------------------------------------------------------------------------
-- The Maybe type
------------------------------------------------------------------------

{-# OPTIONS --universe-polymorphism #-}

module Data.Maybe where

open import Level

------------------------------------------------------------------------
-- The type

open import Data.Maybe.Core public

------------------------------------------------------------------------
-- Some operations

open import Data.Bool using (Bool; true; false)
open import Data.Unit using ()

boolToMaybe : Bool  Maybe 
boolToMaybe true  = just _
boolToMaybe false = nothing

maybeToBool :  {a} {A : Set a}  Maybe A  Bool
maybeToBool (just _) = true
maybeToBool nothing  = false

-- A non-dependent eliminator.

maybe :  {a b} {A : Set a} {B : Set b}  (A  B)  B  Maybe A  B
maybe j n (just x) = j x
maybe j n nothing  = n

------------------------------------------------------------------------
-- Maybe monad

open import Data.Function
open import Category.Functor
open import Category.Monad
open import Category.Monad.Identity

functor : RawFunctor Maybe
functor = record
  { _<$>_ = λ f  maybe (just  f) nothing
  }

monadT :  {M}  RawMonad M  RawMonad  A  M (Maybe A))
monadT M = record
  { return = M.return  just
  ; _>>=_  = λ m f  M._>>=_ m (maybe f (M.return nothing))
  }
  where module M = RawMonad M

monad : RawMonad Maybe
monad = monadT IdentityMonad

monadZero : RawMonadZero Maybe
monadZero = record
  { monad = monad
  ;      = nothing
  }

monadPlus : RawMonadPlus Maybe
monadPlus = record
  { monadZero = monadZero
  ; _∣_       = _∣_
  }
  where
  _∣_ :  {a : Set}  Maybe a  Maybe a  Maybe a
  nothing  y = y
  just x   y = just x

------------------------------------------------------------------------
-- Equality

open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as PropEq
  using (_≡_; refl)

drop-just :  {A : Set} {x y : A}  just x  just y  x  y
drop-just refl = refl

decSetoid : {A : Set}  Decidable (_≡_ {A = A})  DecSetoid _ _
decSetoid {A} _A-≟_ = PropEq.decSetoid _≟_
  where
  _≟_ : Decidable (_≡_ {A = Maybe A})
  just x   just y  with x A-≟ y
  just x   just .x | yes refl = yes refl
  just x   just y  | no  x≢y    = no (x≢y  drop-just)
  just x   nothing = no λ()
  nothing  just y  = no λ()
  nothing  nothing = yes refl

------------------------------------------------------------------------
-- Any and All

open import Data.Product using (_,_)
open import Data.Empty using ()
import Relation.Nullary.Decidable as Dec

data Any {a} {A : Set a} (P : A  Set a) : Maybe A  Set a where
  just :  {x} (px : P x)  Any P (just x)

data All {a} {A : Set a} (P : A  Set a) : Maybe A  Set a where
  just    :  {x} (px : P x)  All P (just x)
  nothing : All P nothing

IsJust :  {A : Set}  Maybe A  Set
IsJust = Any  _  )

IsNothing :  {A}  Maybe A  Set
IsNothing = All  _  )

private

  drop-just-Any :  {A} {P : A  Set} {x}  Any P (just x)  P x
  drop-just-Any (just px) = px

  drop-just-All :  {A} {P : A  Set} {x}  All P (just x)  P x
  drop-just-All (just px) = px

anyDec :  {A} {P : A  Set} 
         (∀ x  Dec (P x))  (x : Maybe A)  Dec (Any P x)
anyDec p nothing  = no λ()
anyDec p (just x) = Dec.map (just , drop-just-Any) (p x)

allDec :  {A} {P : A  Set} 
         (∀ x  Dec (P x))  (x : Maybe A)  Dec (All P x)
allDec p nothing  = yes nothing
allDec p (just x) = Dec.map (just , drop-just-All) (p x)