Hoare2Hoare Logic, Part II
Set Warnings "-notation-overridden,-parsing".
From Coq Require Import Strings.String.
From PLF Require Import Maps.
From Coq Require Import Bool.Bool.
From Coq Require Import Arith.Arith.
From Coq Require Import Arith.EqNat.
From Coq Require Import Arith.PeanoNat. Import Nat.
From Coq Require Import omega.Omega.
From PLF Require Import Hoare.
From PLF Require Import Imp.
Decorated Programs
X ::= m;;
Z ::= p;
WHILE ~(X = 0) DO
Z ::= Z - 1;;
X ::= X - 1
END
{{ True }}
X ::= m;;
Z ::= p;
WHILE ~(X = 0) DO
Z ::= Z - 1;;
X ::= X - 1
END
{{ Z = p - m }}
{{ True }} -»
{{ m = m }}
X ::= m;;
{{ X = m }} -»
{{ X = m ∧ p = p }}
Z ::= p;
{{ X = m ∧ Z = p }} -»
{{ Z - X = p - m }}
WHILE ~(X = 0) DO
{{ Z - X = p - m ∧ X ≠ 0 }} -»
{{ (Z - 1) - (X - 1) = p - m }}
Z ::= Z - 1;;
{{ Z - (X - 1) = p - m }}
X ::= X - 1
{{ Z - X = p - m }}
END
{{ Z - X = p - m ∧ ¬(X ≠ 0) }} -»
{{ Z = p - m }}
- SKIP is locally consistent if its precondition and
postcondition are the same:
{{ P }} SKIP {{ P }}
- The sequential composition of c1 and c2 is locally
consistent (with respect to assertions P and R) if c1 is
locally consistent (with respect to P and Q) and c2 is
locally consistent (with respect to Q and R):
{{ P }} c1;; {{ Q }} c2 {{ R }}
- An assignment X ::= a is locally consistent with respect to
a precondition of the form P [X ⊢> a] and the postcondition P:
{{ P [X ⊢> a] }}
X ::= a
{{ P }}
- A conditional is locally consistent with respect to assertions
P and Q if its "then" branch is locally consistent with respect
to P ∧ b and Q) and its "else" branch is locally consistent
with respect to P ∧ ¬b and Q:
{{ P }}
TEST b THEN
{{ P ∧ b }}
c1
{{ Q }}
ELSE
{{ P ∧ ¬b }}
c2
{{ Q }}
FI
{{ Q }}
- A while loop with precondition P is locally consistent if its
postcondition is P ∧ ¬b, if the pre- and postconditions of
its body are exactly P ∧ b and P, and if its body is
locally consistent with respect to assertions P ∧ b and P:
{{ P }}
WHILE b DO
{{ P ∧ b }}
c1
{{ P }}
END
{{ P ∧ ¬b }}
- A pair of assertions separated by -» is locally consistent if
the first implies the second:
{{ P }} -»
{{ P' }}
Example: Swapping Using Addition and Subtraction
X ::= X + Y;;
Y ::= X - Y;;
X ::= X - Y
(1) {{ X = m ∧ Y = n }} -»
(2) {{ (X + Y) - ((X + Y) - Y) = n ∧ (X + Y) - Y = m }}
X ::= X + Y;;
(3) {{ X - (X - Y) = n ∧ X - Y = m }}
Y ::= X - Y;;
(4) {{ X - Y = n ∧ Y = m }}
X ::= X - Y
(5) {{ X = n ∧ Y = m }}
- We begin with the undecorated program (the unnumbered lines).
- We add the specification -- i.e., the outer precondition (1) and postcondition (5). In the precondition, we use parameters m and n to remember the initial values of variables X and Y so that we can refer to them in the postcondition (5).
- We work backwards, mechanically, starting from (5) and proceeding until we get to (2). At each step, we obtain the precondition of the assignment from its postcondition by substituting the assigned variable with the right-hand-side of the assignment. For instance, we obtain (4) by substituting X with X - Y in (5), and we obtain (3) by substituting Y with X - Y in (4).
- Finally, we verify that (1) logically implies (2) -- i.e.,
that the step from (1) to (2) is a valid use of the law of
consequence. For this we substitute X by m and Y by n
and calculate as follows:
(m + n) - ((m + n) - n) = n ∧ (m + n) - n = m
(m + n) - m = n ∧ m = m
n = n ∧ m = m
Example: Simple Conditionals
(1) {{True}}
TEST X ≤ Y THEN
(2) {{True ∧ X ≤ Y}} -»
(3) {{(Y - X) + X = Y ∨ (Y - X) + Y = X}}
Z ::= Y - X
(4) {{Z + X = Y ∨ Z + Y = X}}
ELSE
(5) {{True ∧ ~(X ≤ Y) }} -»
(6) {{(X - Y) + X = Y ∨ (X - Y) + Y = X}}
Z ::= X - Y
(7) {{Z + X = Y ∨ Z + Y = X}}
FI
(8) {{Z + X = Y ∨ Z + Y = X}}
- We start with the outer precondition (1) and postcondition (8).
- We follow the format dictated by the hoare_if rule and copy the postcondition (8) to (4) and (7). We conjoin the precondition (1) with the guard of the conditional to obtain (2). We conjoin (1) with the negated guard of the conditional to obtain (5).
- In order to use the assignment rule and obtain (3), we substitute Z by Y - X in (4). To obtain (6) we substitute Z by X - Y in (7).
- Finally, we verify that (2) implies (3) and (5) implies (6). Both of these implications crucially depend on the ordering of X and Y obtained from the guard. For instance, knowing that X ≤ Y ensures that subtracting X from Y and then adding back X produces Y, as required by the first disjunct of (3). Similarly, knowing that ¬ (X ≤ Y) ensures that subtracting Y from X and then adding back Y produces X, as needed by the second disjunct of (6). Note that n - m + m = n does not hold for arbitrary natural numbers n and m (for example, 3 - 5 + 5 = 5).
Exercise: 2 stars, standard (if_minus_plus_reloaded)
Fill in valid decorations for the following program:{{ True }}
TEST X ≤ Y THEN
{{ }} -»
{{ }}
Z ::= Y - X
{{ }}
ELSE
{{ }} -»
{{ }}
Y ::= X + Z
{{ }}
FI
{{ Y = X + Z }}
(* Do not modify the following line: *)
Definition manual_grade_for_decorations_in_if_minus_plus_reloaded : option (nat×string) := None.
☐
Example: Reduce to Zero
(1) {{ True }}
WHILE ~(X = 0) DO
(2) {{ True ∧ ~(X = 0) }} -»
(3) {{ True }}
X ::= X - 1
(4) {{ True }}
END
(5) {{ True ∧ ~(~(X = 0)) }} -»
(6) {{ X = 0 }}
- Start with the outer precondition (1) and postcondition (6).
- Following the format dictated by the hoare_while rule, we copy (1) to (4). We conjoin (1) with the guard to obtain (2). The guard is a Boolean expression ~(X = 0). We also conjoin (1) with the negation of the guard to obtain (5). Note that, because the outer postcondition (6) does not syntactically match (5), we need a trivial use of the consequence rule from (5) to (6).
- Assertion (3) is the same as (4), because X does not appear in 4, so the substitution in the assignment rule is trivial.
- Finally, the implication between (2) and (3) is also trivial.
Definition reduce_to_zero' : com :=
WHILE ~(X = 0) DO
X ::= X - 1
END.
Theorem reduce_to_zero_correct' :
{{True}}
reduce_to_zero'
{{X = 0}}.
Proof.
unfold reduce_to_zero'.
(* First we need to transform the postcondition so
that hoare_while will apply. *)
eapply hoare_consequence_post.
apply hoare_while.
- (* Loop body preserves invariant *)
(* Need to massage precondition before hoare_asgn applies *)
eapply hoare_consequence_pre. apply hoare_asgn.
(* Proving trivial implication (2) -» (3) *)
intros st [HT Hbp]. unfold assn_sub. constructor.
- (* Invariant and negated guard imply postcondition *)
intros st [Inv GuardFalse].
unfold bassn in GuardFalse. simpl in GuardFalse.
rewrite not_true_iff_false in GuardFalse.
rewrite negb_false_iff in GuardFalse.
apply eqb_eq in GuardFalse.
apply GuardFalse. Qed.
unfold reduce_to_zero'.
(* First we need to transform the postcondition so
that hoare_while will apply. *)
eapply hoare_consequence_post.
apply hoare_while.
- (* Loop body preserves invariant *)
(* Need to massage precondition before hoare_asgn applies *)
eapply hoare_consequence_pre. apply hoare_asgn.
(* Proving trivial implication (2) -» (3) *)
intros st [HT Hbp]. unfold assn_sub. constructor.
- (* Invariant and negated guard imply postcondition *)
intros st [Inv GuardFalse].
unfold bassn in GuardFalse. simpl in GuardFalse.
rewrite not_true_iff_false in GuardFalse.
rewrite negb_false_iff in GuardFalse.
apply eqb_eq in GuardFalse.
apply GuardFalse. Qed.
Example: Division
X ::= m;;
Y ::= 0;;
WHILE n ≤ X DO
X ::= X - n;;
Y ::= Y + 1
END;
(1) {{ True }} -»
(2) {{ n × 0 + m = m }}
X ::= m;;
(3) {{ n × 0 + X = m }}
Y ::= 0;;
(4) {{ n × Y + X = m }}
WHILE n ≤ X DO
(5) {{ n × Y + X = m ∧ n ≤ X }} -»
(6) {{ n × (Y + 1) + (X - n) = m }}
X ::= X - n;;
(7) {{ n × (Y + 1) + X = m }}
Y ::= Y + 1
(8) {{ n × Y + X = m }}
END
(9) {{ n × Y + X = m ∧ ¬(n ≤ X) }} -»
(10) {{ n × Y + X = m ∧ X < n }}
Finding Loop Invariants
Example: Slow Subtraction
{{ X = m ∧ Y = n }}
WHILE ~(X = 0) DO
Y ::= Y - 1;;
X ::= X - 1
END
{{ Y = n - m }}
(1) {{ X = m ∧ Y = n }} -» (a)
(2) {{ Inv }}
WHILE ~(X = 0) DO
(3) {{ Inv ∧ X ≠ 0 }} -» (c)
(4) {{ Inv [X ⊢> X-1] [Y ⊢> Y-1] }}
Y ::= Y - 1;;
(5) {{ Inv [X ⊢> X-1] }}
X ::= X - 1
(6) {{ Inv }}
END
(7) {{ Inv ∧ ¬(X ≠ 0) }} -» (b)
(8) {{ Y = n - m }}
- (a) it must be weak enough to be implied by the loop's precondition, i.e., (1) must imply (2);
- (b) it must be strong enough to imply the program's postcondition, i.e., (7) must imply (8);
- (c) it must be preserved by each iteration of the loop (given that the loop guard evaluates to true), i.e., (3) must imply (4).
(1) {{ X = m ∧ Y = n }} -» (a - OK)
(2) {{ True }}
WHILE ~(X = 0) DO
(3) {{ True ∧ X ≠ 0 }} -» (c - OK)
(4) {{ True }}
Y ::= Y - 1;;
(5) {{ True }}
X ::= X - 1
(6) {{ True }}
END
(7) {{ True ∧ ~(X ≠ 0) }} -» (b - WRONG!)
(8) {{ Y = n - m }}
(1) {{ X = m ∧ Y = n }} -» (a - WRONG!)
(2) {{ Y = n - m }}
WHILE ~(X = 0) DO
(3) {{ Y = n - m ∧ X ≠ 0 }} -» (c - WRONG!)
(4) {{ Y - 1 = n - m }}
Y ::= Y - 1;;
(5) {{ Y = n - m }}
X ::= X - 1
(6) {{ Y = n - m }}
END
(7) {{ Y = n - m ∧ ~(X ≠ 0) }} -» (b - OK)
(8) {{ Y = n - m }}
(1) {{ X = m ∧ Y = n }} -» (a - OK)
(2) {{ Y - X = n - m }}
WHILE ~(X = 0) DO
(3) {{ Y - X = n - m ∧ X ≠ 0 }} -» (c - OK)
(4) {{ (Y - 1) - (X - 1) = n - m }}
Y ::= Y - 1;;
(5) {{ Y - (X - 1) = n - m }}
X ::= X - 1
(6) {{ Y - X = n - m }}
END
(7) {{ Y - X = n - m ∧ ~(X ≠ 0) }} -» (b - OK)
(8) {{ Y = n - m }}
Exercise: Slow Assignment
Exercise: 2 stars, standard (slow_assignment)
A roundabout way of assigning a number currently stored in X to the variable Y is to start Y at 0, then decrement X until it hits 0, incrementing Y at each step. Here is a program that implements this idea:{{ X = m }}
Y ::= 0;;
WHILE ~(X = 0) DO
X ::= X - 1;;
Y ::= Y + 1
END
{{ Y = m }}
(* FILL IN HERE *)
(* Do not modify the following line: *)
Definition manual_grade_for_decorations_in_slow_assignment : option (nat×string) := None.
☐
Exercise: Slow Addition
Exercise: 3 stars, standard, optional (add_slowly_decoration)
The following program adds the variable X into the variable Z by repeatedly decrementing X and incrementing Z.WHILE ~(X = 0) DO
Z ::= Z + 1;;
X ::= X - 1
END
(* FILL IN HERE *)
☐
Example: Parity
{{ X = m }}
WHILE 2 ≤ X DO
X ::= X - 2
END
{{ X = parity m }}
The postcondition does not hold at the beginning of the loop,
since m = parity m does not hold for an arbitrary m, so we
cannot use that as an invariant. To find an invariant that works,
let's think a bit about what this loop does. On each iteration it
decrements X by 2, which preserves the parity of X. So the
parity of X does not change, i.e., it is invariant. The initial
value of X is m, so the parity of X is always equal to the
parity of m. Using parity X = parity m as an invariant we
obtain the following decorated program:
{{ X = m }} -» (a - OK)
{{ parity X = parity m }}
WHILE 2 ≤ X DO
{{ parity X = parity m ∧ 2 ≤ X }} -» (c - OK)
{{ parity (X-2) = parity m }}
X ::= X - 2
{{ parity X = parity m }}
END
{{ parity X = parity m ∧ ~(2 ≤ X) }} -» (b - OK)
{{ X = parity m }}
With this invariant, conditions (a), (b), and (c) are all
satisfied. For verifying (b), we observe that, when X < 2, we
have parity X = X (we can easily see this in the definition of
parity). For verifying (c), we observe that, when 2 ≤ X, we
have parity X = parity (X-2).
{{ X = m }} -» (a - OK)
{{ parity X = parity m }}
WHILE 2 ≤ X DO
{{ parity X = parity m ∧ 2 ≤ X }} -» (c - OK)
{{ parity (X-2) = parity m }}
X ::= X - 2
{{ parity X = parity m }}
END
{{ parity X = parity m ∧ ~(2 ≤ X) }} -» (b - OK)
{{ X = parity m }}
Exercise: 3 stars, standard, optional (parity_formal)
Translate the above informal decorated program into a formal proof in Coq. Your proof should use the Hoare logic rules and should not unfold hoare_triple. Refer to reduce_to_zero for an example. You might find the following lemmas to be useful:Lemma parity_ge_2 : ∀ x,
2 ≤ x →
parity (x - 2) = parity x.
Proof.
induction x; intro. reflexivity.
destruct x. inversion H. inversion H1.
simpl. rewrite <- minus_n_O. reflexivity.
Qed.
induction x; intro. reflexivity.
destruct x. inversion H. inversion H1.
simpl. rewrite <- minus_n_O. reflexivity.
Qed.
Lemma parity_lt_2 : ∀ x,
¬ 2 ≤ x →
parity x = x.
Proof.
intros. induction x. reflexivity. destruct x. reflexivity.
exfalso. apply H. omega.
Qed.
intros. induction x. reflexivity. destruct x. reflexivity.
exfalso. apply H. omega.
Qed.
Theorem parity_correct : ∀ (m:nat),
{{ X = m }}
WHILE 2 ≤ X DO
X ::= X - 2
END
{{ X = parity m }}.
Proof.
(* FILL IN HERE *) Admitted.
☐
Example: Finding Square Roots
{{ X=m }}
Z ::= 0;;
WHILE (Z+1)*(Z+1) ≤ X DO
Z ::= Z+1
END
{{ Z×Z≤m ∧ m<(Z+1)*(Z+1) }}
(1) {{ X=m }} -» (a - second conjunct of (2) WRONG!)
(2) {{ 0*0 ≤ m ∧ m<(0+1)*(0+1) }}
Z ::= 0;;
(3) {{ Z×Z ≤ m ∧ m<(Z+1)*(Z+1) }}
WHILE (Z+1)*(Z+1) ≤ X DO
(4) {{ Z×Z≤m ∧ (Z+1)*(Z+1)<=X }} -» (c - WRONG!)
(5) {{ (Z+1)*(Z+1)<=m ∧ m<((Z+1)+1)*((Z+1)+1) }}
Z ::= Z+1
(6) {{ Z×Z≤m ∧ m<(Z+1)*(Z+1) }}
END
(7) {{ Z×Z≤m ∧ m<(Z+1)*(Z+1) ∧ ~((Z+1)*(Z+1)<=X) }} -» (b - OK)
(8) {{ Z×Z≤m ∧ m<(Z+1)*(Z+1) }}
{{ X=m }} -» (a - OK)
{{ X=m ∧ 0*0 ≤ m }}
Z ::= 0;
{{ X=m ∧ Z×Z ≤ m }}
WHILE (Z+1)*(Z+1) ≤ X DO
{{ X=m ∧ Z×Z≤m ∧ (Z+1)*(Z+1)<=X }} -» (c - OK)
{{ X=m ∧ (Z+1)*(Z+1)<=m }}
Z ::= Z + 1
{{ X=m ∧ Z×Z≤m }}
END
{{ X=m ∧ Z×Z≤m ∧ ~((Z+1)*(Z+1)<=X) }} -» (b - OK)
{{ Z×Z≤m ∧ m<(Z+1)*(Z+1) }}
Example: Squaring
{{ X = m }}
Y ::= 0;;
Z ::= 0;;
WHILE ~(Y = X) DO
Z ::= Z + X;;
Y ::= Y + 1
END
{{ Z = m×m }}
{{ X = m }} -» (a - WRONG)
{{ 0 = m×m ∧ X = m }}
Y ::= 0;;
{{ 0 = m×m ∧ X = m }}
Z ::= 0;;
{{ Z = m×m ∧ X = m }}
WHILE ~(Y = X) DO
{{ Z = m×m ∧ X = m ∧ Y ≠ X }} -» (c - WRONG)
{{ Z+X = m×m ∧ X = m }}
Z ::= Z + X;;
{{ Z = m×m ∧ X = m }}
Y ::= Y + 1
{{ Z = m×m ∧ X = m }}
END
{{ Z = m×m ∧ X = m ∧ ~(Y ≠ X) }} -» (b - OK)
{{ Z = m×m }}
{{ X = m }} -» (a - OK)
{{ 0 = 0*m ∧ X = m }}
Y ::= 0;;
{{ 0 = Y×m ∧ X = m }}
Z ::= 0;;
{{ Z = Y×m ∧ X = m }}
WHILE ~(Y = X) DO
{{ Z = Y×m ∧ X = m ∧ Y ≠ X }} -» (c - OK)
{{ Z+X = (Y+1)*m ∧ X = m }}
Z ::= Z + X;
{{ Z = (Y+1)*m ∧ X = m }}
Y ::= Y + 1
{{ Z = Y×m ∧ X = m }}
END
{{ Z = Y×m ∧ X = m ∧ ~(Y ≠ X) }} -» (b - OK)
{{ Z = m×m }}
Exercise: Factorial
Exercise: 3 stars, standard (factorial)
Recall that n! denotes the factorial of n (i.e., n! = 1*2*...*n). Here is an Imp program that calculates the factorial of the number initially stored in the variable X and puts it in the variable Y:{{ X = m }}
Y ::= 1 ;;
WHILE ~(X = 0)
DO
Y ::= Y × X ;;
X ::= X - 1
END
{{ Y = m! }}
{{ X = m }} -»
{{ }}
Y ::= 1;;
{{ }}
WHILE ~(X = 0)
DO {{ }} -»
{{ }}
Y ::= Y × X;;
{{ }}
X ::= X - 1
{{ }}
END
{{ }} -»
{{ Y = m! }}
(* Do not modify the following line: *)
Definition manual_grade_for_decorations_in_factorial : option (nat×string) := None.
☐
Exercise: Min
Exercise: 3 stars, standard (Min_Hoare)
Lemma lemma1 : ∀ x y,
(x<>0 ∧ y<>0) → min x y ≠ 0.
Lemma lemma2 : ∀ x y,
min (x-1) (y-1) = (min x y) - 1.
{{ True }} -»
{{ }}
X ::= a;;
{{ }}
Y ::= b;;
{{ }}
Z ::= 0;;
{{ }}
WHILE ~(X = 0) && ~(Y = 0) DO
{{ }} -»
{{ }}
X := X - 1;;
{{ }}
Y := Y - 1;;
{{ }}
Z := Z + 1
{{ }}
END
{{ }} -»
{{ Z = min a b }}
(* Do not modify the following line: *)
Definition manual_grade_for_decorations_in_Min_Hoare : option (nat×string) := None.
☐
Exercise: 3 stars, standard (two_loops)
Here is a very inefficient way of adding 3 numbers:X ::= 0;;
Y ::= 0;;
Z ::= c;;
WHILE ~(X = a) DO
X ::= X + 1;;
Z ::= Z + 1
END;;
WHILE ~(Y = b) DO
Y ::= Y + 1;;
Z ::= Z + 1
END
{{ True }} -»
{{ }}
X ::= 0;;
{{ }}
Y ::= 0;;
{{ }}
Z ::= c;;
{{ }}
WHILE ~(X = a) DO
{{ }} -»
{{ }}
X ::= X + 1;;
{{ }}
Z ::= Z + 1
{{ }}
END;;
{{ }} -»
{{ }}
WHILE ~(Y = b) DO
{{ }} -»
{{ }}
Y ::= Y + 1;;
{{ }}
Z ::= Z + 1
{{ }}
END
{{ }} -»
{{ Z = a + b + c }}
(* Do not modify the following line: *)
Definition manual_grade_for_decorations_in_two_loops : option (nat×string) := None.
☐
Exercise: Power Series
Exercise: 4 stars, standard, optional (dpow2_down)
Here is a program that computes the series: 1 + 2 + 2^2 + ... + 2^m = 2^(m+1) - 1X ::= 0;;
Y ::= 1;;
Z ::= 1;;
WHILE ~(X = m) DO
Z ::= 2 × Z;;
Y ::= Y + Z;;
X ::= X + 1
END
(* FILL IN HERE *)
☐
Weakest Preconditions (Optional)
{{ False }} X ::= Y + 1 {{ X ≤ 5 }}
{{ Y ≤ 4 ∧ Z = 0 }} X ::= Y + 1 {{ X ≤ 5 }}
{{ Y ≤ 4 }} X ::= Y + 1 {{ X ≤ 5 }}
That is, P is the weakest precondition of c for Q
if (a) P is a precondition for Q and c, and (b) P is the
weakest (easiest to satisfy) assertion that guarantees that
Q will hold after executing c.
1) {{ ? }} SKIP {{ X = 5 }}
2) {{ ? }} X ::= Y + Z {{ X = 5 }}
3) {{ ? }} X ::= Y {{ X = Y }}
4) {{ ? }}
TEST X = 0 THEN Y ::= Z + 1 ELSE Y ::= W + 2 FI
{{ Y = 5 }}
5) {{ ? }}
X ::= 5
{{ X = 0 }}
6) {{ ? }}
WHILE true DO X ::= 0 END
{{ X = 0 }}
Exercise: 1 star, standard, optional (wp)
What are the weakest preconditions of the following commands for the following postconditions?1) {{ ? }} SKIP {{ X = 5 }}
2) {{ ? }} X ::= Y + Z {{ X = 5 }}
3) {{ ? }} X ::= Y {{ X = Y }}
4) {{ ? }}
TEST X = 0 THEN Y ::= Z + 1 ELSE Y ::= W + 2 FI
{{ Y = 5 }}
5) {{ ? }}
X ::= 5
{{ X = 0 }}
6) {{ ? }}
WHILE true DO X ::= 0 END
{{ X = 0 }}
(* FILL IN HERE *)
☐
☐
Exercise: 3 stars, advanced, optional (is_wp_formal)
Prove formally, using the definition of hoare_triple, that Y ≤ 4 is indeed the weakest precondition of X ::= Y + 1 with respect to postcondition X ≤ 5.Exercise: 2 stars, advanced, optional (hoare_asgn_weakest)
Show that the precondition in the rule hoare_asgn is in fact the weakest precondition.Theorem hoare_asgn_weakest : ∀ Q X a,
is_wp (Q [X ⊢> a]) (X ::= a) Q.
Proof.
(* FILL IN HERE *) Admitted.
☐
Exercise: 2 stars, advanced, optional (hoare_havoc_weakest)
Show that your havoc_pre rule from the himp_hoare exercise in the Hoare chapter returns the weakest precondition.
Module Himp2.
Import Himp.
Lemma hoare_havoc_weakest : ∀ (P Q : Assertion) (X : string),
{{ P }} HAVOC X {{ Q }} →
P -» havoc_pre X Q.
Proof.
(* FILL IN HERE *) Admitted.
☐
Import Himp.
Lemma hoare_havoc_weakest : ∀ (P Q : Assertion) (X : string),
{{ P }} HAVOC X {{ Q }} →
P -» havoc_pre X Q.
Proof.
(* FILL IN HERE *) Admitted.
☐
Formal Decorated Programs (Advanced)
Syntax
{{P}} ({{P}} SKIP {{P}}) ;; ({{P}} SKIP {{P}}) {{P}},
- The post-condition expected by each dcom d is embedded
in d.
- The pre-condition is supplied by the context.
Inductive dcom : Type :=
| DCSkip : Assertion → dcom
| DCSeq : dcom → dcom → dcom
| DCAsgn : string → aexp → Assertion → dcom
| DCIf : bexp → Assertion → dcom → Assertion → dcom
→ Assertion→ dcom
| DCWhile : bexp → Assertion → dcom → Assertion → dcom
| DCPre : Assertion → dcom → dcom
| DCPost : dcom → Assertion → dcom.
DCPre is used to provide the weakened precondition from
the rule of consequence. To provide the initial precondition
at the very top of the program, we use Decorated:
To avoid clashing with the existing Notation definitions for
ordinary commands, we introduce these notations in a special
scope called dcom_scope, and we Open this scope for the
remainder of the file.
Delimit Scope default with default.
Notation "'SKIP' {{ P }}"
:= (DCSkip P)
(at level 10) : dcom_scope.
Notation "l '::=' a {{ P }}"
:= (DCAsgn l a P)
(at level 60, a at next level) : dcom_scope.
Notation "'WHILE' b 'DO' {{ Pbody }} d 'END' {{ Ppost }}"
:= (DCWhile b Pbody d Ppost)
(at level 80, right associativity) : dcom_scope.
Notation "'TEST' b 'THEN' {{ P }} d 'ELSE' {{ P' }} d' 'FI' {{ Q }}"
:= (DCIf b P d P' d' Q)
(at level 80, right associativity) : dcom_scope.
Notation "'-»' {{ P }} d"
:= (DCPre P d)
(at level 90, right associativity) : dcom_scope.
Notation "d '-»' {{ P }}"
:= (DCPost d P)
(at level 80, right associativity) : dcom_scope.
Notation " d ;; d' "
:= (DCSeq d d')
(at level 80, right associativity) : dcom_scope.
Notation "{{ P }} d"
:= (Decorated P d)
(at level 90) : dcom_scope.
Delimit Scope dcom_scope with dcom.
Open Scope dcom_scope.
Example dec0 :=
SKIP {{ True }}.
Example dec1 :=
WHILE true DO {{ True }} SKIP {{ True }} END
{{ True }}.
(* Set Printing All. *)
Notation "'SKIP' {{ P }}"
:= (DCSkip P)
(at level 10) : dcom_scope.
Notation "l '::=' a {{ P }}"
:= (DCAsgn l a P)
(at level 60, a at next level) : dcom_scope.
Notation "'WHILE' b 'DO' {{ Pbody }} d 'END' {{ Ppost }}"
:= (DCWhile b Pbody d Ppost)
(at level 80, right associativity) : dcom_scope.
Notation "'TEST' b 'THEN' {{ P }} d 'ELSE' {{ P' }} d' 'FI' {{ Q }}"
:= (DCIf b P d P' d' Q)
(at level 80, right associativity) : dcom_scope.
Notation "'-»' {{ P }} d"
:= (DCPre P d)
(at level 90, right associativity) : dcom_scope.
Notation "d '-»' {{ P }}"
:= (DCPost d P)
(at level 80, right associativity) : dcom_scope.
Notation " d ;; d' "
:= (DCSeq d d')
(at level 80, right associativity) : dcom_scope.
Notation "{{ P }} d"
:= (Decorated P d)
(at level 90) : dcom_scope.
Delimit Scope dcom_scope with dcom.
Open Scope dcom_scope.
Example dec0 :=
SKIP {{ True }}.
Example dec1 :=
WHILE true DO {{ True }} SKIP {{ True }} END
{{ True }}.
(* Set Printing All. *)
An example decorated program that decrements X to 0:
Example dec_while : decorated :=
{{ True }}
WHILE ~(X = 0)
DO
{{ True ∧ (X ≠ 0) }}
X ::= X - 1
{{ True }}
END
{{ True ∧ X = 0}} -»
{{ X = 0 }}.
It is easy to go from a dcom to a com by erasing all
annotations.
Fixpoint extract (d : dcom) : com :=
match d with
| DCSkip _ ⇒ SKIP
| DCSeq d1 d2 ⇒ (extract d1 ;; extract d2)
| DCAsgn X a _ ⇒ X ::= a
| DCIf b _ d1 _ d2 _ ⇒ TEST b THEN extract d1 ELSE extract d2 FI
| DCWhile b _ d _ ⇒ WHILE b DO extract d END
| DCPre _ d ⇒ extract d
| DCPost d _ ⇒ extract d
end.
Definition extract_dec (dec : decorated) : com :=
match dec with
| Decorated P d ⇒ extract d
end.
Print dec_while.
(*
dec_while =
{{fun _ : state => True}} (WHILE ~ X = 0
DO {{fun st : state => True /\ st X <> 0}}
X ::= X - 1 {{fun _ : state => True}}
END {{fun st : state => True /\ st X = 0}}) -»
{{fun st : state => st X = 0}}
: decorated
*)
Compute (extract_dec dec_while).
(*
= (WHILE ~ "X"string - 1 END)*)
It is straightforward to extract the precondition and
postcondition from a decorated program.
Fixpoint post (d : dcom) : Assertion :=
match d with
| DCSkip P ⇒ P
| DCSeq d1 d2 ⇒ post d2
| DCAsgn X a Q ⇒ Q
| DCIf _ _ d1 _ d2 Q ⇒ Q
| DCWhile b Pbody c Ppost ⇒ Ppost
| DCPre _ d ⇒ post d
| DCPost c Q ⇒ Q
end.
Definition pre_dec (dec : decorated) : Assertion :=
match dec with
| Decorated P d ⇒ P
end.
Definition post_dec (dec : decorated) : Assertion :=
match dec with
| Decorated P d ⇒ post d
end.
Print dec_while.
(*
dec_while =
{{fun _ : state => True}} (WHILE ~ X = 0
DO {{fun st : state => True /\ st X <> 0}}
X ::= X - 1 {{fun _ : state => True}}
END {{fun st : state => True /\ st X = 0}}) -»
{{fun st : state => st X = 0}}
: decorated
*)
Compute pre_dec dec_while.
(*
= fun _ : state => True
: Assertion
*)
Compute post_dec dec_while.
(*
= fun x : state => x "X"*)
We can express what it means for a decorated program to be
correct as follows:
Definition dec_correct (dec : decorated) :=
{{pre_dec dec}} (extract_dec dec) {{post_dec dec}}.
Example dec_while_triple_correct :
dec_correct dec_while
= {{ fun st ⇒ True }}
(WHILE ~(X = 0) DO X ::= X - 1 END)%imp
{{ fun st ⇒ st X = 0 }}.
Proof. reflexivity. Qed.
To check whether this Hoare triple is valid, we need a way to
extract the "proof obligations" from a decorated program. These
obligations are often called verification conditions, because
they are the facts that must be verified to see that the
decorations are logically consistent and thus constitute a proof
of correctness.
The function verification_conditions takes a dcom d together
with a precondition P and returns a proposition that, if it
can be proved, implies that the triple {{P}} (extract d) {{post d}}
is valid.
It does this by walking over d and generating a big
conjunction including all the "local checks" that we listed when
we described the informal rules for decorated programs. (Strictly
speaking, we need to massage the informal rules a little bit to
add some uses of the rule of consequence, but the correspondence
should be clear.)
Extracting Verification Conditions
Fixpoint verification_conditions (P : Assertion) (d : dcom) : Prop :=
match d with
| DCSkip Q ⇒
(P -» Q)
| DCSeq d1 d2 ⇒
verification_conditions P d1
∧ verification_conditions (post d1) d2
| DCAsgn X a Q ⇒
(P -» Q [X ⊢> a])
| DCIf b P1 d1 P2 d2 Q ⇒
((P ∧ b) -» P1)%assertion
∧ ((P ∧ ¬ b) -» P2)%assertion
∧ (post d1 -» Q) ∧ (post d2 -» Q)
∧ verification_conditions P1 d1
∧ verification_conditions P2 d2
| DCWhile b Pbody d Ppost ⇒
(* post d is the loop invariant and the initial
precondition *)
(P -» post d)
∧ ((post d ∧ b) -» Pbody)%assertion
∧ ((post d ∧ ¬ b) -» Ppost)%assertion
∧ verification_conditions Pbody d
| DCPre P' d ⇒
(P -» P') ∧ verification_conditions P' d
| DCPost d Q ⇒
verification_conditions P d ∧ (post d -» Q)
end.
And now the key theorem, stating that verification_conditions
does its job correctly. Not surprisingly, we need to use each of
the Hoare Logic rules at some point in the proof.
Theorem verification_correct : ∀ d P,
verification_conditions P d → {{P}} (extract d) {{post d}}.
Proof.
induction d; intros P H; simpl in ×.
- (* Skip *)
eapply hoare_consequence_pre.
apply hoare_skip.
assumption.
- (* Seq *)
destruct H as [H1 H2].
eapply hoare_seq.
apply IHd2. apply H2.
apply IHd1. apply H1.
- (* Asgn *)
eapply hoare_consequence_pre.
apply hoare_asgn.
assumption.
- (* If *)
destruct H as [HPre1 [HPre2 [Hd1 [Hd2 [HThen HElse]]]]].
apply IHd1 in HThen. clear IHd1.
apply IHd2 in HElse. clear IHd2.
apply hoare_if.
+ eapply hoare_consequence_post with (Q':=post d1); eauto.
eapply hoare_consequence_pre; eauto.
+ eapply hoare_consequence_post with (Q':=post d2); eauto.
eapply hoare_consequence_pre; eauto.
- (* While *)
destruct H as [Hpre [Hbody1 [Hpost1 Hd]]].
eapply hoare_consequence_pre; eauto.
eapply hoare_consequence_post; eauto.
apply hoare_while.
eapply hoare_consequence_pre; eauto.
- (* Pre *)
destruct H as [HP Hd].
eapply hoare_consequence_pre. apply IHd. apply Hd. assumption.
- (* Post *)
destruct H as [Hd HQ].
eapply hoare_consequence_post. apply IHd. apply Hd. assumption.
Qed.
induction d; intros P H; simpl in ×.
- (* Skip *)
eapply hoare_consequence_pre.
apply hoare_skip.
assumption.
- (* Seq *)
destruct H as [H1 H2].
eapply hoare_seq.
apply IHd2. apply H2.
apply IHd1. apply H1.
- (* Asgn *)
eapply hoare_consequence_pre.
apply hoare_asgn.
assumption.
- (* If *)
destruct H as [HPre1 [HPre2 [Hd1 [Hd2 [HThen HElse]]]]].
apply IHd1 in HThen. clear IHd1.
apply IHd2 in HElse. clear IHd2.
apply hoare_if.
+ eapply hoare_consequence_post with (Q':=post d1); eauto.
eapply hoare_consequence_pre; eauto.
+ eapply hoare_consequence_post with (Q':=post d2); eauto.
eapply hoare_consequence_pre; eauto.
- (* While *)
destruct H as [Hpre [Hbody1 [Hpost1 Hd]]].
eapply hoare_consequence_pre; eauto.
eapply hoare_consequence_post; eauto.
apply hoare_while.
eapply hoare_consequence_pre; eauto.
- (* Pre *)
destruct H as [HP Hd].
eapply hoare_consequence_pre. apply IHd. apply Hd. assumption.
- (* Post *)
destruct H as [Hd HQ].
eapply hoare_consequence_post. apply IHd. apply Hd. assumption.
Qed.
Now that all the pieces are in place, we can verify an entire program.
Definition verification_conditions_dec (dec : decorated) : Prop :=
match dec with
| Decorated P d ⇒ verification_conditions P d
end.
Corollary verification_correct_dec : ∀ dec,
verification_conditions_dec dec → dec_correct dec.
Proof.
intros [P d]. apply verification_correct.
Qed.
The propositions generated by verification_conditions are fairly
big, and they contain many conjuncts that are essentially trivial.
===>
(((fun _ : state ⇒ True) -» (fun _ : state ⇒ True)) ∧
((fun st : state ⇒ True ∧ bassn (~(X = 0)) st) -»
(fun st : state ⇒ True ∧ st X ≠ 0)) ∧
((fun st : state ⇒ True ∧ ¬bassn (~(X = 0)) st) -»
(fun st : state ⇒ True ∧ st X = 0)) ∧
(fun st : state ⇒ True ∧ st X ≠ 0) -»
(fun _ : state ⇒ True) [X ⊢> X - 1]) ∧
(fun st : state ⇒ True ∧ st X = 0) -»
(fun st : state ⇒ st X = 0)
Automation
Tactic Notation "verify" :=
intros;
apply verification_correct;
repeat split;
simpl; unfold assert_implies;
unfold ap in *; unfold ap2 in *; unfold bassn in *; unfold beval in *; unfold aeval in *;
unfold assn_sub; intros;
repeat (simpl in *;
rewrite t_update_eq ||
(try rewrite t_update_neq; [| (intro X; inversion X; fail)]));
simpl in *;
repeat match goal with [H : _ ∧ _ ⊢ _] ⇒ destruct H end;
repeat rewrite not_true_iff_false in *;
repeat rewrite not_false_iff_true in *;
repeat rewrite negb_true_iff in *;
repeat rewrite negb_false_iff in *;
repeat rewrite eqb_eq in *;
repeat rewrite eqb_neq in *;
repeat rewrite leb_iff in *;
repeat rewrite leb_iff_conv in *;
try subst;
simpl in *;
repeat
match goal with
[st : state ⊢ _] ⇒
match goal with
| [H : st _ = _ ⊢ _] ⇒ rewrite → H in *; clear H
| [H : _ = st _ ⊢ _] ⇒ rewrite <- H in *; clear H
end
end;
try eauto; try omega.
What's left after verify does its thing is "just the interesting
parts" of checking that the decorations are correct. For very
simple examples, verify sometimes even immediately solves the
goal (provided that the annotations are correct!).
Examples
Slow Subtraction
Example subtract_slowly_dec (m : nat) (p : nat) : decorated :=
{{ X = m ∧ Z = p }} -»
{{ Z - X = p - m }}
WHILE ~(X = 0)
DO {{ Z - X = p - m ∧ X ≠ 0 }} -»
{{ (Z - 1) - (X - 1) = p - m }}
Z ::= Z - 1
{{ Z - (X - 1) = p - m }} ;;
X ::= X - 1
{{ Z - X = p - m }}
END
{{ Z - X = p - m ∧ X = 0 }} -»
{{ Z = p - m }}.
Theorem subtract_slowly_dec_correct : ∀ m p,
dec_correct (subtract_slowly_dec m p).
Proof. verify. (* this grinds for a bit! *) Qed.
Definition swap : com :=
X ::= X + Y;;
Y ::= X - Y;;
X ::= X - Y.
Definition swap_dec (m n:nat) : decorated :=
{{ X = m ∧ Y = n}} -»
{{ (X + Y) - ((X + Y) - Y) = n
∧ (X + Y) - Y = m }}
X ::= X + Y
{{ X - (X - Y) = n ∧ X - Y = m }};;
Y ::= X - Y
{{ X - Y = n ∧ Y = m }};;
X ::= X - Y
{{ X = n ∧ Y = m}}.
Theorem swap_correct : ∀ m n,
dec_correct (swap_dec m n).
Proof. verify. Qed.
Definition div_mod_dec (a b : nat) : decorated :=
{{ True }} -»
{{ b × 0 + a = a }}
X ::= a
{{ b × 0 + X = a }};;
Y ::= 0
{{ b × Y + X = a }};;
WHILE b ≤ X DO
{{ b × Y + X = a ∧ b ≤ X }} -»
{{ b × (Y + 1) + (X - b) = a }}
X ::= X - b
{{ b × (Y + 1) + X = a }};;
Y ::= Y + 1
{{ b × Y + X = a }}
END
{{ b × Y + X = a ∧ ~(b ≤ X) }} -»
{{ b × Y + X = a ∧ (X < b) }}.
Theorem div_mod_dec_correct : ∀ a b,
dec_correct (div_mod_dec a b).
Proof. verify.
rewrite mult_plus_distr_l. omega.
Qed.
There are actually several ways to phrase the loop invariant for
this program. Here is one natural one, which leads to a rather
long proof:
Inductive ev : nat → Prop :=
| ev_0 : ev O
| ev_SS : ∀ n : nat, ev n → ev (S (S n)).
Definition find_parity_dec (m:nat) : decorated :=
{{ X = m }} -»
{{ X ≤ m ∧ ap ev (m - X) }}
WHILE 2 ≤ X DO
{{ (X ≤ m ∧ ap ev (m - X)) ∧ 2 ≤ X }} -»
{{ X - 2 ≤ m ∧ ap ev (m - (X - 2)) }}
X ::= X - 2
{{ X ≤ m ∧ ap ev (m - X) }}
END
{{ (X ≤ m ∧ ap ev (m - X)) ∧ X < 2 }} -»
{{ X = 0 ↔ ev m }}.
Lemma l1 : ∀ m n p,
p ≤ n →
n ≤ m →
m - (n - p) = m - n + p.
Proof. intros. omega. Qed.
Lemma l2 : ∀ m,
ev m →
ev (m + 2).
Proof. intros. rewrite plus_comm. simpl. constructor. assumption. Qed.
Lemma l3' : ∀ m,
ev m →
¬ev (S m).
Proof. induction m; intros H1 H2. inversion H2. apply IHm.
inversion H2; subst; assumption. assumption. Qed.
Lemma l3 : ∀ m,
1 ≤ m →
ev m →
ev (m - 1) →
False.
Proof. intros. apply l2 in H1.
assert (G : m - 1 + 2 = S m). clear H0 H1. omega.
rewrite G in H1. apply l3' in H0. apply H0. assumption. Qed.
Theorem find_parity_correct : ∀ m,
dec_correct (find_parity_dec m).
Proof.
verify;
(* simplification too aggressive ... reverting a bit *)
fold (2 <=? (st X)) in *;
try rewrite leb_iff in *;
try rewrite leb_iff_conv in *; eauto; try omega.
- (* invariant holds initially *)
rewrite minus_diag. constructor.
- (* invariant preserved *)
rewrite l1; try assumption.
apply l2; assumption.
- (* invariant strong enough to imply conclusion
(-> direction) *)
rewrite <- minus_n_O in H2. assumption.
- (* invariant strong enough to imply conclusion
(<- direction) *)
destruct (st X) as [| [| n]].
(* by H1 X can only be 0 or 1 *)
+ (* st X = 0 *)
reflexivity.
+ (* st X = 1 *)
apply l3 in H; try assumption. inversion H.
+ (* st X = 2 *)
clear H0 H2. (* omega confused otherwise *)
omega.
Qed.
Here is a more intuitive way of writing the invariant:
Definition find_parity_dec' (m:nat) : decorated :=
{{ X = m }} -»
{{ ap ev X ↔ ev m }}
WHILE 2 ≤ X DO
{{ (ap ev X ↔ ev m) ∧ 2 ≤ X }} -»
{{ ap ev (X - 2) ↔ ev m }}
X ::= X - 2
{{ ap ev X ↔ ev m }}
END
{{ (ap ev X ↔ ev m) ∧ ~(2 ≤ X) }} -»
{{ X=0 ↔ ev m }}.
Lemma l4 : ∀ m,
2 ≤ m →
(ev (m - 2) ↔ ev m).
Proof.
induction m; intros. split; intro; constructor.
destruct m. inversion H. inversion H1. simpl in ×.
rewrite <- minus_n_O in ×. split; intro.
constructor. assumption.
inversion H0. assumption.
Qed.
Theorem find_parity_correct' : ∀ m,
dec_correct (find_parity_dec' m).
Proof.
verify;
(* simplification too aggressive ... reverting a bit *)
fold (2 <=? (st X)) in *;
try rewrite leb_iff in *;
try rewrite leb_iff_conv in *; intuition; eauto; try omega.
- (* invariant preserved (part 1) *)
rewrite l4 in H0; eauto.
- (* invariant preserved (part 2) *)
rewrite l4; eauto.
- (* invariant strong enough to imply conclusion
(-> direction) *)
apply H0. constructor.
- (* invariant strong enough to imply conclusion
(<- direction) *)
destruct (st X) as [| [| n]]. (* by H1 X can only be 0 or 1 *)
+ (* st X = 0 *)
reflexivity.
+ (* st X = 1 *)
inversion H.
+ (* st X = 2 *)
clear H0 H H3. (* omega confused otherwise *)
omega.
Qed.
Definition sqrt_dec (m:nat) : decorated :=
{{ X = m }} -»
{{ X = m ∧ 0×0 ≤ m }}
Z ::= 0
{{ X = m ∧ Z×Z ≤ m }};;
WHILE (Z+1)*(Z+1) ≤ X DO
{{ (X = m ∧ Z×Z≤m)
∧ (Z + 1)*(Z + 1) ≤ X }} -»
{{ X = m ∧ (Z+1)*(Z+1)≤m }}
Z ::= Z + 1
{{ X = m ∧ Z×Z≤m }}
END
{{ (X = m ∧ Z×Z≤m)
∧ ~((Z + 1)*(Z + 1) ≤ X) }} -»
{{ Z×Z≤m ∧ m<(Z+1)*(Z+1) }}.
Theorem sqrt_correct : ∀ m,
dec_correct (sqrt_dec m).
Proof. verify. Qed.
Squaring
Definition square_dec (m : nat) : decorated :=
{{ X = m }}
Y ::= X
{{ X = m ∧ Y = m }};;
Z ::= 0
{{ X = m ∧ Y = m ∧ Z = 0}} -»
{{ Z + X × Y = m × m }};;
WHILE ¬ (Y = 0) DO
{{ Z + X × Y = m × m ∧ Y ≠ 0 }} -»
{{ (Z + X) + X × (Y - 1) = m × m }}
Z ::= Z + X
{{ Z + X × (Y - 1) = m × m }};;
Y ::= Y - 1
{{ Z + X × Y = m × m }}
END
{{ Z + X × Y = m × m ∧ Y = 0 }} -»
{{ Z = m × m }}.
Theorem square_dec_correct : ∀ m,
dec_correct (square_dec m).
Proof.
verify.
- (* invariant preserved *)
destruct (st Y) as [| y'].
+ exfalso. auto.
+ simpl. rewrite <- minus_n_O.
assert (G : ∀ n m, n × S m = n + n × m). {
clear. intros. induction n. reflexivity. simpl.
rewrite IHn. omega. }
rewrite <- H. rewrite G. omega.
Qed.
Definition square_dec' (n : nat) : decorated :=
{{ True }}
X ::= n
{{ X = n }};;
Y ::= X
{{ X = n ∧ Y = n }};;
Z ::= 0
{{ X = n ∧ Y = n ∧ Z = 0 }} -»
{{ Z = X × (X - Y)
∧ X = n ∧ Y ≤ X }};;
WHILE ~(Y = 0) DO
{{ (Z = X × (X - Y)
∧ X = n ∧ Y ≤ X)
∧ Y ≠ 0 }}
Z ::= Z + X
{{ Z = X × (X - (Y - 1))
∧ X = n ∧ Y ≤ X }};;
Y ::= Y - 1
{{ Z = X × (X - Y)
∧ X = n ∧ Y ≤ X }}
END
{{ (Z = X × (X - Y)
∧ X = n ∧ Y ≤ X)
∧ Y = 0 }} -»
{{ Z = n × n }}.
Theorem square_dec'_correct : ∀ (n:nat),
dec_correct (square_dec' n).
Proof.
verify.
- (* invariant holds initially *)
rewrite minus_diag. omega.
- (* invariant preserved *) subst.
rewrite mult_minus_distr_l.
repeat rewrite mult_minus_distr_l. rewrite mult_1_r.
assert (G : ∀ n m p,
m ≤ n → p ≤ m → n - (m - p) = n - m + p).
intros. omega.
rewrite G. reflexivity. apply mult_le_compat_l. assumption.
destruct (st Y).
+ exfalso. auto.
+ clear. rewrite mult_succ_r. rewrite plus_comm.
apply le_plus_l.
- (* invariant + negation of guard imply
desired postcondition *)
rewrite <- minus_n_O. reflexivity.
Qed.
Definition square_simpler_dec (m : nat) : decorated :=
{{ X = m }} -»
{{ 0 = 0×m ∧ X = m }}
Y ::= 0
{{ 0 = Y×m ∧ X = m }};;
Z ::= 0
{{ Z = Y×m ∧ X = m }};;
WHILE ~(Y = X) DO
{{ (Z = Y×m ∧ X = m)
∧ Y ≠ X }} -»
{{ Z + X = (Y + 1)*m ∧ X = m }}
Z ::= Z + X
{{ Z = (Y + 1)*m ∧ X = m }};;
Y ::= Y + 1
{{ Z = Y×m ∧ X = m }}
END
{{ (Z = Y×m ∧ X = m) ∧ Y = X }} -»
{{ Z = m×m }}.
Theorem square_simpler_dec_correct : ∀ m,
dec_correct (square_simpler_dec m).
Proof.
verify.
rewrite mult_plus_distr_r. omega.
Qed.
Fixpoint pow2 n :=
match n with
| 0 ⇒ 1
| S n' ⇒ 2 × (pow2 n')
end.
Definition dpow2_down (n : nat) :=
{{ True }} -»
{{ 1 = (pow2 (0 + 1))-1 ∧ 1 = pow2 0 }}
X ::= 0
{{ 1 = (pow2 (0 + 1))-1 ∧ 1 = ap pow2 X }};;
Y ::= 1
{{ Y = (ap pow2 (X + 1))-1 ∧ 1 = ap pow2 X}};;
Z ::= 1
{{ Y = (ap pow2 (X + 1))-1 ∧ Z = ap pow2 X }};;
WHILE ~(X = n) DO
{{ (Y = (ap pow2 (X + 1))-1 ∧ Z = ap pow2 X)
∧ X ≠ n }} -»
{{ Y + 2 × Z = (ap pow2 (X + 2))-1
∧ 2 × Z = ap pow2 (X + 1) }}
Z ::= 2 × Z
{{ Y + Z = (ap pow2 (X + 2))-1
∧ Z = ap pow2 (X + 1) }};;
Y ::= Y + Z
{{ Y = (ap pow2 (X + 2))-1
∧ Z = ap pow2 (X + 1) }};;
X ::= X + 1
{{ Y = (ap pow2 (X + 1))-1
∧ Z = ap pow2 X }}
END
{{ (Y = (ap pow2 (X + 1))-1 ∧ Z = ap pow2 X)
∧ X = n }} -»
{{ Y = pow2 (n+1) - 1 }}.
Lemma pow2_plus_1 : ∀ n,
pow2 (n+1) = pow2 n + pow2 n.
Proof. induction n; simpl. reflexivity. omega. Qed.
Lemma pow2_le_1 : ∀ n, pow2 n ≥ 1.
Proof. induction n. simpl. constructor. simpl. omega. Qed.
Theorem dpow2_down_correct : ∀ n,
dec_correct (dpow2_down n).
Proof.
verify.
- (* 1 *)
rewrite pow2_plus_1. rewrite <- H0. reflexivity.
- (* 2 *)
rewrite <- plus_n_O.
rewrite <- pow2_plus_1. remember (st X) as x.
replace (pow2 (x + 1) - 1 + pow2 (x + 1))
with (pow2 (x + 1) + pow2 (x + 1) - 1) by omega.
rewrite <- pow2_plus_1.
replace (x + 1 + 1) with (x + 2) by omega.
reflexivity.
- (* 3 *)
rewrite <- plus_n_O. rewrite <- pow2_plus_1.
reflexivity.
- (* 4 *)
replace (st X + 1 + 1) with (st X + 2) by omega.
reflexivity.
Qed.
Further Exercises
Exercise: 3 stars, advanced (slow_assignment_dec)
In the slow_assignment exercise above, we saw a roundabout way of assigning a number currently stored in X to the variable Y: start Y at 0, then decrement X until it hits 0, incrementing Y at each step. Transform the informal decorated program your wrote for slow_assignment into a formal decorated program and prove its correctness. If all goes well, your correctness proof will need only intros and verify.{{ X = m ∧ 0 = 0 }}
Y ::= 0;;
{{ X = m ∧ Y = 0 }}
becomes
{{ fun st ⇒ st X = m ∧ 0 = 0 }}
Y ::= 0
{{ fun st ⇒ st X = m ∧ st Y = 0 }} ;;
Example slow_assignment_dec (m : nat) : decorated
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Theorem slow_assignment_dec_correct : ∀ m,
dec_correct (slow_assignment_dec m).
Proof. (* FILL IN HERE *) Admitted.
(* Do not modify the following line: *)
Definition manual_grade_for_check_defn_of_slow_assignment_dec : option (nat×string) := None.
☐
Exercise: 4 stars, advanced (factorial_dec)
The factorial function is defined recursively in the Coq standard library in a way that is equivalent to the following:Fixpoint fact (n : nat) : nat :=
match n with
| O ⇒ 1
| S n' ⇒ n × (fact n')
end.
Using your solutions to factorial and slow_assignment_dec as a
guide, write a formal decorated program factorial_dec that
implements the factorial function, state a theorem named
factorial_dec_correct that says factorial_dec is correct, and
prove the theorem. If all goes well, verify will leave you with
just two subgoals, each of which requires establishing some
mathematical property of fact rather than proving anything about
your program.
Hint: when transforming a loop guard into a formal assertion, make
sure to express it with bassn.
(* FILL IN HERE *)
(* Do not modify the following line: *)
Definition manual_grade_for_factorial_dec : option (nat×string) := None.
☐
Exercise: 4 stars, advanced, optional (fib_eqn)
The Fibonacci function is usually written like this:Fixpoint fib n :=
match n with
| 0 ⇒ 1
| 1 ⇒ 1
| _ ⇒ fib (pred n) + fib (pred (pred n))
end.
Fixpoint fib n :=
match n with
| 0 ⇒ 1
| S n' ⇒ match n' with
| 0 ⇒ 1
| S n'' ⇒ fib n' + fib n''
end
end.
Prove that fib satisfies the following equation:
Lemma fib_eqn : ∀ n,
n > 0 →
fib n + fib (pred n) = fib (n + 1).
Proof.
(* FILL IN HERE *) Admitted.
☐
Exercise: 4 stars, advanced, optional (fib)
The following Imp program leaves the value of fib n in the variable Y when it terminates:X ::= 1;;
Y ::= 1;;
Z ::= 1;;
WHILE ~(X = n + 1) DO
T ::= Z;;
Z ::= Z + Y;;
Y ::= T;;
X ::= X + 1
END
{{ True }} dfib {{ Y = fib n }}
Definition T : string := "T".
Definition dfib (n : nat) : decorated
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
Theorem dfib_correct : ∀ n,
dec_correct (dfib n).
(* FILL IN HERE *) Admitted.
☐
Close Scope dcom_scope.
Exercise: 5 stars, advanced, optional (improve_dcom)
The formal decorated programs defined in this section are intended to look as similar as possible to the informal ones defined earlier in the chapter. If we drop this requirement, we can eliminate almost all annotations, just requiring final postconditions and loop invariants to be provided explicitly. Do this -- i.e., define a new version of dcom with as few annotations as possible and adapt the rest of the formal development leading up to the verification_correct theorem.(* FILL IN HERE *)
☐
(* Tue Dec 3 19:32:38 EST 2019 *)