{-# OPTIONS --universe-polymorphism #-}
module Relation.Binary.PropositionalEquality.Core where
open import Level
open import Relation.Binary.Core
open import Relation.Binary.Consequences.Core
sym : ∀ {a} {A : Set a} → Symmetric (_≡_ {A = A})
sym refl = refl
trans : ∀ {a} {A : Set a} → Transitive (_≡_ {A = A})
trans refl refl = refl
subst : ∀ {a p} {A : Set a} → Substitutive (_≡_ {A = A}) p
subst P refl p = p
resp₂ : ∀ {a ℓ} {A : Set a} (∼ : REL A ℓ) → ∼ Respects₂ _≡_
resp₂ _∼_ = subst⟶resp₂ _∼_ subst
isEquivalence : ∀ {a} {A : Set a} → IsEquivalence (_≡_ {A = A})
isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}