TypecheckingA Typechecker for STLC

The has_type relation of the STLC defines what it means for a term to belong to a type (in some context). But it doesn't, by itself, tell us how to check whether or not a term is well typed.
Fortunately, the rules defining has_type are syntax directed — that is, for every syntactic form of the language, there is just one rule that can be used to give a type to terms of that form. This makes it straightforward to translate the typing rules into clauses of a typechecking function that takes a term and a context and either returns the term's type or else signals that the term is not typable.

(* This short chapter constructs such a function and proves it
   correct. *)


Require Import Coq.Bool.Bool.
Require Import Maps.
Require Import Smallstep.
Require Import Stlc.

Module STLCChecker.
Import STLC.

Comparing Types

First, we need a function to compare two types for equality...

Fixpoint beq_ty (T1 T2:ty) : bool :=
  match T1,T2 with
  | TBool, TBool
      true
  | TArrow T11 T12, TArrow T21 T22
      andb (beq_ty T11 T21) (beq_ty T12 T22)
  | _,_ ⇒
      false
  end.

... and we need to establish the usual two-way connection between the boolean result returned by beq_ty and the logical proposition that its inputs are equal.

Lemma beq_ty_refl : T1,
  beq_ty T1 T1 = true.
Proof.
  intros T1. induction T1; simpl.
    reflexivity.
    rewrite IHT1_1. rewrite IHT1_2. reflexivity. Qed.

Lemma beq_ty__eq : T1 T2,
  beq_ty T1 T2 = true T1 = T2.
Proof with auto.
  intros T1. induction T1; intros T2 Hbeq; destruct T2; inversion Hbeq.
  - (* T1=TBool *)
    reflexivity.
  - (* T1=TArrow T1_1 T1_2 *)
    rewrite andb_true_iff in H0. inversion H0 as [Hbeq1 Hbeq2].
    apply IHT1_1 in Hbeq1. apply IHT1_2 in Hbeq2. subst... Qed.

The Typechecker

The typechecker works by walking over the structure of the given term, returning either Some T or None. Each time we make a recursive call to find out the types of the subterms, we need to pattern-match on the results to make sure that they are not None. Also, in the tapp case, we use pattern matching to extract the left- and right-hand sides of the function's arrow type (and fail if the type of the function is not TArrow T11 T12 for some T1 and T2).

Fixpoint type_check (Γ:context) (t:tm) : option ty :=
  match t with
  | tvar x
      Γ x
  | tabs x T11 t12
      match type_check (update Γ x T11) t12 with
      | Some T12Some (TArrow T11 T12)
      | _None
      end
  | tapp t1 t2
      match type_check Γ t1, type_check Γ t2 with
      | Some (TArrow T11 T12),Some T2
          if beq_ty T11 T2 then Some T12 else None
      | _,_ ⇒ None
      end
  | ttrue
      Some TBool
  | tfalse
      Some TBool
  | tif guard t f
      match type_check Γ guard with
      | Some TBool
          match type_check Γ t, type_check Γ f with
          | Some T1, Some T2
              if beq_ty T1 T2 then Some T1 else None
          | _,_ ⇒ None
          end
      | _None
      end
  end.

Properties

To verify that this typechecking algorithm is correct, we show that it is sound and complete for the original has_type relation — that is, type_check and has_type define the same partial function.

Theorem type_checking_sound : Γ t T,
  type_check Γ t = Some T has_type Γ t T.
Proof with eauto.
  intros Γ t. generalize dependent Γ.
  induction t; intros Γ T Htc; inversion Htc.
  - (* tvar *) eauto.
  - (* tapp *)
    remember (type_check Γ t1) as TO1.
    remember (type_check Γ t2) as TO2.
    destruct TO1 as [T1|]; try solve_by_invert;
    destruct T1 as [|T11 T12]; try solve_by_invert.
    destruct TO2 as [T2|]; try solve_by_invert.
    destruct (beq_ty T11 T2) eqn: Heqb;
    try solve_by_invert.
    apply beq_ty__eq in Heqb.
    inversion H0; subst...
  - (* tabs *)
    rename i into y. rename t into T1.
    remember (update Γ y T1) as G'.
    remember (type_check G' t0) as TO2.
    destruct TO2; try solve_by_invert.
    inversion H0; subst...
  - (* ttrue *) eauto.
  - (* tfalse *) eauto.
  - (* tif *)
    remember (type_check Γ t1) as TOc.
    remember (type_check Γ t2) as TO1.
    remember (type_check Γ t3) as TO2.
    destruct TOc as [Tc|]; try solve_by_invert.
    destruct Tc; try solve_by_invert.
    destruct TO1 as [T1|]; try solve_by_invert.
    destruct TO2 as [T2|]; try solve_by_invert.
    destruct (beq_ty T1 T2) eqn:Heqb;
    try solve_by_invert.
    apply beq_ty__eq in Heqb.
    inversion H0. subst. subst...
Qed.

Theorem type_checking_complete : Γ t T,
  has_type Γ t T type_check Γ t = Some T.
Proof with auto.
  intros Γ t T Hty.
  induction Hty; simpl.
  - (* T_Var *) eauto.
  - (* T_Abs *) rewrite IHHty...
  - (* T_App *)
    rewrite IHHty1. rewrite IHHty2.
    rewrite (beq_ty_refl T11)...
  - (* T_True *) eauto.
  - (* T_False *) eauto.
  - (* T_If *) rewrite IHHty1. rewrite IHHty2.
    rewrite IHHty3. rewrite (beq_ty_refl T)...
Qed.

End STLCChecker.

Exercises

Exercise: 5 stars (typechecker_extensions)

In this exercise we'll extend the typechecker to deal with the extended features discussed in chapter MoreStlc. Your job is to fill in the omitted cases in the following.

Module TypecheckerExtensions.
Require Import MoreStlc.
Import STLCExtended.

Fixpoint beq_ty (T1 T2: ty) : bool :=
  match T1,T2 with
  | TNat, TNat
      true
  | TUnit, TUnit
      true
  | TArrow T11 T12, TArrow T21 T22
      andb (beq_ty T11 T21) (beq_ty T12 T22)
  | TProd T11 T12, TProd T21 T22
      andb (beq_ty T11 T21) (beq_ty T12 T22)
  | TSum T11 T12, TSum T21 T22
      andb (beq_ty T11 T21) (beq_ty T12 T22)
  | TList T11, TList T21
      beq_ty T11 T21
  | _,_ ⇒
      false
  end.

Lemma beq_ty_refl : T1,
  beq_ty T1 T1 = true.
Proof.
  intros T1.
  induction T1; simpl;
    try reflexivity;
    try (rewrite IHT1_1; rewrite IHT1_2; reflexivity);
    try (rewrite IHT1; reflexivity). Qed.

Lemma beq_ty__eq : T1 T2,
  beq_ty T1 T2 = true T1 = T2.
Proof.
  intros T1.
  induction T1; intros T2 Hbeq; destruct T2; inversion Hbeq;
    try reflexivity;
    try (rewrite andb_true_iff in H0; inversion H0 as [Hbeq1 Hbeq2];
         apply IHT1_1 in Hbeq1; apply IHT1_2 in Hbeq2; subst; auto);
    try (apply IHT1 in Hbeq; subst; auto).
 Qed.

Fixpoint type_check (Γ:context) (t:tm) : option ty :=
  match t with
  | tvar x
      Γ x
  | tabs x T11 t12
      match type_check (update Γ x T11) t12 with
      | Some T12Some (TArrow T11 T12)
      | _None
      end
  | tapp t1 t2
      match type_check Γ t1, type_check Γ t2 with
      | Some (TArrow T11 T12),Some T2
          if beq_ty T11 T2 then Some T12 else None
      | _,_ ⇒ None
      end
  | tnat _
      Some TNat
  | tsucc t1
      match type_check Γ t1 with
      | Some TNatSome TNat
      | _None
      end
  | tpred t1
      match type_check Γ t1 with
      | Some TNatSome TNat
      | _None
      end
  | tmult t1 t2
      match type_check Γ t1, type_check Γ t2 with
      | Some TNat, Some TNatSome TNat
      | _,_ ⇒ None
      end
  | tif0 guard t f
      match type_check Γ guard with
      | Some TNat
          match type_check Γ t, type_check Γ f with
          | Some T1, Some T2
              if beq_ty T1 T2 then Some T1 else None
          | _,_ ⇒ None
          end
      | _None
      end
  (* FILL IN HERE *)
  | tlcase t0 t1 x21 x22 t2
      match type_check Γ t0 with
      | Some (TList T) ⇒
          match type_check Γ t1,
                type_check (update (update Γ x22 (TList T)) x21 T) t2 with
          | Some T1', Some T2'
              if beq_ty T1' T2' then Some T1' else None
          | _,_ ⇒ None
          end
      | _None
      end
  (* FILL IN HERE *)
  | _None (* ... and delete this line *)
  end.

(* Just for fun, we'll do the soundness proof with just a bit more
   automation than above, using these "mega-tactics": *)

Ltac invert_typecheck Γ t T :=
  remember (type_check Γ t) as TO;
  destruct TO as [T|];
  try solve_by_invert; try (inversion H0; eauto); try (subst; eauto).

Ltac fully_invert_typecheck Γ t T T1 T2 :=
  let TX := fresh T in
  remember (type_check Γ t) as TO;
  destruct TO as [TX|]; try solve_by_invert;
  destruct TX as [T1 T2| | | T1 T2| T1 T2| T1];
  try solve_by_invert; try (inversion H0; eauto); try (subst; eauto).

Ltac case_equality S T :=
  destruct (beq_ty S T) eqn: Heqb;
  inversion H0; apply beq_ty__eq in Heqb; subst; subst; eauto.

Theorem type_checking_sound : Γ t T,
  type_check Γ t = Some T has_type Γ t T.
Proof with eauto.
  intros Γ t. generalize dependent Γ.
  induction t; intros Γ T Htc; inversion Htc.
  - (* tvar *) eauto.
  - (* tapp *)
    fully_invert_typecheck Γ t1 T1 T11 T12.
    invert_typecheck Γ t2 T2.
    case_equality T11 T2.
  - (* tabs *)
    rename i into x. rename t into T1.
    remember (update Γ x T1) as Γ'.
    invert_typecheck Γ' t0 T0.
  - (* tnat *) eauto.
  - (* tsucc *)
    rename t into t1.
    fully_invert_typecheck Γ t1 T1 T11 T12.
  - (* tpred *)
    rename t into t1.
    fully_invert_typecheck Γ t1 T1 T11 T12.
  - (* tmult *)
    fully_invert_typecheck Γ t1 T1 T11 T12.
    fully_invert_typecheck Γ t2 T2 T21 T12.
  - (* tif0 *)
    fully_invert_typecheck Γ t1 T1 T11 T12.
    invert_typecheck Γ t2 T2.
    invert_typecheck Γ t3 T3.
    case_equality T2 T3.
  (* FILL IN HERE *)
  - (* tlcase *)
    rename i into x31. rename i0 into x32.
    fully_invert_typecheck Γ t1 T1 T11 T12.
    invert_typecheck Γ t2 T2.
    remember (update (update Γ x32 (TList T11)) x31 T11) as Gamma'2.
    invert_typecheck Gamma'2 t3 T3.
    case_equality T2 T3.
  (* FILL IN HERE *)
Qed.

Theorem type_checking_complete : Γ t T,
  has_type Γ t T type_check Γ t = Some T.
Proof.
  intros Γ t T Hty.
  induction Hty; simpl;
    try (rewrite IHHty);
    try (rewrite IHHty1);
    try (rewrite IHHty2);
    try (rewrite IHHty3);
    try (rewrite (beq_ty_refl T));
    try (rewrite (beq_ty_refl T1));
    try (rewrite (beq_ty_refl T2));
    eauto.
  Admitted. (* ... and delete this line *)
(* 
Qed. (* ... and uncomment this one *)
*)

End TypecheckerExtensions.

Exercise: 5 stars, optional (stlc_step_function)

Above, we showed how to write a typechecking function and prove it sound and complete for the typing relation. Do the same for the operational semantics — i.e., write a function stepf of type tm option tm and prove that it is sound and complete with respect to step from chapter MoreStlc.

Module StepFunction.
Import TypecheckerExtensions.

(* FILL IN HERE *)
End StepFunction.

Exercise: 5 stars, optional (stlc_impl)

Using the Imp parser described in the ImpParser chapter as a guide, build a parser for extended Stlc programs. Combine it with the typechecking and stepping functions from above to yield a complete typechecker and interpreter for this language.

Module StlcImpl.
Import StepFunction.

(* FILL IN HERE *)
End StlcImpl.