RecordSubSubtyping with Records
Set Warnings "-notation-overridden,-parsing,-deprecated-hint-without-locality".
From Coq Require Import Strings.String.
From PLF Require Import Maps.
From PLF Require Import Smallstep.
Module RecordSub.
From Coq Require Import Strings.String.
From PLF Require Import Maps.
From PLF Require Import Smallstep.
Module RecordSub.
Inductive ty : Type :=
(* proper types *)
| Ty_Top : ty
| Ty_Base : string → ty
| Ty_Arrow : ty → ty → ty
(* record types *)
| Ty_RNil : ty
| Ty_RCons : string → ty → ty → ty.
Inductive tm : Type :=
(* proper terms *)
| tm_var : string → tm
| tm_app : tm → tm → tm
| tm_abs : string → ty → tm → tm
| tm_rproj : tm → string → tm
(* record terms *)
| tm_rnil : tm
| tm_rcons : string → tm → tm → tm.
Declare Custom Entry stlc.
Declare Custom Entry stlc_ty.
Notation "<{ e }>" := e (e custom stlc at level 99).
Notation "<{{ e }}>" := e (e custom stlc_ty at level 99).
Notation "( x )" := x (in custom stlc, x at level 99).
Notation "( x )" := x (in custom stlc_ty, x at level 99).
Notation "x" := x (in custom stlc at level 0, x constr at level 0).
Notation "x" := x (in custom stlc_ty at level 0, x constr at level 0).
Notation "S -> T" := (Ty_Arrow S T) (in custom stlc_ty at level 50, right associativity).
Notation "x y" := (tm_app x y) (in custom stlc at level 1, left associativity).
Notation "\ x : t , y" :=
(tm_abs x t y) (in custom stlc at level 90, x at level 99,
t custom stlc_ty at level 99,
y custom stlc at level 99,
left associativity).
Coercion tm_var : string >-> tm.
Notation "{ x }" := x (in custom stlc at level 1, x constr).
Notation "'Base' x" := (Ty_Base x) (in custom stlc_ty at level 0).
Notation " l ':' t1 '::' t2" := (Ty_RCons l t1 t2) (in custom stlc_ty at level 3, right associativity).
Notation " l := e1 '::' e2" := (tm_rcons l e1 e2) (in custom stlc at level 3, right associativity).
Notation "'nil'" := (Ty_RNil) (in custom stlc_ty).
Notation "'nil'" := (tm_rnil) (in custom stlc).
Notation "o --> l" := (tm_rproj o l) (in custom stlc at level 0).
Notation "'Top'" := (Ty_Top) (in custom stlc_ty at level 0).
(* proper types *)
| Ty_Top : ty
| Ty_Base : string → ty
| Ty_Arrow : ty → ty → ty
(* record types *)
| Ty_RNil : ty
| Ty_RCons : string → ty → ty → ty.
Inductive tm : Type :=
(* proper terms *)
| tm_var : string → tm
| tm_app : tm → tm → tm
| tm_abs : string → ty → tm → tm
| tm_rproj : tm → string → tm
(* record terms *)
| tm_rnil : tm
| tm_rcons : string → tm → tm → tm.
Declare Custom Entry stlc.
Declare Custom Entry stlc_ty.
Notation "<{ e }>" := e (e custom stlc at level 99).
Notation "<{{ e }}>" := e (e custom stlc_ty at level 99).
Notation "( x )" := x (in custom stlc, x at level 99).
Notation "( x )" := x (in custom stlc_ty, x at level 99).
Notation "x" := x (in custom stlc at level 0, x constr at level 0).
Notation "x" := x (in custom stlc_ty at level 0, x constr at level 0).
Notation "S -> T" := (Ty_Arrow S T) (in custom stlc_ty at level 50, right associativity).
Notation "x y" := (tm_app x y) (in custom stlc at level 1, left associativity).
Notation "\ x : t , y" :=
(tm_abs x t y) (in custom stlc at level 90, x at level 99,
t custom stlc_ty at level 99,
y custom stlc at level 99,
left associativity).
Coercion tm_var : string >-> tm.
Notation "{ x }" := x (in custom stlc at level 1, x constr).
Notation "'Base' x" := (Ty_Base x) (in custom stlc_ty at level 0).
Notation " l ':' t1 '::' t2" := (Ty_RCons l t1 t2) (in custom stlc_ty at level 3, right associativity).
Notation " l := e1 '::' e2" := (tm_rcons l e1 e2) (in custom stlc at level 3, right associativity).
Notation "'nil'" := (Ty_RNil) (in custom stlc_ty).
Notation "'nil'" := (tm_rnil) (in custom stlc).
Notation "o --> l" := (tm_rproj o l) (in custom stlc at level 0).
Notation "'Top'" := (Ty_Top) (in custom stlc_ty at level 0).
Well-Formedness
Inductive record_ty : ty → Prop :=
| RTnil :
record_ty <{{ nil }}>
| RTcons : ∀ i T1 T2,
record_ty <{{ i : T1 :: T2 }}>.
Inductive record_tm : tm → Prop :=
| rtnil :
record_tm <{ nil }>
| rtcons : ∀ i t1 t2,
record_tm <{ i := t1 :: t2 }>.
Inductive well_formed_ty : ty → Prop :=
| wfTop :
well_formed_ty <{{ Top }}>
| wfBase : ∀ (i : string),
well_formed_ty <{{ Base i }}>
| wfArrow : ∀ T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
well_formed_ty <{{ T1 → T2 }}>
| wfRNil :
well_formed_ty <{{ nil }}>
| wfRCons : ∀ i T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
record_ty T2 →
well_formed_ty <{{ i : T1 :: T2 }}>.
Hint Constructors record_ty record_tm well_formed_ty : core.
| RTnil :
record_ty <{{ nil }}>
| RTcons : ∀ i T1 T2,
record_ty <{{ i : T1 :: T2 }}>.
Inductive record_tm : tm → Prop :=
| rtnil :
record_tm <{ nil }>
| rtcons : ∀ i t1 t2,
record_tm <{ i := t1 :: t2 }>.
Inductive well_formed_ty : ty → Prop :=
| wfTop :
well_formed_ty <{{ Top }}>
| wfBase : ∀ (i : string),
well_formed_ty <{{ Base i }}>
| wfArrow : ∀ T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
well_formed_ty <{{ T1 → T2 }}>
| wfRNil :
well_formed_ty <{{ nil }}>
| wfRCons : ∀ i T1 T2,
well_formed_ty T1 →
well_formed_ty T2 →
record_ty T2 →
well_formed_ty <{{ i : T1 :: T2 }}>.
Hint Constructors record_ty record_tm well_formed_ty : core.
Reserved Notation "'[' x ':=' s ']' t" (in custom stlc at level 20, x constr).
Fixpoint subst (x : string) (s : tm) (t : tm) : tm :=
match t with
| tm_var y ⇒
if String.eqb x y then s else t
| <{\y:T, t1}> ⇒
if String.eqb x y then t else <{\y:T, [x:=s] t1}>
| <{t1 t2}> ⇒
<{([x:=s] t1) ([x:=s] t2)}>
| <{ t1 --> i }> ⇒
<{ ( [x := s] t1) --> i }>
| <{ nil }> ⇒
<{ nil }>
| <{ i := t1 :: tr }> ⇒
<{ i := [x := s] t1 :: ( [x := s] tr) }>
end
where "'[' x ':=' s ']' t" := (subst x s t) (in custom stlc).
Fixpoint subst (x : string) (s : tm) (t : tm) : tm :=
match t with
| tm_var y ⇒
if String.eqb x y then s else t
| <{\y:T, t1}> ⇒
if String.eqb x y then t else <{\y:T, [x:=s] t1}>
| <{t1 t2}> ⇒
<{([x:=s] t1) ([x:=s] t2)}>
| <{ t1 --> i }> ⇒
<{ ( [x := s] t1) --> i }>
| <{ nil }> ⇒
<{ nil }>
| <{ i := t1 :: tr }> ⇒
<{ i := [x := s] t1 :: ( [x := s] tr) }>
end
where "'[' x ':=' s ']' t" := (subst x s t) (in custom stlc).
Inductive value : tm → Prop :=
| v_abs : ∀ x T2 t1,
value <{ \ x : T2, t1 }>
| v_rnil : value <{ nil }>
| v_rcons : ∀ i v1 vr,
value v1 →
value vr →
value <{ i := v1 :: vr }>.
Hint Constructors value : core.
Fixpoint Tlookup (i:string) (Tr:ty) : option ty :=
match Tr with
| <{{ i' : T :: Tr' }}> ⇒
if String.eqb i i' then Some T else Tlookup i Tr'
| _ ⇒ None
end.
Fixpoint tlookup (i:string) (tr:tm) : option tm :=
match tr with
| <{ i' := t :: tr' }> ⇒
if String.eqb i i' then Some t else tlookup i tr'
| _ ⇒ None
end.
Reserved Notation "t '-->' t'" (at level 40).
Inductive step : tm → tm → Prop :=
| ST_AppAbs : ∀ x T2 t1 v2,
value v2 →
<{(\x:T2, t1) v2}> --> <{ [x:=v2]t1 }>
| ST_App1 : ∀ t1 t1' t2,
t1 --> t1' →
<{t1 t2}> --> <{t1' t2}>
| ST_App2 : ∀ v1 t2 t2',
value v1 →
t2 --> t2' →
<{v1 t2}> --> <{v1 t2'}>
| ST_Proj1 : ∀ t1 t1' i,
t1 --> t1' →
<{ t1 --> i }> --> <{ t1' --> i }>
| ST_ProjRcd : ∀ tr i vi,
value tr →
tlookup i tr = Some vi →
<{ tr --> i }> --> vi
| ST_Rcd_Head : ∀ i t1 t1' tr2,
t1 --> t1' →
<{ i := t1 :: tr2 }> --> <{ i := t1' :: tr2 }>
| ST_Rcd_Tail : ∀ i v1 tr2 tr2',
value v1 →
tr2 --> tr2' →
<{ i := v1 :: tr2 }> --> <{ i := v1 :: tr2' }>
where "t '-->' t'" := (step t t').
Hint Constructors step : core.
| v_abs : ∀ x T2 t1,
value <{ \ x : T2, t1 }>
| v_rnil : value <{ nil }>
| v_rcons : ∀ i v1 vr,
value v1 →
value vr →
value <{ i := v1 :: vr }>.
Hint Constructors value : core.
Fixpoint Tlookup (i:string) (Tr:ty) : option ty :=
match Tr with
| <{{ i' : T :: Tr' }}> ⇒
if String.eqb i i' then Some T else Tlookup i Tr'
| _ ⇒ None
end.
Fixpoint tlookup (i:string) (tr:tm) : option tm :=
match tr with
| <{ i' := t :: tr' }> ⇒
if String.eqb i i' then Some t else tlookup i tr'
| _ ⇒ None
end.
Reserved Notation "t '-->' t'" (at level 40).
Inductive step : tm → tm → Prop :=
| ST_AppAbs : ∀ x T2 t1 v2,
value v2 →
<{(\x:T2, t1) v2}> --> <{ [x:=v2]t1 }>
| ST_App1 : ∀ t1 t1' t2,
t1 --> t1' →
<{t1 t2}> --> <{t1' t2}>
| ST_App2 : ∀ v1 t2 t2',
value v1 →
t2 --> t2' →
<{v1 t2}> --> <{v1 t2'}>
| ST_Proj1 : ∀ t1 t1' i,
t1 --> t1' →
<{ t1 --> i }> --> <{ t1' --> i }>
| ST_ProjRcd : ∀ tr i vi,
value tr →
tlookup i tr = Some vi →
<{ tr --> i }> --> vi
| ST_Rcd_Head : ∀ i t1 t1' tr2,
t1 --> t1' →
<{ i := t1 :: tr2 }> --> <{ i := t1' :: tr2 }>
| ST_Rcd_Tail : ∀ i v1 tr2 tr2',
value v1 →
tr2 --> tr2' →
<{ i := v1 :: tr2 }> --> <{ i := v1 :: tr2' }>
where "t '-->' t'" := (step t t').
Hint Constructors step : core.
Subtyping
Definition
Reserved Notation "T '<:' U" (at level 40).
Inductive subtype : ty → ty → Prop :=
(* Subtyping between proper types *)
| S_Refl : ∀ T,
well_formed_ty T →
T <: T
| S_Trans : ∀ S U T,
S <: U →
U <: T →
S <: T
| S_Top : ∀ S,
well_formed_ty S →
S <: <{{ Top }}>
| S_Arrow : ∀ S1 S2 T1 T2,
T1 <: S1 →
S2 <: T2 →
<{{ S1 → S2 }}> <: <{{ T1 → T2 }}>
(* Subtyping between record types *)
| S_RcdWidth : ∀ i T1 T2,
well_formed_ty <{{ i : T1 :: T2 }}> →
<{{ i : T1 :: T2 }}> <: <{{ nil }}>
| S_RcdDepth : ∀ i S1 T1 Sr2 Tr2,
S1 <: T1 →
Sr2 <: Tr2 →
record_ty Sr2 →
record_ty Tr2 →
<{{ i : S1 :: Sr2 }}> <: <{{ i : T1 :: Tr2 }}>
| S_RcdPerm : ∀ i1 i2 T1 T2 Tr3,
well_formed_ty <{{ i1 : T1 :: i2 : T2 :: Tr3 }}> →
i1 ≠ i2 →
<{{ i1 : T1 :: i2 : T2 :: Tr3 }}>
<: <{{ i2 : T2 :: i1 : T1 :: Tr3 }}>
where "T '<:' U" := (subtype T U).
Hint Constructors subtype : core.
Inductive subtype : ty → ty → Prop :=
(* Subtyping between proper types *)
| S_Refl : ∀ T,
well_formed_ty T →
T <: T
| S_Trans : ∀ S U T,
S <: U →
U <: T →
S <: T
| S_Top : ∀ S,
well_formed_ty S →
S <: <{{ Top }}>
| S_Arrow : ∀ S1 S2 T1 T2,
T1 <: S1 →
S2 <: T2 →
<{{ S1 → S2 }}> <: <{{ T1 → T2 }}>
(* Subtyping between record types *)
| S_RcdWidth : ∀ i T1 T2,
well_formed_ty <{{ i : T1 :: T2 }}> →
<{{ i : T1 :: T2 }}> <: <{{ nil }}>
| S_RcdDepth : ∀ i S1 T1 Sr2 Tr2,
S1 <: T1 →
Sr2 <: Tr2 →
record_ty Sr2 →
record_ty Tr2 →
<{{ i : S1 :: Sr2 }}> <: <{{ i : T1 :: Tr2 }}>
| S_RcdPerm : ∀ i1 i2 T1 T2 Tr3,
well_formed_ty <{{ i1 : T1 :: i2 : T2 :: Tr3 }}> →
i1 ≠ i2 →
<{{ i1 : T1 :: i2 : T2 :: Tr3 }}>
<: <{{ i2 : T2 :: i1 : T1 :: Tr3 }}>
where "T '<:' U" := (subtype T U).
Hint Constructors subtype : core.
Module Examples.
Open Scope string_scope.
Notation x := "x".
Notation y := "y".
Notation z := "z".
Notation j := "j".
Notation k := "k".
Notation i := "i".
Notation A := <{{ Base "A" }}>.
Notation B := <{{ Base "B" }}>.
Notation C := <{{ Base "C" }}>.
Definition TRcd_j :=
<{{ j : (B → B) :: nil }}>. (* {j:B->B} *)
Definition TRcd_kj :=
<{{ k : (A → A) :: TRcd_j }}>. (* {k:C->C,j:B->B} *)
Example subtyping_example_0 :
<{{ C → TRcd_kj }}> <: <{{ C → nil }}>.
Proof.
apply S_Arrow.
apply S_Refl. auto.
unfold TRcd_kj, TRcd_j. apply S_RcdWidth; auto.
Qed.
Open Scope string_scope.
Notation x := "x".
Notation y := "y".
Notation z := "z".
Notation j := "j".
Notation k := "k".
Notation i := "i".
Notation A := <{{ Base "A" }}>.
Notation B := <{{ Base "B" }}>.
Notation C := <{{ Base "C" }}>.
Definition TRcd_j :=
<{{ j : (B → B) :: nil }}>. (* {j:B->B} *)
Definition TRcd_kj :=
<{{ k : (A → A) :: TRcd_j }}>. (* {k:C->C,j:B->B} *)
Example subtyping_example_0 :
<{{ C → TRcd_kj }}> <: <{{ C → nil }}>.
Proof.
apply S_Arrow.
apply S_Refl. auto.
unfold TRcd_kj, TRcd_j. apply S_RcdWidth; auto.
Qed.
The following facts are mostly easy to prove in Coq. To get full
benefit, make sure you also understand how to prove them on
paper!
Exercise: 2 stars, standard (subtyping_example_1)
Example subtyping_example_1 :
TRcd_kj <: TRcd_j.
(* {k:A->A,j:B->B} <: {j:B->B} *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
☐
TRcd_kj <: TRcd_j.
(* {k:A->A,j:B->B} <: {j:B->B} *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
☐
Example subtyping_example_2 :
<{{ Top → TRcd_kj }}> <:
<{{ (C → C) → TRcd_j }}>.
Proof with eauto.
(* FILL IN HERE *) Admitted.
☐
<{{ Top → TRcd_kj }}> <:
<{{ (C → C) → TRcd_j }}>.
Proof with eauto.
(* FILL IN HERE *) Admitted.
☐
Example subtyping_example_3 :
<{{ nil → (j : A :: nil) }}> <:
<{{ (k : B :: nil) → nil }}>.
(* {}->{j:A} <: {k:B}->{} *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
☐
<{{ nil → (j : A :: nil) }}> <:
<{{ (k : B :: nil) → nil }}>.
(* {}->{j:A} <: {k:B}->{} *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
☐
Example subtyping_example_4 :
<{{ x : A :: y : B :: z : C :: nil }}> <:
<{{ z : C :: y : B :: x : A :: nil }}>.
Proof with eauto.
(* FILL IN HERE *) Admitted.
☐
<{{ x : A :: y : B :: z : C :: nil }}> <:
<{{ z : C :: y : B :: x : A :: nil }}>.
Proof with eauto.
(* FILL IN HERE *) Admitted.
☐
Properties of Subtyping
Well-Formedness
Lemma subtype__wf : ∀ S T,
subtype S T →
well_formed_ty T ∧ well_formed_ty S.
Lemma wf_rcd_lookup : ∀ i T Ti,
well_formed_ty T →
Tlookup i T = Some Ti →
well_formed_ty Ti.
subtype S T →
well_formed_ty T ∧ well_formed_ty S.
Proof with eauto.
intros S T Hsub.
induction Hsub;
intros; try (destruct IHHsub1; destruct IHHsub2)...
- (* S_RcdPerm *)
split... inversion H. subst. inversion H5... Qed.
intros S T Hsub.
induction Hsub;
intros; try (destruct IHHsub1; destruct IHHsub2)...
- (* S_RcdPerm *)
split... inversion H. subst. inversion H5... Qed.
Lemma wf_rcd_lookup : ∀ i T Ti,
well_formed_ty T →
Tlookup i T = Some Ti →
well_formed_ty Ti.
Proof with eauto.
intros i T.
induction T; intros; try solve_by_invert.
- (* RCons *)
inversion H. subst. unfold Tlookup in H0.
destruct (String.eqb i s)... inversion H0; subst... Qed.
intros i T.
induction T; intros; try solve_by_invert.
- (* RCons *)
inversion H. subst. unfold Tlookup in H0.
destruct (String.eqb i s)... inversion H0; subst... Qed.
Field Lookup
Lemma rcd_types_match : ∀ S T i Ti,
subtype S T →
Tlookup i T = Some Ti →
∃ Si, Tlookup i S = Some Si ∧ subtype Si Ti.
subtype S T →
Tlookup i T = Some Ti →
∃ Si, Tlookup i S = Some Si ∧ subtype Si Ti.
Proof with (eauto using wf_rcd_lookup).
intros S T i Ti Hsub Hget. generalize dependent Ti.
induction Hsub; intros Ti Hget;
try solve_by_invert.
- (* S_Refl *)
∃ Ti...
- (* S_Trans *)
destruct (IHHsub2 Ti) as [Ui Hui]... destruct Hui.
destruct (IHHsub1 Ui) as [Si Hsi]... destruct Hsi.
∃ Si...
- (* S_RcdDepth *)
rename i0 into k.
unfold Tlookup. unfold Tlookup in Hget.
destruct (String.eqb i k)...
+ (* i = k -- we're looking up the first field *)
inversion Hget. subst. ∃ S1...
- (* S_RcdPerm *)
∃ Ti. split.
+ (* lookup *)
unfold Tlookup. unfold Tlookup in Hget.
destruct (eqb_spec i i1)...
× (* i = i1 -- we're looking up the first field *)
destruct (eqb_spec i i2)...
(* i = i2 -- contradictory *)
destruct H0.
subst...
+ (* subtype *)
inversion H. subst. inversion H5. subst... Qed.
intros S T i Ti Hsub Hget. generalize dependent Ti.
induction Hsub; intros Ti Hget;
try solve_by_invert.
- (* S_Refl *)
∃ Ti...
- (* S_Trans *)
destruct (IHHsub2 Ti) as [Ui Hui]... destruct Hui.
destruct (IHHsub1 Ui) as [Si Hsi]... destruct Hsi.
∃ Si...
- (* S_RcdDepth *)
rename i0 into k.
unfold Tlookup. unfold Tlookup in Hget.
destruct (String.eqb i k)...
+ (* i = k -- we're looking up the first field *)
inversion Hget. subst. ∃ S1...
- (* S_RcdPerm *)
∃ Ti. split.
+ (* lookup *)
unfold Tlookup. unfold Tlookup in Hget.
destruct (eqb_spec i i1)...
× (* i = i1 -- we're looking up the first field *)
destruct (eqb_spec i i2)...
(* i = i2 -- contradictory *)
destruct H0.
subst...
+ (* subtype *)
inversion H. subst. inversion H5. subst... Qed.
Exercise: 3 stars, standard (rcd_types_match_informal)
Write a careful informal proof of the rcd_types_match lemma.
(* FILL IN HERE *)
(* Do not modify the following line: *)
Definition manual_grade_for_rcd_types_match_informal : option (nat×string) := None.
☐
(* Do not modify the following line: *)
Definition manual_grade_for_rcd_types_match_informal : option (nat×string) := None.
☐
Lemma sub_inversion_arrow : ∀ U V1 V2,
U <: <{{ V1 → V2 }}> →
∃ U1 U2,
(U= <{{ U1 → U2 }}> ) ∧ (V1 <: U1) ∧ (U2 <: V2).
U <: <{{ V1 → V2 }}> →
∃ U1 U2,
(U= <{{ U1 → U2 }}> ) ∧ (V1 <: U1) ∧ (U2 <: V2).
Proof with eauto.
intros U V1 V2 Hs.
remember <{{ V1 → V2 }}> as V.
generalize dependent V2. generalize dependent V1.
(* FILL IN HERE *) Admitted.
☐
intros U V1 V2 Hs.
remember <{{ V1 → V2 }}> as V.
generalize dependent V2. generalize dependent V1.
(* FILL IN HERE *) Admitted.
☐
Definition context := partial_map ty.
Reserved Notation "Gamma '⊢' t '∈' T" (at level 40,
t custom stlc at level 99, T custom stlc_ty at level 0).
Inductive has_type : context → tm → ty → Prop :=
| T_Var : ∀ Gamma (x : string) T,
Gamma x = Some T →
well_formed_ty T →
Gamma ⊢ x \in T
| T_Abs : ∀ Gamma x T11 T12 t12,
well_formed_ty T11 →
(x ⊢> T11; Gamma) ⊢ t12 \in T12 →
Gamma ⊢ (\ x : T11, t12) \in (T11 → T12)
| T_App : ∀ T1 T2 Gamma t1 t2,
Gamma ⊢ t1 \in (T1 → T2) →
Gamma ⊢ t2 \in T1 →
Gamma ⊢ t1 t2 \in T2
| T_Proj : ∀ Gamma i t T Ti,
Gamma ⊢ t \in T →
Tlookup i T = Some Ti →
Gamma ⊢ t --> i \in Ti
(* Subsumption *)
| T_Sub : ∀ Gamma t S T,
Gamma ⊢ t \in S →
subtype S T →
Gamma ⊢ t \in T
(* Rules for record terms *)
| T_RNil : ∀ Gamma,
Gamma ⊢ nil \in nil
| T_RCons : ∀ Gamma i t T tr Tr,
Gamma ⊢ t \in T →
Gamma ⊢ tr \in Tr →
record_ty Tr →
record_tm tr →
Gamma ⊢ i := t :: tr \in (i : T :: Tr)
where "Gamma '⊢' t '∈' T" := (has_type Gamma t T).
Hint Constructors has_type : core.
Reserved Notation "Gamma '⊢' t '∈' T" (at level 40,
t custom stlc at level 99, T custom stlc_ty at level 0).
Inductive has_type : context → tm → ty → Prop :=
| T_Var : ∀ Gamma (x : string) T,
Gamma x = Some T →
well_formed_ty T →
Gamma ⊢ x \in T
| T_Abs : ∀ Gamma x T11 T12 t12,
well_formed_ty T11 →
(x ⊢> T11; Gamma) ⊢ t12 \in T12 →
Gamma ⊢ (\ x : T11, t12) \in (T11 → T12)
| T_App : ∀ T1 T2 Gamma t1 t2,
Gamma ⊢ t1 \in (T1 → T2) →
Gamma ⊢ t2 \in T1 →
Gamma ⊢ t1 t2 \in T2
| T_Proj : ∀ Gamma i t T Ti,
Gamma ⊢ t \in T →
Tlookup i T = Some Ti →
Gamma ⊢ t --> i \in Ti
(* Subsumption *)
| T_Sub : ∀ Gamma t S T,
Gamma ⊢ t \in S →
subtype S T →
Gamma ⊢ t \in T
(* Rules for record terms *)
| T_RNil : ∀ Gamma,
Gamma ⊢ nil \in nil
| T_RCons : ∀ Gamma i t T tr Tr,
Gamma ⊢ t \in T →
Gamma ⊢ tr \in Tr →
record_ty Tr →
record_tm tr →
Gamma ⊢ i := t :: tr \in (i : T :: Tr)
where "Gamma '⊢' t '∈' T" := (has_type Gamma t T).
Hint Constructors has_type : core.
Definition trcd_kj :=
<{ k := (\z : A, z) :: j := (\z : B, z) :: nil }>.
Example typing_example_0 :
empty ⊢ trcd_kj \in TRcd_kj.
(* empty ⊢ {k=(\z:A.z), j=(\z:B.z)} : {k:A->A,j:B->B} *)
<{ k := (\z : A, z) :: j := (\z : B, z) :: nil }>.
Example typing_example_0 :
empty ⊢ trcd_kj \in TRcd_kj.
(* empty ⊢ {k=(\z:A.z), j=(\z:B.z)} : {k:A->A,j:B->B} *)
Proof.
(* FILL IN HERE *) Admitted.
☐
(* FILL IN HERE *) Admitted.
☐
Example typing_example_1 :
empty ⊢ (\x : TRcd_j, x --> j) trcd_kj \in (B → B).
(* empty ⊢ (\x:{k:A->A,j:B->B}. x.j)
{k=(\z:A.z), j=(\z:B.z)}
: B->B *)
empty ⊢ (\x : TRcd_j, x --> j) trcd_kj \in (B → B).
(* empty ⊢ (\x:{k:A->A,j:B->B}. x.j)
{k=(\z:A.z), j=(\z:B.z)}
: B->B *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
☐
(* FILL IN HERE *) Admitted.
☐
Example typing_example_2 :
empty ⊢ (\ z : (C → C) → TRcd_j, (z (\ x : C, x) ) --> j )
( \z : (C → C), trcd_kj ) \in (B → B).
(* empty ⊢ (\z:(C->C)->{j:B->B}. (z (\x:C.x)).j)
(\z:C->C. {k=(\z:A.z), j=(\z:B.z)})
: B->B *)
End Examples2.
empty ⊢ (\ z : (C → C) → TRcd_j, (z (\ x : C, x) ) --> j )
( \z : (C → C), trcd_kj ) \in (B → B).
(* empty ⊢ (\z:(C->C)->{j:B->B}. (z (\x:C.x)).j)
(\z:C->C. {k=(\z:A.z), j=(\z:B.z)})
: B->B *)
Proof with eauto.
(* FILL IN HERE *) Admitted.
☐
(* FILL IN HERE *) Admitted.
☐
End Examples2.
Lemma has_type__wf : ∀ Gamma t T,
has_type Gamma t T → well_formed_ty T.
Lemma step_preserves_record_tm : ∀ tr tr',
record_tm tr →
tr --> tr' →
record_tm tr'.
has_type Gamma t T → well_formed_ty T.
Proof with eauto.
intros Gamma t T Htyp.
induction Htyp...
- (* T_App *)
inversion IHHtyp1...
- (* T_Proj *)
eapply wf_rcd_lookup...
- (* T_Sub *)
apply subtype__wf in H.
destruct H...
Qed.
intros Gamma t T Htyp.
induction Htyp...
- (* T_App *)
inversion IHHtyp1...
- (* T_Proj *)
eapply wf_rcd_lookup...
- (* T_Sub *)
apply subtype__wf in H.
destruct H...
Qed.
Lemma step_preserves_record_tm : ∀ tr tr',
record_tm tr →
tr --> tr' →
record_tm tr'.
Proof.
intros tr tr' Hrt Hstp.
inversion Hrt; subst; inversion Hstp; subst; eauto.
Qed.
intros tr tr' Hrt Hstp.
inversion Hrt; subst; inversion Hstp; subst; eauto.
Qed.
Lemma lookup_field_in_value : ∀ v T i Ti,
value v →
empty ⊢ v \in T →
Tlookup i T = Some Ti →
∃ vi, tlookup i v = Some vi ∧ empty ⊢ vi \in Ti.
value v →
empty ⊢ v \in T →
Tlookup i T = Some Ti →
∃ vi, tlookup i v = Some vi ∧ empty ⊢ vi \in Ti.
Proof with eauto.
remember empty as Gamma.
intros t T i Ti Hval Htyp. generalize dependent Ti.
induction Htyp; intros; subst; try solve_by_invert.
- (* T_Sub *)
apply (rcd_types_match S) in H0...
destruct H0 as [Si [HgetSi Hsub]].
eapply IHHtyp in HgetSi...
destruct HgetSi as [vi [Hget Htyvi]]...
- (* T_RCons *)
simpl in H0. simpl. simpl in H1.
destruct (String.eqb i i0).
+ (* i is first *)
injection H1 as H1. subst. ∃ t...
+ (* i in tail *)
eapply IHHtyp2 in H1...
inversion Hval... Qed.
remember empty as Gamma.
intros t T i Ti Hval Htyp. generalize dependent Ti.
induction Htyp; intros; subst; try solve_by_invert.
- (* T_Sub *)
apply (rcd_types_match S) in H0...
destruct H0 as [Si [HgetSi Hsub]].
eapply IHHtyp in HgetSi...
destruct HgetSi as [vi [Hget Htyvi]]...
- (* T_RCons *)
simpl in H0. simpl. simpl in H1.
destruct (String.eqb i i0).
+ (* i is first *)
injection H1 as H1. subst. ∃ t...
+ (* i in tail *)
eapply IHHtyp2 in H1...
inversion Hval... Qed.
Lemma canonical_forms_of_arrow_types : ∀ Gamma s T1 T2,
Gamma ⊢ s \in (T1 → T2) →
value s →
∃ x S1 s2,
s = <{ \ x : S1, s2 }>.
Theorem progress : ∀ t T,
empty ⊢ t \in T →
value t ∨ ∃ t', t --> t'.
Gamma ⊢ s \in (T1 → T2) →
value s →
∃ x S1 s2,
s = <{ \ x : S1, s2 }>.
Proof with eauto.
(* FILL IN HERE *) Admitted.
☐
(* FILL IN HERE *) Admitted.
☐
Theorem progress : ∀ t T,
empty ⊢ t \in T →
value t ∨ ∃ t', t --> t'.
Proof with eauto.
intros t T Ht.
remember empty as Gamma.
revert HeqGamma.
induction Ht;
intros HeqGamma; subst...
- (* T_Var *)
inversion H.
- (* T_App *)
right.
destruct IHHt1; subst...
+ (* t1 is a value *)
destruct IHHt2; subst...
× (* t2 is a value *)
destruct (canonical_forms_of_arrow_types empty t1 T1 T2)
as [x [S1 [t12 Heqt1]]]...
subst. ∃ <{ [x:=t2] t12 }>...
× (* t2 steps *)
destruct H0 as [t2' Hstp]. ∃ <{ t1 t2' }> ...
+ (* t1 steps *)
destruct H as [t1' Hstp]. ∃ <{ t1' t2 }>...
- (* T_Proj *)
right. destruct IHHt...
+ (* rcd is value *)
destruct (lookup_field_in_value t T i Ti)
as [t' [Hget Ht']]...
+ (* rcd_steps *)
destruct H0 as [t' Hstp]. ∃ <{ t' --> i }>...
- (* T_RCons *)
destruct IHHt1...
+ (* head is a value *)
destruct IHHt2...
× (* tail steps *)
right. destruct H2 as [tr' Hstp].
∃ <{ i := t :: tr' }>...
+ (* head steps *)
right. destruct H1 as [t' Hstp].
∃ <{ i := t' :: tr}>... Qed.
intros t T Ht.
remember empty as Gamma.
revert HeqGamma.
induction Ht;
intros HeqGamma; subst...
- (* T_Var *)
inversion H.
- (* T_App *)
right.
destruct IHHt1; subst...
+ (* t1 is a value *)
destruct IHHt2; subst...
× (* t2 is a value *)
destruct (canonical_forms_of_arrow_types empty t1 T1 T2)
as [x [S1 [t12 Heqt1]]]...
subst. ∃ <{ [x:=t2] t12 }>...
× (* t2 steps *)
destruct H0 as [t2' Hstp]. ∃ <{ t1 t2' }> ...
+ (* t1 steps *)
destruct H as [t1' Hstp]. ∃ <{ t1' t2 }>...
- (* T_Proj *)
right. destruct IHHt...
+ (* rcd is value *)
destruct (lookup_field_in_value t T i Ti)
as [t' [Hget Ht']]...
+ (* rcd_steps *)
destruct H0 as [t' Hstp]. ∃ <{ t' --> i }>...
- (* T_RCons *)
destruct IHHt1...
+ (* head is a value *)
destruct IHHt2...
× (* tail steps *)
right. destruct H2 as [tr' Hstp].
∃ <{ i := t :: tr' }>...
+ (* head steps *)
right. destruct H1 as [t' Hstp].
∃ <{ i := t' :: tr}>... Qed.
Theorem : For any term t and type T, if empty ⊢ t : T
then t is a value or t --> t' for some term t'.
Proof: Let t and T be given such that empty ⊢ t : T. We
proceed by induction on the given typing derivation.
- The cases where the last step in the typing derivation is
T_Abs or T_RNil are immediate because abstractions and
{} are always values. The case for T_Var is vacuous
because variables cannot be typed in the empty context.
- If the last step in the typing derivation is by T_App, then
there are terms t1 t2 and types T1 T2 such that t =
t1 t2, T = T2, empty ⊢ t1 : T1 → T2 and empty ⊢ t2 :
T1.
- Suppose t1 --> t1' for some term t1'. Then t1 t2 -->
t1' t2 by ST_App1.
- Otherwise t1 is a value.
- Suppose t2 --> t2' for some term t2'. Then t1 t2 -->
t1 t2' by rule ST_App2 because t1 is a value.
- Otherwise, t2 is a value. By Lemma
canonical_forms_for_arrow_types, t1 = \x:S1.s2 for
some x, S1, and s2. But then (\x:S1.s2) t2 -->
[x:=t2]s2 by ST_AppAbs, since t2 is a value.
- Suppose t2 --> t2' for some term t2'. Then t1 t2 -->
t1 t2' by rule ST_App2 because t1 is a value.
- Suppose t1 --> t1' for some term t1'. Then t1 t2 -->
t1' t2 by ST_App1.
- If the last step of the derivation is by T_Proj, then there
are a term tr, a type Tr, and a label i such that t =
tr.i, empty ⊢ tr : Tr, and Tlookup i Tr = Some T.
- If the final step of the derivation is by T_Sub, then there
is a type S such that S <: T and empty ⊢ t : S. The
desired result is exactly the induction hypothesis for the
typing subderivation.
- If the final step of the derivation is by T_RCons, then
there exist some terms t1 tr, types T1 Tr and a label
t such that t = {i=t1, tr}, T = {i:T1, Tr}, record_ty
tr, record_tm Tr, empty ⊢ t1 : T1 and empty ⊢ tr :
Tr.
- Suppose t1 --> t1' for some term t1'. Then {i=t1, tr}
--> {i=t1', tr} by rule ST_Rcd_Head.
- Otherwise t1 is a value.
- Suppose tr --> tr' for some term tr'. Then {i=t1,
tr} --> {i=t1, tr'} by rule ST_Rcd_Tail, since t1 is
a value.
- Otherwise, tr is also a value. So, {i=t1, tr} is a value by v_rcons.
- Suppose tr --> tr' for some term tr'. Then {i=t1,
tr} --> {i=t1, tr'} by rule ST_Rcd_Tail, since t1 is
a value.
- Suppose t1 --> t1' for some term t1'. Then {i=t1, tr}
--> {i=t1', tr} by rule ST_Rcd_Head.
Lemma typing_inversion_abs : ∀ Gamma x S1 t2 T,
Gamma ⊢ \ x : S1, t2 \in T →
(∃ S2, <{{ S1 → S2 }}> <: T
∧ (x ⊢> S1; Gamma) ⊢ t2 \in S2).
Lemma abs_arrow : ∀ x S1 s2 T1 T2,
empty ⊢ \x : S1, s2 \in (T1 → T2) →
T1 <: S1
∧ (x ⊢> S1) ⊢ s2 \in T2.
Gamma ⊢ \ x : S1, t2 \in T →
(∃ S2, <{{ S1 → S2 }}> <: T
∧ (x ⊢> S1; Gamma) ⊢ t2 \in S2).
Proof with eauto.
intros Gamma x S1 t2 T H.
remember <{ \ x : S1, t2 }> as t.
induction H;
inversion Heqt; subst; intros; try solve_by_invert.
- (* T_Abs *)
assert (Hwf := has_type__wf _ _ _ H0).
∃ T12...
- (* T_Sub *)
destruct IHhas_type as [S2 [Hsub Hty]]...
Qed.
intros Gamma x S1 t2 T H.
remember <{ \ x : S1, t2 }> as t.
induction H;
inversion Heqt; subst; intros; try solve_by_invert.
- (* T_Abs *)
assert (Hwf := has_type__wf _ _ _ H0).
∃ T12...
- (* T_Sub *)
destruct IHhas_type as [S2 [Hsub Hty]]...
Qed.
Lemma abs_arrow : ∀ x S1 s2 T1 T2,
empty ⊢ \x : S1, s2 \in (T1 → T2) →
T1 <: S1
∧ (x ⊢> S1) ⊢ s2 \in T2.
Proof with eauto.
intros x S1 s2 T1 T2 Hty.
apply typing_inversion_abs in Hty.
destruct Hty as [S2 [Hsub Hty]].
apply sub_inversion_arrow in Hsub.
destruct Hsub as [U1 [U2 [Heq [Hsub1 Hsub2]]]].
inversion Heq; subst... Qed.
intros x S1 s2 T1 T2 Hty.
apply typing_inversion_abs in Hty.
destruct Hty as [S2 [Hsub Hty]].
apply sub_inversion_arrow in Hsub.
destruct Hsub as [U1 [U2 [Heq [Hsub1 Hsub2]]]].
inversion Heq; subst... Qed.
Lemma weakening : ∀ Gamma Gamma' t T,
includedin Gamma Gamma' →
Gamma ⊢ t \in T →
Gamma' ⊢ t \in T.
Proof.
intros Gamma Gamma' t T H Ht.
generalize dependent Gamma'.
induction Ht; eauto using includedin_update.
Qed.
Lemma weakening_empty : ∀ Gamma t T,
empty ⊢ t \in T →
Gamma ⊢ t \in T.
Proof.
intros Gamma t T.
eapply weakening.
discriminate.
Qed.
includedin Gamma Gamma' →
Gamma ⊢ t \in T →
Gamma' ⊢ t \in T.
Proof.
intros Gamma Gamma' t T H Ht.
generalize dependent Gamma'.
induction Ht; eauto using includedin_update.
Qed.
Lemma weakening_empty : ∀ Gamma t T,
empty ⊢ t \in T →
Gamma ⊢ t \in T.
Proof.
intros Gamma t T.
eapply weakening.
discriminate.
Qed.
Lemma substitution_preserves_typing : ∀ Gamma x U t v T,
(x ⊢> U ; Gamma) ⊢ t \in T →
empty ⊢ v \in U →
Gamma ⊢ [x:=v]t \in T.
Proof.
Theorem preservation : ∀ t t' T,
empty ⊢ t \in T →
t --> t' →
empty ⊢ t' \in T.
(x ⊢> U ; Gamma) ⊢ t \in T →
empty ⊢ v \in U →
Gamma ⊢ [x:=v]t \in T.
Proof.
Proof.
intros Gamma x U t v T Ht Hv.
remember (x ⊢> U; Gamma) as Gamma'.
generalize dependent Gamma.
induction Ht; intros Gamma' G; simpl; eauto.
- (* T_Var *)
rename x0 into y.
destruct (eqb_spec x y) as [Hxy|Hxy]; subst.
+ (* x = y *)
rewrite update_eq in H.
injection H as H. subst.
apply weakening_empty. assumption.
+ (* x<>y *)
apply T_Var; [|assumption].
rewrite update_neq in H; assumption.
- (* T_Abs *)
rename x0 into y. subst.
destruct (eqb_spec x y) as [Hxy|Hxy]; apply T_Abs; try assumption.
+ (* x=y *)
subst. rewrite update_shadow in Ht. assumption.
+ (* x <> y *)
subst. apply IHHt.
rewrite update_permute; auto.
- (* rcons *) (* <=== only new case compared to pure STLC *)
apply T_RCons; eauto.
inversion H0; subst; simpl; auto.
Qed.
intros Gamma x U t v T Ht Hv.
remember (x ⊢> U; Gamma) as Gamma'.
generalize dependent Gamma.
induction Ht; intros Gamma' G; simpl; eauto.
- (* T_Var *)
rename x0 into y.
destruct (eqb_spec x y) as [Hxy|Hxy]; subst.
+ (* x = y *)
rewrite update_eq in H.
injection H as H. subst.
apply weakening_empty. assumption.
+ (* x<>y *)
apply T_Var; [|assumption].
rewrite update_neq in H; assumption.
- (* T_Abs *)
rename x0 into y. subst.
destruct (eqb_spec x y) as [Hxy|Hxy]; apply T_Abs; try assumption.
+ (* x=y *)
subst. rewrite update_shadow in Ht. assumption.
+ (* x <> y *)
subst. apply IHHt.
rewrite update_permute; auto.
- (* rcons *) (* <=== only new case compared to pure STLC *)
apply T_RCons; eauto.
inversion H0; subst; simpl; auto.
Qed.
Theorem preservation : ∀ t t' T,
empty ⊢ t \in T →
t --> t' →
empty ⊢ t' \in T.
Proof with eauto.
intros t t' T HT. generalize dependent t'.
remember empty as Gamma.
induction HT;
intros t' HE; subst;
try solve [inversion HE; subst; eauto].
- (* T_App *)
inversion HE; subst...
+ (* ST_AppAbs *)
destruct (abs_arrow _ _ _ _ _ HT1) as [HA1 HA2].
apply substitution_preserves_typing with T0...
- (* T_Proj *)
inversion HE; subst...
destruct (lookup_field_in_value _ _ _ _ H2 HT H)
as [vi [Hget Hty]].
rewrite H4 in Hget. inversion Hget. subst...
- (* T_RCons *)
inversion HE; subst...
eauto using step_preserves_record_tm. Qed.
intros t t' T HT. generalize dependent t'.
remember empty as Gamma.
induction HT;
intros t' HE; subst;
try solve [inversion HE; subst; eauto].
- (* T_App *)
inversion HE; subst...
+ (* ST_AppAbs *)
destruct (abs_arrow _ _ _ _ _ HT1) as [HA1 HA2].
apply substitution_preserves_typing with T0...
- (* T_Proj *)
inversion HE; subst...
destruct (lookup_field_in_value _ _ _ _ H2 HT H)
as [vi [Hget Hty]].
rewrite H4 in Hget. inversion Hget. subst...
- (* T_RCons *)
inversion HE; subst...
eauto using step_preserves_record_tm. Qed.
Theorem: If t, t' are terms and T is a type such that
empty ⊢ t : T and t --> t', then empty ⊢ t' : T.
Proof: Let t and T be given such that empty ⊢ t : T. We go
by induction on the structure of this typing derivation, leaving
t' general. Cases T_Abs and T_RNil are vacuous because
abstractions and {} don't step. Case T_Var is vacuous as well,
since the context is empty.
- If the final step of the derivation is by T_App, then there
are terms t1 t2 and types T1 T2 such that t = t1 t2,
T = T2, empty ⊢ t1 : T1 → T2 and empty ⊢ t2 : T1.
- If the final step of the derivation is by T_Proj, then there
is a term tr, type Tr and label i such that t = tr.i,
empty ⊢ tr : Tr, and Tlookup i Tr = Some T.
- If the final step of the derivation is by T_Sub, then there
is a type S such that S <: T and empty ⊢ t : S. The
result is immediate by the induction hypothesis for the typing
subderivation and an application of T_Sub.
- If the final step of the derivation is by T_RCons, then there
exist some terms t1 tr, types T1 Tr and a label t such
that t = i:=t1 :: tr}, T = i:T1 :: Tr, record_ty tr,
record_tm Tr, empty ⊢ t1 : T1 and empty ⊢ tr : Tr.