TypecheckingA Typechecker for STLC
Set Warnings "-notation-overridden,-parsing".
From Coq Require Import Bool.Bool.
From PLF Require Import Maps.
From PLF Require Import Smallstep.
From PLF Require Import Stlc.
From PLF Require MoreStlc.
Module STLCTypes.
Export STLC.
Fixpoint eqb_ty (T1 T2:ty) : bool :=
match T1,T2 with
| «Bool», «Bool» ⇒
true
| «T11→T12», «T21→T22» ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| _,_ ⇒
false
end.
... and we need to establish the usual two-way connection between
the boolean result returned by eqb_ty and the logical
proposition that its inputs are equal.
Lemma eqb_ty_refl : ∀ T1,
eqb_ty T1 T1 = true.
Proof.
intros T1. induction T1; simpl.
reflexivity.
rewrite IHT1_1. rewrite IHT1_2. reflexivity. Qed.
intros T1. induction T1; simpl.
reflexivity.
rewrite IHT1_1. rewrite IHT1_2. reflexivity. Qed.
Lemma eqb_ty__eq : ∀ T1 T2,
eqb_ty T1 T2 = true → T1 = T2.
Proof with auto.
intros T1. induction T1; intros T2 Hbeq; destruct T2; inversion Hbeq.
- (* T1=Bool *)
reflexivity.
- (* T1 = T1_1->T1_2 *)
rewrite andb_true_iff in H0. inversion H0 as [Hbeq1 Hbeq2].
apply IHT1_1 in Hbeq1. apply IHT1_2 in Hbeq2. subst... Qed.
End STLCTypes.intros T1. induction T1; intros T2 Hbeq; destruct T2; inversion Hbeq.
- (* T1=Bool *)
reflexivity.
- (* T1 = T1_1->T1_2 *)
rewrite andb_true_iff in H0. inversion H0 as [Hbeq1 Hbeq2].
apply IHT1_1 in Hbeq1. apply IHT1_2 in Hbeq2. subst... Qed.
The Typechecker
Module FirstTry.
Import STLCTypes.
Fixpoint type_check (Gamma : context) (t : tm) : option ty :=
match t with
| tm_var x ⇒
Gamma x
| «\x:T11, t12» ⇒
match type_check (update Gamma x T11) t12 with
| Some T12 ⇒ Some «T11→T12»
| _ ⇒ None
end
| «t1 t2» ⇒
match type_check Gamma t1, type_check Gamma t2 with
| Some «T11→T12», Some T2 ⇒
if eqb_ty T11 T2 then Some T12 else None
| _,_ ⇒ None
end
| «true» ⇒
Some «Bool»
| «false» ⇒
Some «Bool»
| «if guard then t else f» ⇒
match type_check Gamma guard with
| Some «Bool» ⇒
match type_check Gamma t, type_check Gamma f with
| Some T1, Some T2 ⇒
if eqb_ty T1 T2 then Some T1 else None
| _,_ ⇒ None
end
| _ ⇒ None
end
end.
End FirstTry.
Digression: Improving the Notation
Notation " x <- e1 ;; e2" := (match e1 with
| Some x ⇒ e2
| None ⇒ None
end)
(right associativity, at level 60).
Second, we define return and fail as synonyms for Some and
None:
Notation " 'return' e "
:= (Some e) (at level 60).
Notation " 'fail' "
:= None.
Module STLCChecker.
Import STLCTypes.
Now we can write the same type-checking function in a more
imperative-looking style using these notations.
Fixpoint type_check (Gamma : context) (t : tm) : option ty :=
match t with
| tm_var x ⇒
match Gamma x with
| Some T ⇒ return T
| None ⇒ fail
end
| «\x:T11, t12» ⇒
T12 <- type_check (update Gamma x T11) t12 ;;
return «T11→T12»
| «t1 t2» ⇒
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1 with
| «T11→T12» ⇒
if eqb_ty T11 T2 then return T12 else fail
| _ ⇒ fail
end
| «true» ⇒
return Bool
| «false» ⇒
return Bool
| «if guard then t1 else t2» ⇒
Tguard <- type_check Gamma guard ;;
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match Tguard with
| Bool ⇒
if eqb_ty T1 T2 then return T1 else fail
| _ ⇒ fail
end
end.
Properties
Theorem type_checking_sound : ∀ Gamma t T,
type_check Gamma t = Some T → has_type Gamma t T.
Proof with eauto.
intros Gamma t. generalize dependent Gamma.
induction t; intros Gamma T Htc; inversion Htc.
- (* var *) rename s into x. destruct (Gamma x) eqn:H.
rename t into T'. inversion H0. subst. eauto. solve_by_invert.
- (* app *)
remember (type_check Gamma t1) as TO1.
destruct TO1 as [T1|]; try solve_by_invert;
destruct T1 as [|T11 T12]; try solve_by_invert;
remember (type_check Gamma t2) as TO2;
destruct TO2 as [T2|]; try solve_by_invert.
destruct (eqb_ty T11 T2) eqn: Heqb.
apply eqb_ty__eq in Heqb.
inversion H0; subst...
inversion H0.
- (* abs *)
rename s into x. rename t into T1.
remember (update Gamma x T1) as G'.
remember (type_check G' t0) as TO2.
destruct TO2; try solve_by_invert.
inversion H0; subst...
- (* tru *) eauto.
- (* fls *) eauto.
- (* test *)
remember (type_check Gamma t1) as TOc.
remember (type_check Gamma t2) as TO1.
remember (type_check Gamma t3) as TO2.
destruct TOc as [Tc|]; try solve_by_invert.
destruct Tc; try solve_by_invert;
destruct TO1 as [T1|]; try solve_by_invert;
destruct TO2 as [T2|]; try solve_by_invert.
destruct (eqb_ty T1 T2) eqn:Heqb;
try solve_by_invert.
apply eqb_ty__eq in Heqb.
inversion H0. subst. subst...
Qed.
intros Gamma t. generalize dependent Gamma.
induction t; intros Gamma T Htc; inversion Htc.
- (* var *) rename s into x. destruct (Gamma x) eqn:H.
rename t into T'. inversion H0. subst. eauto. solve_by_invert.
- (* app *)
remember (type_check Gamma t1) as TO1.
destruct TO1 as [T1|]; try solve_by_invert;
destruct T1 as [|T11 T12]; try solve_by_invert;
remember (type_check Gamma t2) as TO2;
destruct TO2 as [T2|]; try solve_by_invert.
destruct (eqb_ty T11 T2) eqn: Heqb.
apply eqb_ty__eq in Heqb.
inversion H0; subst...
inversion H0.
- (* abs *)
rename s into x. rename t into T1.
remember (update Gamma x T1) as G'.
remember (type_check G' t0) as TO2.
destruct TO2; try solve_by_invert.
inversion H0; subst...
- (* tru *) eauto.
- (* fls *) eauto.
- (* test *)
remember (type_check Gamma t1) as TOc.
remember (type_check Gamma t2) as TO1.
remember (type_check Gamma t3) as TO2.
destruct TOc as [Tc|]; try solve_by_invert.
destruct Tc; try solve_by_invert;
destruct TO1 as [T1|]; try solve_by_invert;
destruct TO2 as [T2|]; try solve_by_invert.
destruct (eqb_ty T1 T2) eqn:Heqb;
try solve_by_invert.
apply eqb_ty__eq in Heqb.
inversion H0. subst. subst...
Qed.
Theorem type_checking_complete : ∀ Gamma t T,
has_type Gamma t T → type_check Gamma t = Some T.
Proof with auto.
intros Gamma t T Hty.
induction Hty; simpl.
- (* T_Var *) destruct (Gamma x0) eqn:H0; assumption.
- (* T_Abs *) rewrite IHHty...
- (* T_App *)
rewrite IHHty1. rewrite IHHty2.
rewrite (eqb_ty_refl T11)...
- (* T_True *) eauto.
- (* T_False *) eauto.
- (* T_If *) rewrite IHHty1. rewrite IHHty2.
rewrite IHHty3. rewrite (eqb_ty_refl T)...
Qed.
intros Gamma t T Hty.
induction Hty; simpl.
- (* T_Var *) destruct (Gamma x0) eqn:H0; assumption.
- (* T_Abs *) rewrite IHHty...
- (* T_App *)
rewrite IHHty1. rewrite IHHty2.
rewrite (eqb_ty_refl T11)...
- (* T_True *) eauto.
- (* T_False *) eauto.
- (* T_If *) rewrite IHHty1. rewrite IHHty2.
rewrite IHHty3. rewrite (eqb_ty_refl T)...
Qed.
End STLCChecker.
Exercises
Exercise: 5 stars, standard (typechecker_extensions)
In this exercise we'll extend the typechecker to deal with the extended features discussed in chapter MoreStlc. Your job is to fill in the omitted cases in the following.Module TypecheckerExtensions.
(* Do not modify the following line: *)
Definition manual_grade_for_type_checking_sound : option (nat×string) := None.
(* Do not modify the following line: *)
Definition manual_grade_for_type_checking_complete : option (nat×string) := None.
Import MoreStlc.
Import STLCExtended.
Fixpoint eqb_ty (T1 T2 : ty) : bool :=
match T1,T2 with
| «Nat», «Nat» ⇒
true
| «Unit», «Unit» ⇒
true
| «T11 → T12», «T21 → T22» ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| «Prod T11 T12», «Prod T21 T22» ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| «T11 + T12», «T21 + T22» ⇒
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| «List T11», «List T21» ⇒
eqb_ty T11 T21
| _,_ ⇒
false
end.
Lemma eqb_ty_refl : ∀ T1,
eqb_ty T1 T1 = true.
Proof.
intros T1.
induction T1; simpl;
try reflexivity;
try (rewrite IHT1_1; rewrite IHT1_2; reflexivity);
try (rewrite IHT1; reflexivity). Qed.
Lemma eqb_ty__eq : ∀ T1 T2,
eqb_ty T1 T2 = true → T1 = T2.
Proof.
intros T1.
induction T1; intros T2 Hbeq; destruct T2; inversion Hbeq;
try reflexivity;
try (rewrite andb_true_iff in H0; inversion H0 as [Hbeq1 Hbeq2];
apply IHT1_1 in Hbeq1; apply IHT1_2 in Hbeq2; subst; auto);
try (apply IHT1 in Hbeq; subst; auto).
Qed.
Fixpoint type_check (Gamma : context) (t : tm) : option ty :=
match t with
| tm_var x ⇒
match Gamma x with
| Some T ⇒ return T
| None ⇒ fail
end
| tm_abs x1 T1 t2 ⇒
T2 <- type_check (update Gamma x1 T1) t2 ;;
return «T1 → T2»
| tm_app t1 t2 ⇒
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1 with
| «T11 → T12» ⇒
if eqb_ty T11 T2 then return T12 else fail
| _ ⇒ fail
end
| tm_const _ ⇒
return «Nat»
| tm_scc t1 ⇒
T1 <- type_check Gamma t1 ;;
match T1 with
| «Nat» ⇒ return «Nat»
| _ ⇒ fail
end
| tm_prd t1 ⇒
T1 <- type_check Gamma t1 ;;
match T1 with
| «Nat» ⇒ return «Nat»
| _ ⇒ fail
end
| tm_mlt t1 t2 ⇒
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1, T2 with
| «Nat», «Nat» ⇒ return «Nat»
| _,_ ⇒ fail
end
| tm_test0 guard t f ⇒
Tguard <- type_check Gamma guard ;;
T1 <- type_check Gamma t ;;
T2 <- type_check Gamma f ;;
match Tguard with
| «Nat» ⇒ if eqb_ty T1 T2 then return T1 else fail
| _ ⇒ fail
end
(* Complete the following cases. *)
(* sums *)
(* FILL IN HERE *)
(* lists (the tlcase is given for free) *)
(* FILL IN HERE *)
| tm_lcase t0 t1 x21 x22 t2 ⇒
match type_check Gamma t0 with
| Some «List T» ⇒
match type_check Gamma t1,
type_check (update (update Gamma x22 «List T») x21 T) t2 with
| Some T1', Some T2' ⇒
if eqb_ty T1' T2' then Some T1' else None
| _,_ ⇒ None
end
| _ ⇒ None
end
(* unit *)
(* FILL IN HERE *)
(* pairs *)
(* FILL IN HERE *)
(* let *)
(* FILL IN HERE *)
(* fix *)
(* FILL IN HERE *)
| _ ⇒ None (* ... and delete this line when you complete the exercise. *)
end.
Just for fun, we'll do the soundness proof with just a bit more
automation than above, using these "mega-tactics":
Ltac invert_typecheck Gamma t T :=
remember (type_check Gamma t) as TO;
destruct TO as [T|];
try solve_by_invert; try (inversion H0; eauto); try (subst; eauto).
Ltac analyze T T1 T2 :=
destruct T as [T1 T2| |T1 T2|T1| |T1 T2]; try solve_by_invert.
Ltac fully_invert_typecheck Gamma t T T1 T2 :=
let TX := fresh T in
remember (type_check Gamma t) as TO;
destruct TO as [TX|]; try solve_by_invert;
destruct TX as [T1 T2| |T1 T2|T1| |T1 T2];
try solve_by_invert; try (inversion H0; eauto); try (subst; eauto).
Ltac case_equality S T :=
destruct (eqb_ty S T) eqn: Heqb;
inversion H0; apply eqb_ty__eq in Heqb; subst; subst; eauto.
Theorem type_checking_sound : ∀ Gamma t T,
type_check Gamma t = Some T →
has_type Gamma t T.
Proof with eauto.
intros Gamma t. generalize dependent Gamma.
induction t; intros Gamma T Htc; inversion Htc.
- (* var *) rename s into x. destruct (Gamma x) eqn:H.
rename t into T'. inversion H0. subst. eauto. solve_by_invert.
- (* app *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
analyze T1 T11 T12.
case_equality T11 T2.
- (* abs *)
rename s into x. rename t into T1.
remember (update Gamma x T1) as Gamma'.
invert_typecheck Gamma' t0 T0.
- (* const *) eauto.
- (* scc *)
rename t into t1.
fully_invert_typecheck Gamma t1 T1 T11 T12.
- (* prd *)
rename t into t1.
fully_invert_typecheck Gamma t1 T1 T11 T12.
- (* mlt *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
analyze T1 T11 T12; analyze T2 T21 T22.
inversion H0. subst. eauto.
- (* test0 *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
invert_typecheck Gamma t3 T3.
destruct T1; try solve_by_invert.
case_equality T2 T3.
(* FILL IN HERE *)
- (* tlcase *)
rename s into x31. rename s0 into x32.
fully_invert_typecheck Gamma t1 T1 T11 T12.
invert_typecheck Gamma t2 T2.
remember (update (update Gamma x32 «List T11») x31 T11) as Gamma'2.
invert_typecheck Gamma'2 t3 T3.
case_equality T2 T3.
(* FILL IN HERE *)
Qed.
Theorem type_checking_complete : ∀ Gamma t T,
has_type Gamma t T →
type_check Gamma t = Some T.
Proof.
intros Gamma t T Hty.
induction Hty; simpl;
try (rewrite IHHty);
try (rewrite IHHty1);
try (rewrite IHHty2);
try (rewrite IHHty3);
try (rewrite (eqb_ty_refl T));
try (rewrite (eqb_ty_refl T1));
try (rewrite (eqb_ty_refl T2));
eauto.
- destruct (Gamma x0); try solve_by_invert. eauto.
Admitted. (* ... and delete this line *)
(*
Qed. (* ... and uncomment this one *)
*)
End TypecheckerExtensions.
☐
Exercise: 5 stars, standard, optional (stlc_step_function)
Above, we showed how to write a typechecking function and prove it sound and complete for the typing relation. Do the same for the operational semantics -- i.e., write a function stepf of type tm → option tm and prove that it is sound and complete with respect to step from chapter MoreStlc.Module StepFunction.
Import MoreStlc.
Import STLCExtended.
(* Operational semantics as a Coq function. *)
Fixpoint stepf (t : tm) : option tm
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
(* Soundness of stepf. *)
Theorem sound_stepf : ∀ t t',
stepf t = Some t' → t --> t'.
Proof. (* FILL IN HERE *) Admitted.
(* Completeness of stepf. *)
Theorem complete_stepf : ∀ t t',
t --> t' → stepf t = Some t'.
Proof. (* FILL IN HERE *) Admitted.
End StepFunction.
☐
Exercise: 5 stars, standard, optional (stlc_impl)
Using the Imp parser described in the ImpParser chapter of Logical Foundations as a guide, build a parser for extended STLC programs. Combine it with the typechecking and stepping functions from the above exercises to yield a complete typechecker and interpreter for this language.(* Tue Dec 3 19:32:40 EST 2019 *)