm : Type :=
| tvar : id → tm
| tapp : tm → tm → tm
| tabs : id → ty → tm → tm
| ttrue : tm
| tfalse : tm
| tif : tm → tm → tm → tm.
Note that an abstraction \x:T.t (formally, tabs x T t) is
always annotated with the type T of its parameter, in contrast
to Coq (and other functional languages like ML, Haskell, etc.),
which use type inference to fill in missing annotations. We're
not considering type inference here.
Some examples...
Definition x := (Id "x").
Definition y := (Id "y").
Definition z := (Id "z").
Hint Unfold x.
Hint Unfold y.
Hint Unfold z.
idB = \x:Bool. x
idBB = \x:Bool→Bool. x
idBBBB = \x:(Bool→Bool) → (Bool→Bool). x
k = \x:Bool. \y:Bool. x
notB = \x:Bool. if x then false else true
(We write these as Notations rather than Definitions to make
things easier for auto.)
Operational Semantics
Values
- We can say that \x:T. t1 is a value only when t1 is a
value — i.e., only if the function's body has been
reduced (as much as it can be without knowing what argument it
is going to be applied to).
- Or we can say that \x:T. t1 is always a value, no matter whether t1 is one or not — in other words, we can say that reduction stops at abstractions.
Compute (fun x:bool ⇒ 3 + 4)
yields fun x:bool ⇒ 7.
Inductive value : tm → Prop :=
| v_abs : ∀x T t,
value (tabs x T t)
| v_true :
value ttrue
| v_false :
value tfalse.
Hint Constructors value.
Finally, we must consider what constitutes a complete program.
Intuitively, a "complete program" must not refer to any undefined
variables. We'll see shortly how to define the free variables
in a STLC term. A complete program is closed — that is, it
contains no free variables.
(Conversely, a term with free variables is often called an open
term.)
Having made the choice not to reduce under abstractions, we don't
need to worry about whether variables are values, since we'll
always be reducing programs "from the outside in," and that means
the step relation will always be working with closed terms.
Substitution
(λx:Bool. if x then true else x) false
to
if false then true else false
by substituting false for the parameter x in the body of the
function.
- [x:=true] (if x then x else false)
yields if true then true else false
- [x:=true] x yields true
- [x:=true] (if x then x else y) yields if true then true else y
- [x:=true] y yields y
- [x:=true] false yields false (vacuous substitution)
- [x:=true] (λy:Bool. if y then x else false)
yields \y:Bool. if y then true else false
- [x:=true] (λy:Bool. x) yields \y:Bool. true
- [x:=true] (λy:Bool. y) yields \y:Bool. y
- [x:=true] (λx:Bool. x) yields \x:Bool. x
[x:=s]x = s
[x:=s]y = y if x ≠ y
[x:=s](λx:T11. t12) = \x:T11. t12
[x:=s](λy:T11. t12) = \y:T11. [x:=s]t12 if x ≠ y
[x:=s](t1 t2) = ([x:=s]t1) ([x:=s]t2)
[x:=s]true = true
[x:=s]false = false
[x:=s](if t1 then t2 else t3) =
if [x:=s]t1 then [x:=s]t2 else [x:=s]t3
[x:=s]y = y if x ≠ y
[x:=s](λx:T11. t12) = \x:T11. t12
[x:=s](λy:T11. t12) = \y:T11. [x:=s]t12 if x ≠ y
[x:=s](t1 t2) = ([x:=s]t1) ([x:=s]t2)
[x:=s]true = true
[x:=s]false = false
[x:=s](if t1 then t2 else t3) =
if [x:=s]t1 then [x:=s]t2 else [x:=s]t3
Reserved Notation "'[' x ':=' s ']' t" (at level 20).
Fixpoint subst (x:id) (s:tm) (t:tm) : tm :=
match t with
| tvar x' ⇒
if beq_id x x' then s else t
| tabs x' T t1 ⇒
tabs x' T (if beq_id x x' then t1 else ([x:=s] t1))
| tapp t1 t2 ⇒
tapp ([x:=s] t1) ([x:=s] t2)
| ttrue ⇒
ttrue
| tfalse ⇒
tfalse
| tif t1 t2 t3 ⇒
tif ([x:=s] t1) ([x:=s] t2) ([x:=s] t3)
end
where "'[' x ':=' s ']' t" := (subst x s t).
Technical note: Substitution becomes trickier to define if we
consider the case where s, the term being substituted for a
variable in some other term, may itself contain free variables.
Since we are only interested here in defining the step relation
on closed terms (i.e., terms like \x:Bool. x that include
binders for all of the variables they mention), we can avoid this
extra complexity here, but it must be dealt with when formalizing
richer languages.
See, for example, [Aydemir 2008] for further discussion
of this issue.
Exercise: 3 stars (substi)
The definition that we gave above uses Coq's Fixpoint facility to define substitution as a function. Suppose, instead, we wanted to define substitution as an inductive relation substi. We've begun the definition by providing the Inductive header and one of the constructors; your job is to fill in the rest of the constructors and prove that the relation you've defined coincides with the function given above.Inductive substi (s:tm) (x:id) : tm → tm → Prop :=
| s_var1 :
substi s x (tvar x) s
(* FILL IN HERE *)
.
Hint Constructors substi.
Theorem substi_correct : ∀s x t t',
[x:=s]t = t' ↔ substi s x t t'.
Proof.
(* FILL IN HERE *) Admitted.
☐
Reduction
(λx:T.t12) v2 ⇒ [x:=v2]t12
is traditionally called "beta-reduction".
value v2 | (ST_AppAbs) |
(λx:T.t12) v2 ⇒ [x:=v2]t12 |
t1 ⇒ t1' | (ST_App1) |
t1 t2 ⇒ t1' t2 |
value v1 | |
t2 ⇒ t2' | (ST_App2) |
v1 t2 ⇒ v1 t2' |
(ST_IfTrue) | |
(if true then t1 else t2) ⇒ t1 |
(ST_IfFalse) | |
(if false then t1 else t2) ⇒ t2 |
t1 ⇒ t1' | (ST_If) |
(if t1 then t2 else t3) ⇒ (if t1' then t2 else t3) |
Reserved Notation "t1 '⇒' t2" (at level 40).
Inductive step : tm → tm → Prop :=
| ST_AppAbs : ∀x T t12 v2,
value v2 →
(tapp (tabs x T t12) v2) ⇒ [x:=v2]t12
| ST_App1 : ∀t1 t1' t2,
t1 ⇒ t1' →
tapp t1 t2 ⇒ tapp t1' t2
| ST_App2 : ∀v1 t2 t2',
value v1 →
t2 ⇒ t2' →
tapp v1 t2 ⇒ tapp v1 t2'
| ST_IfTrue : ∀t1 t2,
(tif ttrue t1 t2) ⇒ t1
| ST_IfFalse : ∀t1 t2,
(tif tfalse t1 t2) ⇒ t2
| ST_If : ∀t1 t1' t2 t3,
t1 ⇒ t1' →
(tif t1 t2 t3) ⇒ (tif t1' t2 t3)
where "t1 '⇒' t2" := (step t1 t2).
Hint Constructors step.
Notation multistep := (multi step).
Notation "t1 '⇒*' t2" := (multistep t1 t2) (at level 40).
Lemma step_example1 :
(tapp idBB idB) ⇒* idB.
Proof.
eapply multi_step.
apply ST_AppAbs.
apply v_abs.
simpl.
apply multi_refl. Qed.
Example:
(λx:Bool→Bool. x) ((λx:Bool→Bool. x) (λx:Bool. x))
⇒* \x:Bool. x
i.e.,
⇒* \x:Bool. x
(idBB (idBB idB)) ⇒* idB.
Lemma step_example2 :
(tapp idBB (tapp idBB idB)) ⇒* idB.
Proof.
eapply multi_step.
apply ST_App2. auto.
apply ST_AppAbs. auto.
eapply multi_step.
apply ST_AppAbs. simpl. auto.
simpl. apply multi_refl. Qed.
Example:
(λx:Bool→Bool. x)
(λx:Bool. if x then false else true)
true
⇒* false
i.e.,
(λx:Bool. if x then false else true)
true
⇒* false
(idBB notB) ttrue ⇒* tfalse.
Lemma step_example3 :
tapp (tapp idBB notB) ttrue ⇒* tfalse.
Proof.
eapply multi_step.
apply ST_App1. apply ST_AppAbs. auto. simpl.
eapply multi_step.
apply ST_AppAbs. auto. simpl.
eapply multi_step.
apply ST_IfTrue. apply multi_refl. Qed.
Example:
(λx:Bool → Bool. x)
((λx:Bool. if x then false else true) true)
⇒* false
i.e.,
((λx:Bool. if x then false else true) true)
⇒* false
idBB (notB ttrue) ⇒* tfalse.
Lemma step_example4 :
tapp idBB (tapp notB ttrue) ⇒* tfalse.
Proof.
eapply multi_step.
apply ST_App2. auto.
apply ST_AppAbs. auto. simpl.
eapply multi_step.
apply ST_App2. auto.
apply ST_IfTrue.
eapply multi_step.
apply ST_AppAbs. auto. simpl.
apply multi_refl. Qed.
We can use the normalize tactic defined in the Types chapter
to simplify these proofs.
Lemma step_example1' :
(tapp idBB idB) ⇒* idB.
Proof. normalize. Qed.
Lemma step_example2' :
(tapp idBB (tapp idBB idB)) ⇒* idB.
Proof. normalize. Qed.
Lemma step_example3' :
tapp (tapp idBB notB) ttrue ⇒* tfalse.
Proof. normalize. Qed.
Lemma step_example4' :
tapp idBB (tapp notB ttrue) ⇒* tfalse.
Proof. normalize. Qed.
Lemma step_example5 :
tapp (tapp idBBBB idBB) idB
⇒* idB.
Proof.
(* FILL IN HERE *) Admitted.
Lemma step_example5_with_normalize :
tapp (tapp idBBBB idBB) idB
⇒* idB.
Proof.
(* FILL IN HERE *) Admitted.
☐
Contexts
Typing Relation
Γ x = T | (T_Var) |
Γ ⊢ x ∈ T |
Γ , x:T11 ⊢ t12 ∈ T12 | (T_Abs) |
Γ ⊢ \x:T11.t12 ∈ T11->T12 |
Γ ⊢ t1 ∈ T11->T12 | |
Γ ⊢ t2 ∈ T11 | (T_App) |
Γ ⊢ t1 t2 ∈ T12 |
(T_True) | |
Γ ⊢ true ∈ Bool |
(T_False) | |
Γ ⊢ false ∈ Bool |
Γ ⊢ t1 ∈ Bool Γ ⊢ t2 ∈ T Γ ⊢ t3 ∈ T | (T_If) |
Γ ⊢ if t1 then t2 else t3 ∈ T |
Reserved Notation "Gamma '⊢' t '∈' T" (at level 40).
Inductive has_type : context → tm → ty → Prop :=
| T_Var : ∀Γ x T,
Γ x = Some T →
Γ ⊢ tvar x ∈ T
| T_Abs : ∀Γ x T11 T12 t12,
update Γ x T11 ⊢ t12 ∈ T12 →
Γ ⊢ tabs x T11 t12 ∈ TArrow T11 T12
| T_App : ∀T11 T12 Γ t1 t2,
Γ ⊢ t1 ∈ TArrow T11 T12 →
Γ ⊢ t2 ∈ T11 →
Γ ⊢ tapp t1 t2 ∈ T12
| T_True : ∀Γ,
Γ ⊢ ttrue ∈ TBool
| T_False : ∀Γ,
Γ ⊢ tfalse ∈ TBool
| T_If : ∀t1 t2 t3 T Γ,
Γ ⊢ t1 ∈ TBool →
Γ ⊢ t2 ∈ T →
Γ ⊢ t3 ∈ T →
Γ ⊢ tif t1 t2 t3 ∈ T
where "Gamma '⊢' t '∈' T" := (has_type Γ t T).
Hint Constructors has_type.
Example typing_example_1 :
empty ⊢ tabs x TBool (tvar x) ∈ TArrow TBool TBool.
Proof.
apply T_Abs. apply T_Var. reflexivity. Qed.
Note that since we added the has_type constructors to the hints
database, auto can actually solve this one immediately.
Another example:
empty ⊢ \x:A. λy:A→A. y (y x))
∈ A → (A→A) → A.
∈ A → (A→A) → A.
Exercise: 2 stars, optional (typing_example_2_full)
Prove the same result without using auto, eauto, or eapply (or ...).Example typing_example_2_full :
empty ⊢
(tabs x TBool
(tabs y (TArrow TBool TBool)
(tapp (tvar y) (tapp (tvar y) (tvar x))))) ∈
(TArrow TBool (TArrow (TArrow TBool TBool) TBool)).
Proof.
(* FILL IN HERE *) Admitted.
☐
Exercise: 2 stars (typing_example_3)
Formally prove the following typing derivation holds:
empty ⊢ \x:Bool→B. λy:Bool→Bool. λz:Bool.
y (x z)
∈ T.
y (x z)
∈ T.
Example typing_example_3 :
∃T,
empty ⊢
(tabs x (TArrow TBool TBool)
(tabs y (TArrow TBool TBool)
(tabs z TBool
(tapp (tvar y) (tapp (tvar x) (tvar z)))))) ∈
T.
Proof with auto.
(* FILL IN HERE *) Admitted.
☐
We can also show that terms are not typable. For example, let's
formally check that there is no typing derivation assigning a type
to the term \x:Bool. \y:Bool, x y — i.e.,
¬ ∃T,
empty ⊢ \x:Bool. λy:Bool, x y : T.
empty ⊢ \x:Bool. λy:Bool, x y : T.
Exercise: 3 stars, optional (typing_nonexample_3)
Another nonexample:
¬ (∃S, ∃T,
empty ⊢ \x:S. x x ∈ T).
empty ⊢ \x:S. x x ∈ T).
Example typing_nonexample_3 :
¬ (∃S, ∃T,
empty ⊢
(tabs x S
(tapp (tvar x) (tvar x))) ∈
T).
Proof.
(* FILL IN HERE *) Admitted.
☐